summaryrefslogtreecommitdiff
path: root/arch/powerpc/perf/vpa-dtl.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/perf/vpa-dtl.c')
-rw-r--r--arch/powerpc/perf/vpa-dtl.c596
1 files changed, 596 insertions, 0 deletions
diff --git a/arch/powerpc/perf/vpa-dtl.c b/arch/powerpc/perf/vpa-dtl.c
new file mode 100644
index 000000000000..3c1d1c28deb9
--- /dev/null
+++ b/arch/powerpc/perf/vpa-dtl.c
@@ -0,0 +1,596 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Perf interface to expose Dispatch Trace Log counters.
+ *
+ * Copyright (C) 2024 Kajol Jain, IBM Corporation
+ */
+
+#ifdef CONFIG_PPC_SPLPAR
+#define pr_fmt(fmt) "vpa_dtl: " fmt
+
+#include <asm/dtl.h>
+#include <linux/perf_event.h>
+#include <asm/plpar_wrappers.h>
+#include <linux/vmalloc.h>
+
+#define EVENT(_name, _code) enum{_name = _code}
+
+/*
+ * Based on Power Architecture Platform Reference(PAPR) documentation,
+ * Table 14.14. Per Virtual Processor Area, below Dispatch Trace Log(DTL)
+ * Enable Mask used to get corresponding virtual processor dispatch
+ * to preempt traces:
+ * DTL_CEDE(0x1): Trace voluntary (OS initiated) virtual
+ * processor waits
+ * DTL_PREEMPT(0x2): Trace time slice preempts
+ * DTL_FAULT(0x4): Trace virtual partition memory page
+ faults.
+ * DTL_ALL(0x7): Trace all (DTL_CEDE | DTL_PREEMPT | DTL_FAULT)
+ *
+ * Event codes based on Dispatch Trace Log Enable Mask.
+ */
+EVENT(DTL_CEDE, 0x1);
+EVENT(DTL_PREEMPT, 0x2);
+EVENT(DTL_FAULT, 0x4);
+EVENT(DTL_ALL, 0x7);
+
+GENERIC_EVENT_ATTR(dtl_cede, DTL_CEDE);
+GENERIC_EVENT_ATTR(dtl_preempt, DTL_PREEMPT);
+GENERIC_EVENT_ATTR(dtl_fault, DTL_FAULT);
+GENERIC_EVENT_ATTR(dtl_all, DTL_ALL);
+
+PMU_FORMAT_ATTR(event, "config:0-7");
+
+static struct attribute *events_attr[] = {
+ GENERIC_EVENT_PTR(DTL_CEDE),
+ GENERIC_EVENT_PTR(DTL_PREEMPT),
+ GENERIC_EVENT_PTR(DTL_FAULT),
+ GENERIC_EVENT_PTR(DTL_ALL),
+ NULL
+};
+
+static struct attribute_group event_group = {
+ .name = "events",
+ .attrs = events_attr,
+};
+
+static struct attribute *format_attrs[] = {
+ &format_attr_event.attr,
+ NULL,
+};
+
+static const struct attribute_group format_group = {
+ .name = "format",
+ .attrs = format_attrs,
+};
+
+static const struct attribute_group *attr_groups[] = {
+ &format_group,
+ &event_group,
+ NULL,
+};
+
+struct vpa_dtl {
+ struct dtl_entry *buf;
+ u64 last_idx;
+};
+
+struct vpa_pmu_ctx {
+ struct perf_output_handle handle;
+};
+
+struct vpa_pmu_buf {
+ int nr_pages;
+ bool snapshot;
+ u64 *base;
+ u64 size;
+ u64 head;
+ u64 head_size;
+ /* boot timebase and frequency needs to be saved only at once */
+ int boottb_freq_saved;
+ u64 threshold;
+ bool full;
+};
+
+/*
+ * To corelate each DTL entry with other events across CPU's,
+ * we need to map timebase from "struct dtl_entry" which phyp
+ * provides with boot timebase. This also needs timebase frequency.
+ * Formula is: ((timbase from DTL entry - boot time) / frequency)
+ *
+ * To match with size of "struct dtl_entry" to ease post processing,
+ * padded 24 bytes to the structure.
+ */
+struct boottb_freq {
+ u64 boot_tb;
+ u64 tb_freq;
+ u64 timebase;
+ u64 padded[3];
+};
+
+static DEFINE_PER_CPU(struct vpa_pmu_ctx, vpa_pmu_ctx);
+static DEFINE_PER_CPU(struct vpa_dtl, vpa_dtl_cpu);
+
+/* variable to capture reference count for the active dtl threads */
+static int dtl_global_refc;
+static spinlock_t dtl_global_lock = __SPIN_LOCK_UNLOCKED(dtl_global_lock);
+
+/*
+ * Capture DTL data in AUX buffer
+ */
+static void vpa_dtl_capture_aux(long *n_entries, struct vpa_pmu_buf *buf,
+ struct vpa_dtl *dtl, int index)
+{
+ struct dtl_entry *aux_copy_buf = (struct dtl_entry *)buf->base;
+
+ /*
+ * check if there is enough space to contain the
+ * DTL data. If not, save the data for available
+ * memory and set full to true.
+ */
+ if (buf->head + *n_entries >= buf->threshold) {
+ *n_entries = buf->threshold - buf->head;
+ buf->full = 1;
+ }
+
+ /*
+ * Copy to AUX buffer from per-thread address
+ */
+ memcpy(aux_copy_buf + buf->head, &dtl->buf[index], *n_entries * sizeof(struct dtl_entry));
+
+ if (buf->full) {
+ /*
+ * Set head of private aux to zero when buffer is full
+ * so that next data will be copied to beginning of the
+ * buffer
+ */
+ buf->head = 0;
+ return;
+ }
+
+ buf->head += *n_entries;
+
+ return;
+}
+
+/*
+ * Function to dump the dispatch trace log buffer data to the
+ * perf data.
+ *
+ * perf_aux_output_begin: This function is called before writing
+ * to AUX area. This returns the pointer to aux area private structure,
+ * ie "struct vpa_pmu_buf" here which is set in setup_aux() function.
+ * The function obtains the output handle (used in perf_aux_output_end).
+ * when capture completes in vpa_dtl_capture_aux(), call perf_aux_output_end()
+ * to commit the recorded data.
+ *
+ * perf_aux_output_end: This function commits data by adjusting the
+ * aux_head of "struct perf_buffer". aux_tail will be moved in perf tools
+ * side when writing the data from aux buffer to perf.data file in disk.
+ *
+ * Here in the private aux structure, we maintain head to know where
+ * to copy data next time in the PMU driver. vpa_pmu_buf->head is moved to
+ * maintain the aux head for PMU driver. It is responsiblity of PMU
+ * driver to make sure data is copied between perf_aux_output_begin and
+ * perf_aux_output_end.
+ *
+ * After data is copied in vpa_dtl_capture_aux() function, perf_aux_output_end()
+ * is called to move the aux->head of "struct perf_buffer" to indicate size of
+ * data in aux buffer. This will post a PERF_RECORD_AUX into the perf buffer.
+ * Data will be written to disk only when the allocated buffer is full.
+ *
+ * By this approach, all the DTL data will be present as-is in the
+ * perf.data. The data will be pre-processed in perf tools side when doing
+ * perf report/perf script and this will avoid time taken to create samples
+ * in the kernel space.
+ */
+static void vpa_dtl_dump_sample_data(struct perf_event *event)
+{
+ u64 cur_idx, last_idx, i;
+ u64 boot_tb;
+ struct boottb_freq boottb_freq;
+
+ /* actual number of entries read */
+ long n_read = 0, read_size = 0;
+
+ /* number of entries added to dtl buffer */
+ long n_req;
+
+ struct vpa_pmu_ctx *vpa_ctx = this_cpu_ptr(&vpa_pmu_ctx);
+
+ struct vpa_pmu_buf *aux_buf;
+
+ struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu);
+ u64 size;
+
+ cur_idx = be64_to_cpu(lppaca_of(event->cpu).dtl_idx);
+ last_idx = dtl->last_idx;
+
+ if (last_idx + N_DISPATCH_LOG <= cur_idx)
+ last_idx = cur_idx - N_DISPATCH_LOG + 1;
+
+ n_req = cur_idx - last_idx;
+
+ /* no new entry added to the buffer, return */
+ if (n_req <= 0)
+ return;
+
+ dtl->last_idx = last_idx + n_req;
+ boot_tb = get_boot_tb();
+
+ i = last_idx % N_DISPATCH_LOG;
+
+ aux_buf = perf_aux_output_begin(&vpa_ctx->handle, event);
+ if (!aux_buf) {
+ pr_debug("returning. no aux\n");
+ return;
+ }
+
+ if (!aux_buf->boottb_freq_saved) {
+ pr_debug("Copying boot tb to aux buffer: %lld\n", boot_tb);
+ /* Save boot_tb to convert raw timebase to it's relative system boot time */
+ boottb_freq.boot_tb = boot_tb;
+ /* Save tb_ticks_per_sec to convert timebase to sec */
+ boottb_freq.tb_freq = tb_ticks_per_sec;
+ boottb_freq.timebase = 0;
+ memcpy(aux_buf->base, &boottb_freq, sizeof(boottb_freq));
+ aux_buf->head += 1;
+ aux_buf->boottb_freq_saved = 1;
+ n_read += 1;
+ }
+
+ /* read the tail of the buffer if we've wrapped */
+ if (i + n_req > N_DISPATCH_LOG) {
+ read_size = N_DISPATCH_LOG - i;
+ vpa_dtl_capture_aux(&read_size, aux_buf, dtl, i);
+ n_req -= read_size;
+ n_read += read_size;
+ i = 0;
+ if (aux_buf->full) {
+ size = (n_read * sizeof(struct dtl_entry));
+ if ((size + aux_buf->head_size) > aux_buf->size) {
+ size = aux_buf->size - aux_buf->head_size;
+ perf_aux_output_end(&vpa_ctx->handle, size);
+ aux_buf->head = 0;
+ aux_buf->head_size = 0;
+ } else {
+ aux_buf->head_size += (n_read * sizeof(struct dtl_entry));
+ perf_aux_output_end(&vpa_ctx->handle, n_read * sizeof(struct dtl_entry));
+ }
+ goto out;
+ }
+ }
+
+ /* .. and now the head */
+ vpa_dtl_capture_aux(&n_req, aux_buf, dtl, i);
+
+ size = ((n_req + n_read) * sizeof(struct dtl_entry));
+ if ((size + aux_buf->head_size) > aux_buf->size) {
+ size = aux_buf->size - aux_buf->head_size;
+ perf_aux_output_end(&vpa_ctx->handle, size);
+ aux_buf->head = 0;
+ aux_buf->head_size = 0;
+ } else {
+ aux_buf->head_size += ((n_req + n_read) * sizeof(struct dtl_entry));
+ /* Move the aux->head to indicate size of data in aux buffer */
+ perf_aux_output_end(&vpa_ctx->handle, (n_req + n_read) * sizeof(struct dtl_entry));
+ }
+out:
+ aux_buf->full = 0;
+}
+
+/*
+ * The VPA Dispatch Trace log counters do not interrupt on overflow.
+ * Therefore, the kernel needs to poll the counters to avoid missing
+ * an overflow using hrtimer. The timer interval is based on sample_period
+ * count provided by user, and minimum interval is 1 millisecond.
+ */
+static enum hrtimer_restart vpa_dtl_hrtimer_handle(struct hrtimer *hrtimer)
+{
+ struct perf_event *event;
+ u64 period;
+
+ event = container_of(hrtimer, struct perf_event, hw.hrtimer);
+
+ if (event->state != PERF_EVENT_STATE_ACTIVE)
+ return HRTIMER_NORESTART;
+
+ vpa_dtl_dump_sample_data(event);
+ period = max_t(u64, NSEC_PER_MSEC, event->hw.sample_period);
+ hrtimer_forward_now(hrtimer, ns_to_ktime(period));
+
+ return HRTIMER_RESTART;
+}
+
+static void vpa_dtl_start_hrtimer(struct perf_event *event)
+{
+ u64 period;
+ struct hw_perf_event *hwc = &event->hw;
+
+ period = max_t(u64, NSEC_PER_MSEC, hwc->sample_period);
+ hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), HRTIMER_MODE_REL_PINNED);
+}
+
+static void vpa_dtl_stop_hrtimer(struct perf_event *event)
+{
+ struct hw_perf_event *hwc = &event->hw;
+
+ hrtimer_cancel(&hwc->hrtimer);
+}
+
+static void vpa_dtl_reset_global_refc(struct perf_event *event)
+{
+ spin_lock(&dtl_global_lock);
+ dtl_global_refc--;
+ if (dtl_global_refc <= 0) {
+ dtl_global_refc = 0;
+ up_write(&dtl_access_lock);
+ }
+ spin_unlock(&dtl_global_lock);
+}
+
+static int vpa_dtl_mem_alloc(int cpu)
+{
+ struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, cpu);
+ struct dtl_entry *buf = NULL;
+
+ /* Check for dispatch trace log buffer cache */
+ if (!dtl_cache)
+ return -ENOMEM;
+
+ buf = kmem_cache_alloc_node(dtl_cache, GFP_KERNEL | GFP_ATOMIC, cpu_to_node(cpu));
+ if (!buf) {
+ pr_warn("buffer allocation failed for cpu %d\n", cpu);
+ return -ENOMEM;
+ }
+ dtl->buf = buf;
+ return 0;
+}
+
+static int vpa_dtl_event_init(struct perf_event *event)
+{
+ struct hw_perf_event *hwc = &event->hw;
+
+ /* test the event attr type for PMU enumeration */
+ if (event->attr.type != event->pmu->type)
+ return -ENOENT;
+
+ if (!perfmon_capable())
+ return -EACCES;
+
+ /* Return if this is a counting event */
+ if (!is_sampling_event(event))
+ return -EOPNOTSUPP;
+
+ /* no branch sampling */
+ if (has_branch_stack(event))
+ return -EOPNOTSUPP;
+
+ /* Invalid eventcode */
+ switch (event->attr.config) {
+ case DTL_LOG_CEDE:
+ case DTL_LOG_PREEMPT:
+ case DTL_LOG_FAULT:
+ case DTL_LOG_ALL:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ spin_lock(&dtl_global_lock);
+
+ /*
+ * To ensure there are no other conflicting dtl users
+ * (example: /proc/powerpc/vcpudispatch_stats or debugfs dtl),
+ * below code try to take the dtl_access_lock.
+ * The dtl_access_lock is a rwlock defined in dtl.h, which is used
+ * to unsure there is no conflicting dtl users.
+ * Based on below code, vpa_dtl pmu tries to take write access lock
+ * and also checks for dtl_global_refc, to make sure that the
+ * dtl_access_lock is taken by vpa_dtl pmu interface.
+ */
+ if (dtl_global_refc == 0 && !down_write_trylock(&dtl_access_lock)) {
+ spin_unlock(&dtl_global_lock);
+ return -EBUSY;
+ }
+
+ /* Allocate dtl buffer memory */
+ if (vpa_dtl_mem_alloc(event->cpu)) {
+ spin_unlock(&dtl_global_lock);
+ return -ENOMEM;
+ }
+
+ /*
+ * Increment the number of active vpa_dtl pmu threads. The
+ * dtl_global_refc is used to keep count of cpu threads that
+ * currently capturing dtl data using vpa_dtl pmu interface.
+ */
+ dtl_global_refc++;
+
+ spin_unlock(&dtl_global_lock);
+
+ hrtimer_setup(&hwc->hrtimer, vpa_dtl_hrtimer_handle, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+
+ /*
+ * Since hrtimers have a fixed rate, we can do a static freq->period
+ * mapping and avoid the whole period adjust feedback stuff.
+ */
+ if (event->attr.freq) {
+ long freq = event->attr.sample_freq;
+
+ event->attr.sample_period = NSEC_PER_SEC / freq;
+ hwc->sample_period = event->attr.sample_period;
+ local64_set(&hwc->period_left, hwc->sample_period);
+ hwc->last_period = hwc->sample_period;
+ event->attr.freq = 0;
+ }
+
+ event->destroy = vpa_dtl_reset_global_refc;
+ return 0;
+}
+
+static int vpa_dtl_event_add(struct perf_event *event, int flags)
+{
+ int ret, hwcpu;
+ unsigned long addr;
+ struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu);
+
+ /*
+ * Register our dtl buffer with the hypervisor. The
+ * HV expects the buffer size to be passed in the second
+ * word of the buffer. Refer section '14.11.3.2. H_REGISTER_VPA'
+ * from PAPR for more information.
+ */
+ ((u32 *)dtl->buf)[1] = cpu_to_be32(DISPATCH_LOG_BYTES);
+ dtl->last_idx = 0;
+
+ hwcpu = get_hard_smp_processor_id(event->cpu);
+ addr = __pa(dtl->buf);
+
+ ret = register_dtl(hwcpu, addr);
+ if (ret) {
+ pr_warn("DTL registration for cpu %d (hw %d) failed with %d\n",
+ event->cpu, hwcpu, ret);
+ return ret;
+ }
+
+ /* set our initial buffer indices */
+ lppaca_of(event->cpu).dtl_idx = 0;
+
+ /*
+ * Ensure that our updates to the lppaca fields have
+ * occurred before we actually enable the logging
+ */
+ smp_wmb();
+
+ /* enable event logging */
+ lppaca_of(event->cpu).dtl_enable_mask = event->attr.config;
+
+ vpa_dtl_start_hrtimer(event);
+
+ return 0;
+}
+
+static void vpa_dtl_event_del(struct perf_event *event, int flags)
+{
+ int hwcpu = get_hard_smp_processor_id(event->cpu);
+ struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu);
+
+ vpa_dtl_stop_hrtimer(event);
+ unregister_dtl(hwcpu);
+ kmem_cache_free(dtl_cache, dtl->buf);
+ dtl->buf = NULL;
+ lppaca_of(event->cpu).dtl_enable_mask = 0x0;
+}
+
+/*
+ * This function definition is empty as vpa_dtl_dump_sample_data
+ * is used to parse and dump the dispatch trace log data,
+ * to perf data.
+ */
+static void vpa_dtl_event_read(struct perf_event *event)
+{
+}
+
+/*
+ * Set up pmu-private data structures for an AUX area
+ * **pages contains the aux buffer allocated for this event
+ * for the corresponding cpu. rb_alloc_aux uses "alloc_pages_node"
+ * and returns pointer to each page address. Map these pages to
+ * contiguous space using vmap and use that as base address.
+ *
+ * The aux private data structure ie, "struct vpa_pmu_buf" mainly
+ * saves
+ * - buf->base: aux buffer base address
+ * - buf->head: offset from base address where data will be written to.
+ * - buf->size: Size of allocated memory
+ */
+static void *vpa_dtl_setup_aux(struct perf_event *event, void **pages,
+ int nr_pages, bool snapshot)
+{
+ int i, cpu = event->cpu;
+ struct vpa_pmu_buf *buf __free(kfree) = NULL;
+ struct page **pglist __free(kfree) = NULL;
+
+ /* We need at least one page for this to work. */
+ if (!nr_pages)
+ return NULL;
+
+ if (cpu == -1)
+ cpu = raw_smp_processor_id();
+
+ buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
+ if (!buf)
+ return NULL;
+
+ pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
+ if (!pglist)
+ return NULL;
+
+ for (i = 0; i < nr_pages; ++i)
+ pglist[i] = virt_to_page(pages[i]);
+
+ buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
+ if (!buf->base)
+ return NULL;
+
+ buf->nr_pages = nr_pages;
+ buf->snapshot = false;
+
+ buf->size = nr_pages << PAGE_SHIFT;
+ buf->head = 0;
+ buf->head_size = 0;
+ buf->boottb_freq_saved = 0;
+ buf->threshold = ((buf->size - 32) / sizeof(struct dtl_entry));
+ return no_free_ptr(buf);
+}
+
+/*
+ * free pmu-private AUX data structures
+ */
+static void vpa_dtl_free_aux(void *aux)
+{
+ struct vpa_pmu_buf *buf = aux;
+
+ vunmap(buf->base);
+ kfree(buf);
+}
+
+static struct pmu vpa_dtl_pmu = {
+ .task_ctx_nr = perf_invalid_context,
+
+ .name = "vpa_dtl",
+ .attr_groups = attr_groups,
+ .event_init = vpa_dtl_event_init,
+ .add = vpa_dtl_event_add,
+ .del = vpa_dtl_event_del,
+ .read = vpa_dtl_event_read,
+ .setup_aux = vpa_dtl_setup_aux,
+ .free_aux = vpa_dtl_free_aux,
+ .capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_EXCLUSIVE,
+};
+
+static int vpa_dtl_init(void)
+{
+ int r;
+
+ if (!firmware_has_feature(FW_FEATURE_SPLPAR)) {
+ pr_debug("not a shared virtualized system, not enabling\n");
+ return -ENODEV;
+ }
+
+ /* This driver is intended only for L1 host. */
+ if (is_kvm_guest()) {
+ pr_debug("Only supported for L1 host system\n");
+ return -ENODEV;
+ }
+
+ r = perf_pmu_register(&vpa_dtl_pmu, vpa_dtl_pmu.name, -1);
+ if (r)
+ return r;
+
+ return 0;
+}
+
+device_initcall(vpa_dtl_init);
+#endif //CONFIG_PPC_SPLPAR