diff options
Diffstat (limited to 'arch/x86/crypto/polyval-clmulni_asm.S')
| -rw-r--r-- | arch/x86/crypto/polyval-clmulni_asm.S | 321 |
1 files changed, 0 insertions, 321 deletions
diff --git a/arch/x86/crypto/polyval-clmulni_asm.S b/arch/x86/crypto/polyval-clmulni_asm.S deleted file mode 100644 index a6ebe4e7dd2b..000000000000 --- a/arch/x86/crypto/polyval-clmulni_asm.S +++ /dev/null @@ -1,321 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/* - * Copyright 2021 Google LLC - */ -/* - * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI - * instructions. It works on 8 blocks at a time, by precomputing the first 8 - * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation - * allows us to split finite field multiplication into two steps. - * - * In the first step, we consider h^i, m_i as normal polynomials of degree less - * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication - * is simply polynomial multiplication. - * - * In the second step, we compute the reduction of p(x) modulo the finite field - * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1. - * - * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where - * multiplication is finite field multiplication. The advantage is that the - * two-step process only requires 1 finite field reduction for every 8 - * polynomial multiplications. Further parallelism is gained by interleaving the - * multiplications and polynomial reductions. - */ - -#include <linux/linkage.h> -#include <asm/frame.h> - -#define STRIDE_BLOCKS 8 - -#define GSTAR %xmm7 -#define PL %xmm8 -#define PH %xmm9 -#define TMP_XMM %xmm11 -#define LO %xmm12 -#define HI %xmm13 -#define MI %xmm14 -#define SUM %xmm15 - -#define KEY_POWERS %rdi -#define MSG %rsi -#define BLOCKS_LEFT %rdx -#define ACCUMULATOR %rcx -#define TMP %rax - -.section .rodata.cst16.gstar, "aM", @progbits, 16 -.align 16 - -.Lgstar: - .quad 0xc200000000000000, 0xc200000000000000 - -.text - -/* - * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length - * count pointed to by MSG and KEY_POWERS. - */ -.macro schoolbook1 count - .set i, 0 - .rept (\count) - schoolbook1_iteration i 0 - .set i, (i +1) - .endr -.endm - -/* - * Computes the product of two 128-bit polynomials at the memory locations - * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of - * the 256-bit product into LO, MI, HI. - * - * Given: - * X = [X_1 : X_0] - * Y = [Y_1 : Y_0] - * - * We compute: - * LO += X_0 * Y_0 - * MI += X_0 * Y_1 + X_1 * Y_0 - * HI += X_1 * Y_1 - * - * Later, the 256-bit result can be extracted as: - * [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] - * This step is done when computing the polynomial reduction for efficiency - * reasons. - * - * If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an - * extra multiplication of SUM and h^8. - */ -.macro schoolbook1_iteration i xor_sum - movups (16*\i)(MSG), %xmm0 - .if (\i == 0 && \xor_sum == 1) - pxor SUM, %xmm0 - .endif - vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2 - vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1 - vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3 - vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4 - vpxor %xmm2, MI, MI - vpxor %xmm1, LO, LO - vpxor %xmm4, HI, HI - vpxor %xmm3, MI, MI -.endm - -/* - * Performs the same computation as schoolbook1_iteration, except we expect the - * arguments to already be loaded into xmm0 and xmm1 and we set the result - * registers LO, MI, and HI directly rather than XOR'ing into them. - */ -.macro schoolbook1_noload - vpclmulqdq $0x01, %xmm0, %xmm1, MI - vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2 - vpclmulqdq $0x00, %xmm0, %xmm1, LO - vpclmulqdq $0x11, %xmm0, %xmm1, HI - vpxor %xmm2, MI, MI -.endm - -/* - * Computes the 256-bit polynomial represented by LO, HI, MI. Stores - * the result in PL, PH. - * [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] - */ -.macro schoolbook2 - vpslldq $8, MI, PL - vpsrldq $8, MI, PH - pxor LO, PL - pxor HI, PH -.endm - -/* - * Computes the 128-bit reduction of PH : PL. Stores the result in dest. - * - * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) = - * x^128 + x^127 + x^126 + x^121 + 1. - * - * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the - * product of two 128-bit polynomials in Montgomery form. We need to reduce it - * mod g(x). Also, since polynomials in Montgomery form have an "extra" factor - * of x^128, this product has two extra factors of x^128. To get it back into - * Montgomery form, we need to remove one of these factors by dividing by x^128. - * - * To accomplish both of these goals, we add multiples of g(x) that cancel out - * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low - * bits are zero, the polynomial division by x^128 can be done by right shifting. - * - * Since the only nonzero term in the low 64 bits of g(x) is the constant term, - * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can - * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 + - * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to - * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T - * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191. - * - * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits - * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1 - * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) * - * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 : - * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0). - * - * So our final computation is: - * T = T_1 : T_0 = g*(x) * P_0 - * V = V_1 : V_0 = g*(x) * (P_1 + T_0) - * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0 - * - * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0 - * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 : - * T_1 into dest. This allows us to reuse P_1 + T_0 when computing V. - */ -.macro montgomery_reduction dest - vpclmulqdq $0x00, PL, GSTAR, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x) - pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1 - pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1 - pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1 - pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)] - vpxor TMP_XMM, PH, \dest -.endm - -/* - * Compute schoolbook multiplication for 8 blocks - * m_0h^8 + ... + m_7h^1 - * - * If reduce is set, also computes the montgomery reduction of the - * previous full_stride call and XORs with the first message block. - * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1. - * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0. - */ -.macro full_stride reduce - pxor LO, LO - pxor HI, HI - pxor MI, MI - - schoolbook1_iteration 7 0 - .if \reduce - vpclmulqdq $0x00, PL, GSTAR, TMP_XMM - .endif - - schoolbook1_iteration 6 0 - .if \reduce - pshufd $0b01001110, TMP_XMM, TMP_XMM - .endif - - schoolbook1_iteration 5 0 - .if \reduce - pxor PL, TMP_XMM - .endif - - schoolbook1_iteration 4 0 - .if \reduce - pxor TMP_XMM, PH - .endif - - schoolbook1_iteration 3 0 - .if \reduce - pclmulqdq $0x11, GSTAR, TMP_XMM - .endif - - schoolbook1_iteration 2 0 - .if \reduce - vpxor TMP_XMM, PH, SUM - .endif - - schoolbook1_iteration 1 0 - - schoolbook1_iteration 0 1 - - addq $(8*16), MSG - schoolbook2 -.endm - -/* - * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS - */ -.macro partial_stride - mov BLOCKS_LEFT, TMP - shlq $4, TMP - addq $(16*STRIDE_BLOCKS), KEY_POWERS - subq TMP, KEY_POWERS - - movups (MSG), %xmm0 - pxor SUM, %xmm0 - movaps (KEY_POWERS), %xmm1 - schoolbook1_noload - dec BLOCKS_LEFT - addq $16, MSG - addq $16, KEY_POWERS - - test $4, BLOCKS_LEFT - jz .Lpartial4BlocksDone - schoolbook1 4 - addq $(4*16), MSG - addq $(4*16), KEY_POWERS -.Lpartial4BlocksDone: - test $2, BLOCKS_LEFT - jz .Lpartial2BlocksDone - schoolbook1 2 - addq $(2*16), MSG - addq $(2*16), KEY_POWERS -.Lpartial2BlocksDone: - test $1, BLOCKS_LEFT - jz .LpartialDone - schoolbook1 1 -.LpartialDone: - schoolbook2 - montgomery_reduction SUM -.endm - -/* - * Perform montgomery multiplication in GF(2^128) and store result in op1. - * - * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1 - * If op1, op2 are in montgomery form, this computes the montgomery - * form of op1*op2. - * - * void clmul_polyval_mul(u8 *op1, const u8 *op2); - */ -SYM_FUNC_START(clmul_polyval_mul) - FRAME_BEGIN - vmovdqa .Lgstar(%rip), GSTAR - movups (%rdi), %xmm0 - movups (%rsi), %xmm1 - schoolbook1_noload - schoolbook2 - montgomery_reduction SUM - movups SUM, (%rdi) - FRAME_END - RET -SYM_FUNC_END(clmul_polyval_mul) - -/* - * Perform polynomial evaluation as specified by POLYVAL. This computes: - * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1} - * where n=nblocks, h is the hash key, and m_i are the message blocks. - * - * rdi - pointer to precomputed key powers h^8 ... h^1 - * rsi - pointer to message blocks - * rdx - number of blocks to hash - * rcx - pointer to the accumulator - * - * void clmul_polyval_update(const struct polyval_tfm_ctx *keys, - * const u8 *in, size_t nblocks, u8 *accumulator); - */ -SYM_FUNC_START(clmul_polyval_update) - FRAME_BEGIN - vmovdqa .Lgstar(%rip), GSTAR - movups (ACCUMULATOR), SUM - subq $STRIDE_BLOCKS, BLOCKS_LEFT - js .LstrideLoopExit - full_stride 0 - subq $STRIDE_BLOCKS, BLOCKS_LEFT - js .LstrideLoopExitReduce -.LstrideLoop: - full_stride 1 - subq $STRIDE_BLOCKS, BLOCKS_LEFT - jns .LstrideLoop -.LstrideLoopExitReduce: - montgomery_reduction SUM -.LstrideLoopExit: - add $STRIDE_BLOCKS, BLOCKS_LEFT - jz .LskipPartial - partial_stride -.LskipPartial: - movups SUM, (ACCUMULATOR) - FRAME_END - RET -SYM_FUNC_END(clmul_polyval_update) |
