summaryrefslogtreecommitdiff
path: root/Documentation/filesystems/bcachefs/CodingStyle.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems/bcachefs/CodingStyle.rst')
-rw-r--r--Documentation/filesystems/bcachefs/CodingStyle.rst186
1 files changed, 0 insertions, 186 deletions
diff --git a/Documentation/filesystems/bcachefs/CodingStyle.rst b/Documentation/filesystems/bcachefs/CodingStyle.rst
deleted file mode 100644
index b29562a6bf55..000000000000
--- a/Documentation/filesystems/bcachefs/CodingStyle.rst
+++ /dev/null
@@ -1,186 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-
-bcachefs coding style
-=====================
-
-Good development is like gardening, and codebases are our gardens. Tend to them
-every day; look for little things that are out of place or in need of tidying.
-A little weeding here and there goes a long way; don't wait until things have
-spiraled out of control.
-
-Things don't always have to be perfect - nitpicking often does more harm than
-good. But appreciate beauty when you see it - and let people know.
-
-The code that you are afraid to touch is the code most in need of refactoring.
-
-A little organizing here and there goes a long way.
-
-Put real thought into how you organize things.
-
-Good code is readable code, where the structure is simple and leaves nowhere
-for bugs to hide.
-
-Assertions are one of our most important tools for writing reliable code. If in
-the course of writing a patchset you encounter a condition that shouldn't
-happen (and will have unpredictable or undefined behaviour if it does), or
-you're not sure if it can happen and not sure how to handle it yet - make it a
-BUG_ON(). Don't leave undefined or unspecified behavior lurking in the codebase.
-
-By the time you finish the patchset, you should understand better which
-assertions need to be handled and turned into checks with error paths, and
-which should be logically impossible. Leave the BUG_ON()s in for the ones which
-are logically impossible. (Or, make them debug mode assertions if they're
-expensive - but don't turn everything into a debug mode assertion, so that
-we're not stuck debugging undefined behaviour should it turn out that you were
-wrong).
-
-Assertions are documentation that can't go out of date. Good assertions are
-wonderful.
-
-Good assertions drastically and dramatically reduce the amount of testing
-required to shake out bugs.
-
-Good assertions are based on state, not logic. To write good assertions, you
-have to think about what the invariants on your state are.
-
-Good invariants and assertions will hold everywhere in your codebase. This
-means that you can run them in only a few places in the checked in version, but
-should you need to debug something that caused the assertion to fail, you can
-quickly shotgun them everywhere to find the codepath that broke the invariant.
-
-A good assertion checks something that the compiler could check for us, and
-elide - if we were working in a language with embedded correctness proofs that
-the compiler could check. This is something that exists today, but it'll likely
-still be a few decades before it comes to systems programming languages. But we
-can still incorporate that kind of thinking into our code and document the
-invariants with runtime checks - much like the way people working in
-dynamically typed languages may add type annotations, gradually making their
-code statically typed.
-
-Looking for ways to make your assertions simpler - and higher level - will
-often nudge you towards making the entire system simpler and more robust.
-
-Good code is code where you can poke around and see what it's doing -
-introspection. We can't debug anything if we can't see what's going on.
-
-Whenever we're debugging, and the solution isn't immediately obvious, if the
-issue is that we don't know where the issue is because we can't see what's
-going on - fix that first.
-
-We have the tools to make anything visible at runtime, efficiently - RCU and
-percpu data structures among them. Don't let things stay hidden.
-
-The most important tool for introspection is the humble pretty printer - in
-bcachefs, this means `*_to_text()` functions, which output to printbufs.
-
-Pretty printers are wonderful, because they compose and you can use them
-everywhere. Having functions to print whatever object you're working with will
-make your error messages much easier to write (therefore they will actually
-exist) and much more informative. And they can be used from sysfs/debugfs, as
-well as tracepoints.
-
-Runtime info and debugging tools should come with clear descriptions and
-labels, and good structure - we don't want files with a list of bare integers,
-like in procfs. Part of the job of the debugging tools is to educate users and
-new developers as to how the system works.
-
-Error messages should, whenever possible, tell you everything you need to debug
-the issue. It's worth putting effort into them.
-
-Tracepoints shouldn't be the first thing you reach for. They're an important
-tool, but always look for more immediate ways to make things visible. When we
-have to rely on tracing, we have to know which tracepoints we're looking for,
-and then we have to run the troublesome workload, and then we have to sift
-through logs. This is a lot of steps to go through when a user is hitting
-something, and if it's intermittent it may not even be possible.
-
-The humble counter is an incredibly useful tool. They're cheap and simple to
-use, and many complicated internal operations with lots of things that can
-behave weirdly (anything involving memory reclaim, for example) become
-shockingly easy to debug once you have counters on every distinct codepath.
-
-Persistent counters are even better.
-
-When debugging, try to get the most out of every bug you come across; don't
-rush to fix the initial issue. Look for things that will make related bugs
-easier the next time around - introspection, new assertions, better error
-messages, new debug tools, and do those first. Look for ways to make the system
-better behaved; often one bug will uncover several other bugs through
-downstream effects.
-
-Fix all that first, and then the original bug last - even if that means keeping
-a user waiting. They'll thank you in the long run, and when they understand
-what you're doing you'll be amazed at how patient they're happy to be. Users
-like to help - otherwise they wouldn't be reporting the bug in the first place.
-
-Talk to your users. Don't isolate yourself.
-
-Users notice all sorts of interesting things, and by just talking to them and
-interacting with them you can benefit from their experience.
-
-Spend time doing support and helpdesk stuff. Don't just write code - code isn't
-finished until it's being used trouble free.
-
-This will also motivate you to make your debugging tools as good as possible,
-and perhaps even your documentation, too. Like anything else in life, the more
-time you spend at it the better you'll get, and you the developer are the
-person most able to improve the tools to make debugging quick and easy.
-
-Be wary of how you take on and commit to big projects. Don't let development
-become product-manager focused. Often time an idea is a good one but needs to
-wait for its proper time - but you won't know if it's the proper time for an
-idea until you start writing code.
-
-Expect to throw a lot of things away, or leave them half finished for later.
-Nobody writes all perfect code that all gets shipped, and you'll be much more
-productive in the long run if you notice this early and shift to something
-else. The experience gained and lessons learned will be valuable for all the
-other work you do.
-
-But don't be afraid to tackle projects that require significant rework of
-existing code. Sometimes these can be the best projects, because they can lead
-us to make existing code more general, more flexible, more multipurpose and
-perhaps more robust. Just don't hesitate to abandon the idea if it looks like
-it's going to make a mess of things.
-
-Complicated features can often be done as a series of refactorings, with the
-final change that actually implements the feature as a quite small patch at the
-end. It's wonderful when this happens, especially when those refactorings are
-things that improve the codebase in their own right. When that happens there's
-much less risk of wasted effort if the feature you were going for doesn't work
-out.
-
-Always strive to work incrementally. Always strive to turn the big projects
-into little bite sized projects that can prove their own merits.
-
-Instead of always tackling those big projects, look for little things that
-will be useful, and make the big projects easier.
-
-The question of what's likely to be useful is where junior developers most
-often go astray - doing something because it seems like it'll be useful often
-leads to overengineering. Knowing what's useful comes from many years of
-experience, or talking with people who have that experience - or from simply
-reading lots of code and looking for common patterns and issues. Don't be
-afraid to throw things away and do something simpler.
-
-Talk about your ideas with your fellow developers; often times the best things
-come from relaxed conversations where people aren't afraid to say "what if?".
-
-Don't neglect your tools.
-
-The most important tools (besides the compiler and our text editor) are the
-tools we use for testing. The shortest possible edit/test/debug cycle is
-essential for working productively. We learn, gain experience, and discover the
-errors in our thinking by running our code and seeing what happens. If your
-time is being wasted because your tools are bad or too slow - don't accept it,
-fix it.
-
-Put effort into your documentation, commit messages, and code comments - but
-don't go overboard. A good commit message is wonderful - but if the information
-was important enough to go in a commit message, ask yourself if it would be
-even better as a code comment.
-
-A good code comment is wonderful, but even better is the comment that didn't
-need to exist because the code was so straightforward as to be obvious;
-organized into small clean and tidy modules, with clear and descriptive names
-for functions and variables, where every line of code has a clear purpose.