summaryrefslogtreecommitdiff
path: root/Documentation/admin-guide/media
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide/media')
-rw-r--r--Documentation/admin-guide/media/mali-c55-graph.dot19
-rw-r--r--Documentation/admin-guide/media/mali-c55.rst413
-rw-r--r--Documentation/admin-guide/media/platform-cardlist.rst2
-rw-r--r--Documentation/admin-guide/media/radio-cardlist.rst1
-rw-r--r--Documentation/admin-guide/media/rkcif-rk3568-vicap.dot8
-rw-r--r--Documentation/admin-guide/media/rkcif.rst79
-rw-r--r--Documentation/admin-guide/media/v4l-drivers.rst2
7 files changed, 521 insertions, 3 deletions
diff --git a/Documentation/admin-guide/media/mali-c55-graph.dot b/Documentation/admin-guide/media/mali-c55-graph.dot
new file mode 100644
index 000000000000..0775ba42bf4c
--- /dev/null
+++ b/Documentation/admin-guide/media/mali-c55-graph.dot
@@ -0,0 +1,19 @@
+digraph board {
+ rankdir=TB
+ n00000001 [label="{{} | mali-c55 tpg\n/dev/v4l-subdev0 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000001:port0 -> n00000003:port0 [style=dashed]
+ n00000003 [label="{{<port0> 0} | mali-c55 isp\n/dev/v4l-subdev1 | {<port1> 1 | <port2> 2}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000003:port1 -> n00000007:port0 [style=bold]
+ n00000003:port2 -> n00000007:port2 [style=bold]
+ n00000003:port1 -> n0000000b:port0 [style=bold]
+ n00000007 [label="{{<port0> 0 | <port2> 2} | mali-c55 resizer fr\n/dev/v4l-subdev2 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000007:port1 -> n0000000e [style=bold]
+ n0000000b [label="{{<port0> 0} | mali-c55 resizer ds\n/dev/v4l-subdev3 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
+ n0000000b:port1 -> n00000012 [style=bold]
+ n0000000e [label="mali-c55 fr\n/dev/video0", shape=box, style=filled, fillcolor=yellow]
+ n00000012 [label="mali-c55 ds\n/dev/video1", shape=box, style=filled, fillcolor=yellow]
+ n00000022 [label="{{<port0> 0} | csi2-rx\n/dev/v4l-subdev4 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000022:port1 -> n00000003:port0
+ n00000027 [label="{{} | imx415 1-001a\n/dev/v4l-subdev5 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000027:port0 -> n00000022:port0 [style=bold]
+} \ No newline at end of file
diff --git a/Documentation/admin-guide/media/mali-c55.rst b/Documentation/admin-guide/media/mali-c55.rst
new file mode 100644
index 000000000000..315f982000c4
--- /dev/null
+++ b/Documentation/admin-guide/media/mali-c55.rst
@@ -0,0 +1,413 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========================================
+ARM Mali-C55 Image Signal Processor driver
+==========================================
+
+Introduction
+============
+
+This file documents the driver for ARM's Mali-C55 Image Signal Processor. The
+driver is located under drivers/media/platform/arm/mali-c55.
+
+The Mali-C55 ISP receives data in either raw Bayer format or RGB/YUV format from
+sensors through either a parallel interface or a memory bus before processing it
+and outputting it through an internal DMA engine. Two output pipelines are
+possible (though one may not be fitted, depending on the implementation). These
+are referred to as "Full resolution" and "Downscale", but the naming is historic
+and both pipes are capable of cropping/scaling operations. The full resolution
+pipe is also capable of outputting RAW data, bypassing much of the ISP's
+processing. The downscale pipe cannot output RAW data. An integrated test
+pattern generator can be used to drive the ISP and produce image data in the
+absence of a connected camera sensor. The driver module is named mali_c55, and
+is enabled through the CONFIG_VIDEO_MALI_C55 config option.
+
+The driver implements V4L2, Media Controller and V4L2 Subdevice interfaces and
+expects camera sensors connected to the ISP to have V4L2 subdevice interfaces.
+
+Mali-C55 ISP hardware
+=====================
+
+A high level functional view of the Mali-C55 ISP is presented below. The ISP
+takes input from either a live source or through a DMA engine for memory input,
+depending on the SoC integration.::
+
+ +---------+ +----------+ +--------+
+ | Sensor |--->| CSI-2 Rx | "Full Resolution" | DMA |
+ +---------+ +----------+ |\ Output +--->| Writer |
+ | | \ | +--------+
+ | | \ +----------+ +------+---> Streaming I/O
+ +------------+ +------->| | | | |
+ | | | |-->| Mali-C55 |--+
+ | DMA Reader |--------------->| | | ISP | |
+ | | | / | | | +---> Streaming I/O
+ +------------+ | / +----------+ | |
+ |/ +------+
+ | +--------+
+ +--->| DMA |
+ "Downscaled" | Writer |
+ Output +--------+
+
+Media Controller Topology
+=========================
+
+An example of the ISP's topology (as implemented in a system with an IMX415
+camera sensor and generic CSI-2 receiver) is below:
+
+
+.. kernel-figure:: mali-c55-graph.dot
+ :alt: mali-c55-graph.dot
+ :align: center
+
+The driver has 4 V4L2 subdevices:
+
+- `mali_c55 isp`: Responsible for configuring input crop and color space
+ conversion
+- `mali_c55 tpg`: The test pattern generator, emulating a camera sensor.
+- `mali_c55 resizer fr`: The Full-Resolution pipe resizer
+- `mali_c55 resizer ds`: The Downscale pipe resizer
+
+The driver has 3 V4L2 video devices:
+
+- `mali-c55 fr`: The full-resolution pipe's capture device
+- `mali-c55 ds`: The downscale pipe's capture device
+- `mali-c55 3a stats`: The 3A statistics capture device
+
+Frame sequences are synchronised across to two capture devices, meaning if one
+pipe is started later than the other the sequence numbers returned in its
+buffers will match those of the other pipe rather than starting from zero.
+
+Idiosyncrasies
+--------------
+
+**mali-c55 isp**
+The `mali-c55 isp` subdevice has a single sink pad to which all sources of data
+should be connected. The active source is selected by enabling the appropriate
+media link and disabling all others. The ISP has two source pads, reflecting the
+different paths through which it can internally route data. Tap points within
+the ISP allow users to divert data to avoid processing by some or all of the
+hardware's processing steps. The diagram below is intended only to highlight how
+the bypassing works and is not a true reflection of those processing steps; for
+a high-level functional block diagram see ARM's developer page for the
+ISP [3]_::
+
+ +--------------------------------------------------------------+
+ | Possible Internal ISP Data Routes |
+ | +------------+ +----------+ +------------+ |
+ +---+ | | | | | Colour | +---+
+ | 0 |--+-->| Processing |->| Demosaic |->| Space |--->| 1 |
+ +---+ | | | | | | Conversion | +---+
+ | | +------------+ +----------+ +------------+ |
+ | | +---+
+ | +---------------------------------------------------| 2 |
+ | +---+
+ | |
+ +--------------------------------------------------------------+
+
+
+.. flat-table::
+ :header-rows: 1
+
+ * - Pad
+ - Direction
+ - Purpose
+
+ * - 0
+ - sink
+ - Data input, connected to the TPG and camera sensors
+
+ * - 1
+ - source
+ - RGB/YUV data, connected to the FR and DS V4L2 subdevices
+
+ * - 2
+ - source
+ - RAW bayer data, connected to the FR V4L2 subdevices
+
+The ISP is limited to both input and output resolutions between 640x480 and
+8192x8192, and this is reflected in the ISP and resizer subdevice's .set_fmt()
+operations.
+
+**mali-c55 resizer fr**
+The `mali-c55 resizer fr` subdevice has two _sink_ pads to reflect the different
+insertion points in the hardware (either RAW or demosaiced data):
+
+.. flat-table::
+ :header-rows: 1
+
+ * - Pad
+ - Direction
+ - Purpose
+
+ * - 0
+ - sink
+ - Data input connected to the ISP's demosaiced stream.
+
+ * - 1
+ - source
+ - Data output connected to the capture video device
+
+ * - 2
+ - sink
+ - Data input connected to the ISP's raw data stream
+
+The data source in use is selected through the routing API; two routes each of a
+single stream are available:
+
+.. flat-table::
+ :header-rows: 1
+
+ * - Sink Pad
+ - Source Pad
+ - Purpose
+
+ * - 0
+ - 1
+ - Demosaiced data route
+
+ * - 2
+ - 1
+ - Raw data route
+
+
+If the demosaiced route is active then the FR pipe is only capable of output
+in RGB/YUV formats. If the raw route is active then the output reflects the
+input (which may be either Bayer or RGB/YUV data).
+
+Using the driver to capture video
+=================================
+
+Using the media controller APIs we can configure the input source and ISP to
+capture images in a variety of formats. In the examples below, configuring the
+media graph is done with the v4l-utils [1]_ package's media-ctl utility.
+Capturing the images is done with yavta [2]_.
+
+Configuring the input source
+----------------------------
+
+The first step is to set the input source that we wish by enabling the correct
+media link. Using the example topology above, we can select the TPG as follows:
+
+.. code-block:: none
+
+ media-ctl -l "'lte-csi2-rx':1->'mali-c55 isp':0[0]"
+ media-ctl -l "'mali-c55 tpg':0->'mali-c55 isp':0[1]"
+
+Configuring which video devices will stream data
+------------------------------------------------
+
+The driver will wait for all video devices to have their VIDIOC_STREAMON ioctl
+called before it tells the sensor to start streaming. To facilitate this we need
+to enable links to the video devices that we want to use. In the example below
+we enable the links to both of the image capture video devices
+
+.. code-block:: none
+
+ media-ctl -l "'mali-c55 resizer fr':1->'mali-c55 fr':0[1]"
+ media-ctl -l "'mali-c55 resizer ds':1->'mali-c55 ds':0[1]"
+
+Capturing bayer data from the source and processing to RGB/YUV
+--------------------------------------------------------------
+
+To capture 1920x1080 bayer data from the source and push it through the ISP's
+full processing pipeline, we configure the data formats appropriately on the
+source, ISP and resizer subdevices and set the FR resizer's routing to select
+processed data. The media bus format on the resizer's source pad will be either
+RGB121212_1X36 or YUV10_1X30, depending on whether you want to capture RGB or
+YUV. The ISP's debayering block outputs RGB data natively, setting the source
+pad format to YUV10_1X30 enables the colour space conversion block.
+
+In this example we target RGB565 output, so select RGB121212_1X36 as the resizer
+source pad's format:
+
+.. code-block:: none
+
+ # Set formats on the TPG and ISP
+ media-ctl -V "'mali-c55 tpg':0[fmt:SRGGB20_1X20/1920x1080]"
+ media-ctl -V "'mali-c55 isp':0[fmt:SRGGB20_1X20/1920x1080]"
+ media-ctl -V "'mali-c55 isp':1[fmt:SRGGB20_1X20/1920x1080]"
+
+ # Set routing on the FR resizer
+ media-ctl -R "'mali-c55 resizer fr'[0/0->1/0[1],2/0->1/0[0]]"
+
+ # Set format on the resizer, must be done AFTER the routing.
+ media-ctl -V "'mali-c55 resizer fr':1[fmt:RGB121212_1X36/1920x1080]"
+
+The downscale output can also be used to stream data at the same time. In this
+case since only processed data can be captured through the downscale output no
+routing need be set:
+
+.. code-block:: none
+
+ # Set format on the resizer
+ media-ctl -V "'mali-c55 resizer ds':1[fmt:RGB121212_1X36/1920x1080]"
+
+Following which images can be captured from both the FR and DS output's video
+devices (simultaneously, if desired):
+
+.. code-block:: none
+
+ yavta -f RGB565 -s 1920x1080 -c10 /dev/video0
+ yavta -f RGB565 -s 1920x1080 -c10 /dev/video1
+
+Cropping the image
+~~~~~~~~~~~~~~~~~~
+
+Both the full resolution and downscale pipes can crop to a minimum resolution of
+640x480. To crop the image simply configure the resizer's sink pad's crop and
+compose rectangles and set the format on the video device:
+
+.. code-block:: none
+
+ media-ctl -V "'mali-c55 resizer fr':0[fmt:RGB121212_1X36/1920x1080 crop:(480,270)/640x480 compose:(0,0)/640x480]"
+ media-ctl -V "'mali-c55 resizer fr':1[fmt:RGB121212_1X36/640x480]"
+ yavta -f RGB565 -s 640x480 -c10 /dev/video0
+
+Downscaling the image
+~~~~~~~~~~~~~~~~~~~~~
+
+Both the full resolution and downscale pipes can downscale the image by up to 8x
+provided the minimum 640x480 output resolution is adhered to. For the best image
+result the scaling ratio for each direction should be the same. To configure
+scaling we use the compose rectangle on the resizer's sink pad:
+
+.. code-block:: none
+
+ media-ctl -V "'mali-c55 resizer fr':0[fmt:RGB121212_1X36/1920x1080 crop:(0,0)/1920x1080 compose:(0,0)/640x480]"
+ media-ctl -V "'mali-c55 resizer fr':1[fmt:RGB121212_1X36/640x480]"
+ yavta -f RGB565 -s 640x480 -c10 /dev/video0
+
+Capturing images in YUV formats
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+If we need to output YUV data rather than RGB the color space conversion block
+needs to be active, which is achieved by setting MEDIA_BUS_FMT_YUV10_1X30 on the
+resizer's source pad. We can then configure a capture format like NV12 (here in
+its multi-planar variant)
+
+.. code-block:: none
+
+ media-ctl -V "'mali-c55 resizer fr':1[fmt:YUV10_1X30/1920x1080]"
+ yavta -f NV12M -s 1920x1080 -c10 /dev/video0
+
+Capturing RGB data from the source and processing it with the resizers
+----------------------------------------------------------------------
+
+The Mali-C55 ISP can work with sensors capable of outputting RGB data. In this
+case although none of the image quality blocks would be used it can still
+crop/scale the data in the usual way. For this reason RGB data input to the ISP
+still goes through the ISP subdevice's pad 1 to the resizer.
+
+To achieve this, the ISP's sink pad's format is set to
+MEDIA_BUS_FMT_RGB202020_1X60 - this reflects the format that data must be in to
+work with the ISP. Converting the camera sensor's output to that format is the
+responsibility of external hardware.
+
+In this example we ask the test pattern generator to give us RGB data instead of
+bayer.
+
+.. code-block:: none
+
+ media-ctl -V "'mali-c55 tpg':0[fmt:RGB202020_1X60/1920x1080]"
+ media-ctl -V "'mali-c55 isp':0[fmt:RGB202020_1X60/1920x1080]"
+
+Cropping or scaling the data can be done in exactly the same way as outlined
+earlier.
+
+Capturing raw data from the source and outputting it unmodified
+-----------------------------------------------------------------
+
+The ISP can additionally capture raw data from the source and output it on the
+full resolution pipe only, completely unmodified. In this case the downscale
+pipe can still process the data normally and be used at the same time.
+
+To configure raw bypass the FR resizer's subdevice's routing table needs to be
+configured, followed by formats in the appropriate places:
+
+.. code-block:: none
+
+ media-ctl -R "'mali-c55 resizer fr'[0/0->1/0[0],2/0->1/0[1]]"
+ media-ctl -V "'mali-c55 isp':0[fmt:RGB202020_1X60/1920x1080]"
+ media-ctl -V "'mali-c55 resizer fr':2[fmt:RGB202020_1X60/1920x1080]"
+ media-ctl -V "'mali-c55 resizer fr':1[fmt:RGB202020_1X60/1920x1080]"
+
+ # Set format on the video device and stream
+ yavta -f RGB565 -s 1920x1080 -c10 /dev/video0
+
+.. _mali-c55-3a-stats:
+
+Capturing ISP Statistics
+========================
+
+The ISP is capable of producing statistics for consumption by image processing
+algorithms running in userspace. These statistics can be captured by queueing
+buffers to the `mali-c55 3a stats` V4L2 Device whilst the ISP is streaming. Only
+the :ref:`V4L2_META_FMT_MALI_C55_STATS <v4l2-meta-fmt-mali-c55-stats>`
+format is supported, so no format-setting need be done:
+
+.. code-block:: none
+
+ # We assume the media graph has been configured to support RGB565 capture
+ # from the mali-c55 fr V4L2 Device, which is at /dev/video0. The statistics
+ # V4L2 device is at /dev/video3
+
+ yavta -f RGB565 -s 1920x1080 -c32 /dev/video0 && \
+ yavta -c10 -F /dev/video3
+
+The layout of the buffer is described by :c:type:`mali_c55_stats_buffer`,
+but broadly statistics are generated to support three image processing
+algorithms; AEXP (Auto-Exposure), AWB (Auto-White Balance) and AF (Auto-Focus).
+These stats can be drawn from various places in the Mali C55 ISP pipeline, known
+as "tap points". This high-level block diagram is intended to explain where in
+the processing flow the statistics can be drawn from::
+
+ +--> AEXP-2 +----> AEXP-1 +--> AF-0
+ | +----> AF-1 |
+ | | |
+ +---------+ | +--------------+ | +--------------+ |
+ | Input +-+-->+ Digital Gain +---+-->+ Black Level +---+---+
+ +---------+ +--------------+ +--------------+ |
+ +-----------------------------------------------------------------+
+ |
+ | +--------------+ +---------+ +----------------+
+ +-->| Sinter Noise +-+ White +--+--->| Lens Shading +--+---------------+
+ | Reduction | | Balance | | | | | |
+ +--------------+ +---------+ | +----------------+ | |
+ +---> AEXP-0 (A) +--> AEXP-0 (B) |
+ +--------------------------------------------------------------------------+
+ |
+ | +----------------+ +--------------+ +----------------+
+ +-->| Tone mapping +-+--->| Demosaicing +->+ Purple Fringe +-+-----------+
+ | | | +--------------+ | Correction | | |
+ +----------------+ +-> AEXP-IRIDIX +----------------+ +---> AWB-0 |
+ +----------------------------------------------------------------------------+
+ | +-------------+ +-------------+
+ +------------------->| Colour +---+--->| Output |
+ | Correction | | | Pipelines |
+ +-------------+ | +-------------+
+ +--> AWB-1
+
+By default all statistics are drawn from the 0th tap point for each algorithm;
+I.E. AEXP statistics from AEXP-0 (A), AWB statistics from AWB-0 and AF
+statistics from AF-0. This is configurable for AEXP and AWB statsistics through
+programming the ISP's parameters.
+
+.. _mali-c55-3a-params:
+
+Programming ISP Parameters
+==========================
+
+The ISP can be programmed with various parameters from userspace to apply to the
+hardware before and during video stream. This allows userspace to dynamically
+change values such as black level, white balance and lens shading gains and so
+on.
+
+The buffer format and how to populate it are described by the
+:ref:`V4L2_META_FMT_MALI_C55_PARAMS <v4l2-meta-fmt-mali-c55-params>` format,
+which should be set as the data format for the `mali-c55 3a params` video node.
+
+References
+==========
+.. [1] https://git.linuxtv.org/v4l-utils.git/
+.. [2] https://git.ideasonboard.org/yavta.git
+.. [3] https://developer.arm.com/Processors/Mali-C55
diff --git a/Documentation/admin-guide/media/platform-cardlist.rst b/Documentation/admin-guide/media/platform-cardlist.rst
index 1230ae4037ad..63f4b19c3628 100644
--- a/Documentation/admin-guide/media/platform-cardlist.rst
+++ b/Documentation/admin-guide/media/platform-cardlist.rst
@@ -18,8 +18,6 @@ am437x-vpfe TI AM437x VPFE
aspeed-video Aspeed AST2400 and AST2500
atmel-isc ATMEL Image Sensor Controller (ISC)
atmel-isi ATMEL Image Sensor Interface (ISI)
-c8sectpfe SDR platform devices
-c8sectpfe SDR platform devices
cafe_ccic Marvell 88ALP01 (Cafe) CMOS Camera Controller
cdns-csi2rx Cadence MIPI-CSI2 RX Controller
cdns-csi2tx Cadence MIPI-CSI2 TX Controller
diff --git a/Documentation/admin-guide/media/radio-cardlist.rst b/Documentation/admin-guide/media/radio-cardlist.rst
index a82a146bf912..cec724256812 100644
--- a/Documentation/admin-guide/media/radio-cardlist.rst
+++ b/Documentation/admin-guide/media/radio-cardlist.rst
@@ -30,7 +30,6 @@ radio-terratec TerraTec ActiveRadio ISA Standalone
radio-timb Enable the Timberdale radio driver
radio-trust Trust FM radio card
radio-typhoon Typhoon Radio (a.k.a. EcoRadio)
-radio-wl1273 Texas Instruments WL1273 I2C FM Radio
fm_drv ISA radio devices
fm_drv ISA radio devices
radio-zoltrix Zoltrix Radio
diff --git a/Documentation/admin-guide/media/rkcif-rk3568-vicap.dot b/Documentation/admin-guide/media/rkcif-rk3568-vicap.dot
new file mode 100644
index 000000000000..3fac59335459
--- /dev/null
+++ b/Documentation/admin-guide/media/rkcif-rk3568-vicap.dot
@@ -0,0 +1,8 @@
+digraph board {
+ rankdir=TB
+ n00000001 [label="{{<port0> 0} | rkcif-dvp0\n/dev/v4l-subdev0 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000001:port1 -> n00000004
+ n00000004 [label="rkcif-dvp0-id0\n/dev/video0", shape=box, style=filled, fillcolor=yellow]
+ n00000025 [label="{{} | it6801 2-0048\n/dev/v4l-subdev1 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000025:port0 -> n00000001:port0
+}
diff --git a/Documentation/admin-guide/media/rkcif.rst b/Documentation/admin-guide/media/rkcif.rst
new file mode 100644
index 000000000000..2558c121abc4
--- /dev/null
+++ b/Documentation/admin-guide/media/rkcif.rst
@@ -0,0 +1,79 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=========================================
+Rockchip Camera Interface (CIF)
+=========================================
+
+Introduction
+============
+
+The Rockchip Camera Interface (CIF) is featured in many Rockchip SoCs in
+different variants.
+The different variants are combinations of common building blocks, such as
+
+* INTERFACE blocks of different types, namely
+
+ * the Digital Video Port (DVP, a parallel data interface)
+ * the interface block for the MIPI CSI-2 receiver
+
+* CROP units
+
+* MIPI CSI-2 receiver (not available on all variants): This unit is referred
+ to as MIPI CSI HOST in the Rockchip documentation.
+ Technically, it is a separate hardware block, but it is strongly coupled to
+ the CIF and therefore included here.
+
+* MUX units (not available on all variants) that pass the video data to an
+ image signal processor (ISP)
+
+* SCALE units (not available on all variants)
+
+* DMA engines that transfer video data into system memory using a
+ double-buffering mechanism called ping-pong mode
+
+* Support for four streams per INTERFACE block (not available on all
+ variants), e.g., for MIPI CSI-2 Virtual Channels (VCs)
+
+This document describes the different variants of the CIF, their hardware
+layout, as well as their representation in the media controller centric rkcif
+device driver, which is located under drivers/media/platform/rockchip/rkcif.
+
+Variants
+========
+
+Rockchip PX30 Video Input Processor (VIP)
+-----------------------------------------
+
+The PX30 Video Input Processor (VIP) features a digital video port that accepts
+parallel video data or BT.656.
+Since these protocols do not feature multiple streams, the VIP has one DMA
+engine that transfers the input video data into system memory.
+
+The rkcif driver represents this hardware variant by exposing one V4L2 subdevice
+(the DVP INTERFACE/CROP block) and one V4L2 device (the DVP DMA engine).
+
+Rockchip RK3568 Video Capture (VICAP)
+-------------------------------------
+
+The RK3568 Video Capture (VICAP) unit features a digital video port and a MIPI
+CSI-2 receiver that can receive video data independently.
+The DVP accepts parallel video data, BT.656 and BT.1120.
+Since the BT.1120 protocol may feature more than one stream, the RK3568 VICAP
+DVP features four DMA engines that can capture different streams.
+Similarly, the RK3568 VICAP MIPI CSI-2 receiver features four DMA engines to
+handle different Virtual Channels (VCs).
+
+The rkcif driver represents this hardware variant by exposing up the following
+V4L2 subdevices:
+
+* rkcif-dvp0: INTERFACE/CROP block for the DVP
+
+and the following video devices:
+
+* rkcif-dvp0-id0: The support for multiple streams on the DVP is not yet
+ implemented, as it is hard to find test hardware. Thus, this video device
+ represents the first DMA engine of the RK3568 DVP.
+
+.. kernel-figure:: rkcif-rk3568-vicap.dot
+ :alt: Topology of the RK3568 Video Capture (VICAP) unit
+ :align: center
diff --git a/Documentation/admin-guide/media/v4l-drivers.rst b/Documentation/admin-guide/media/v4l-drivers.rst
index 3bac5165b134..393f83e8dc4d 100644
--- a/Documentation/admin-guide/media/v4l-drivers.rst
+++ b/Documentation/admin-guide/media/v4l-drivers.rst
@@ -19,12 +19,14 @@ Video4Linux (V4L) driver-specific documentation
ipu3
ipu6-isys
ivtv
+ mali-c55
mgb4
omap3isp
philips
qcom_camss
raspberrypi-pisp-be
rcar-fdp1
+ rkcif
rkisp1
raspberrypi-rp1-cfe
saa7134