summaryrefslogtreecommitdiff
path: root/drivers/gpu/nova-core
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/nova-core')
-rw-r--r--drivers/gpu/nova-core/Kconfig1
-rw-r--r--drivers/gpu/nova-core/driver.rs46
-rw-r--r--drivers/gpu/nova-core/falcon.rs113
-rw-r--r--drivers/gpu/nova-core/falcon/gsp.rs16
-rw-r--r--drivers/gpu/nova-core/falcon/hal.rs2
-rw-r--r--drivers/gpu/nova-core/falcon/hal/ga102.rs47
-rw-r--r--drivers/gpu/nova-core/falcon/sec2.rs13
-rw-r--r--drivers/gpu/nova-core/fb.rs8
-rw-r--r--drivers/gpu/nova-core/firmware.rs113
-rw-r--r--drivers/gpu/nova-core/firmware/booter.rs375
-rw-r--r--drivers/gpu/nova-core/firmware/fwsec.rs17
-rw-r--r--drivers/gpu/nova-core/firmware/gsp.rs243
-rw-r--r--drivers/gpu/nova-core/firmware/riscv.rs91
-rw-r--r--drivers/gpu/nova-core/gpu.rs209
-rw-r--r--drivers/gpu/nova-core/gsp.rs22
-rw-r--r--drivers/gpu/nova-core/gsp/boot.rs137
-rw-r--r--drivers/gpu/nova-core/gsp/fw.rs7
-rw-r--r--drivers/gpu/nova-core/gsp/fw/r570_144.rs29
-rw-r--r--drivers/gpu/nova-core/gsp/fw/r570_144/bindings.rs1
-rw-r--r--drivers/gpu/nova-core/nova_core.rs1
-rw-r--r--drivers/gpu/nova-core/regs.rs84
-rw-r--r--drivers/gpu/nova-core/regs/macros.rs751
-rw-r--r--drivers/gpu/nova-core/util.rs20
-rw-r--r--drivers/gpu/nova-core/vbios.rs180
24 files changed, 1994 insertions, 532 deletions
diff --git a/drivers/gpu/nova-core/Kconfig b/drivers/gpu/nova-core/Kconfig
index 8726d80d6ba4..20d3e6d0d796 100644
--- a/drivers/gpu/nova-core/Kconfig
+++ b/drivers/gpu/nova-core/Kconfig
@@ -1,5 +1,6 @@
config NOVA_CORE
tristate "Nova Core GPU driver"
+ depends on 64BIT
depends on PCI
depends on RUST
depends on RUST_FW_LOADER_ABSTRACTIONS
diff --git a/drivers/gpu/nova-core/driver.rs b/drivers/gpu/nova-core/driver.rs
index 274989ea1fb4..edc72052e27a 100644
--- a/drivers/gpu/nova-core/driver.rs
+++ b/drivers/gpu/nova-core/driver.rs
@@ -1,6 +1,14 @@
// SPDX-License-Identifier: GPL-2.0
-use kernel::{auxiliary, bindings, c_str, device::Core, pci, prelude::*, sizes::SZ_16M, sync::Arc};
+use kernel::{
+ auxiliary, c_str,
+ device::Core,
+ pci,
+ pci::{Class, ClassMask, Vendor},
+ prelude::*,
+ sizes::SZ_16M,
+ sync::Arc,
+};
use crate::gpu::Gpu;
@@ -18,10 +26,25 @@ kernel::pci_device_table!(
PCI_TABLE,
MODULE_PCI_TABLE,
<NovaCore as pci::Driver>::IdInfo,
- [(
- pci::DeviceId::from_id(bindings::PCI_VENDOR_ID_NVIDIA, bindings::PCI_ANY_ID as u32),
- ()
- )]
+ [
+ // Modern NVIDIA GPUs will show up as either VGA or 3D controllers.
+ (
+ pci::DeviceId::from_class_and_vendor(
+ Class::DISPLAY_VGA,
+ ClassMask::ClassSubclass,
+ Vendor::NVIDIA
+ ),
+ ()
+ ),
+ (
+ pci::DeviceId::from_class_and_vendor(
+ Class::DISPLAY_3D,
+ ClassMask::ClassSubclass,
+ Vendor::NVIDIA
+ ),
+ ()
+ ),
+ ]
);
impl pci::Driver for NovaCore {
@@ -34,14 +57,19 @@ impl pci::Driver for NovaCore {
pdev.enable_device_mem()?;
pdev.set_master();
- let bar = Arc::pin_init(
+ let devres_bar = Arc::pin_init(
pdev.iomap_region_sized::<BAR0_SIZE>(0, c_str!("nova-core/bar0")),
GFP_KERNEL,
)?;
+ // Used to provided a `&Bar0` to `Gpu::new` without tying it to the lifetime of
+ // `devres_bar`.
+ let bar_clone = Arc::clone(&devres_bar);
+ let bar = bar_clone.access(pdev.as_ref())?;
+
let this = KBox::pin_init(
try_pin_init!(Self {
- gpu <- Gpu::new(pdev, bar)?,
+ gpu <- Gpu::new(pdev, devres_bar, bar),
_reg: auxiliary::Registration::new(
pdev.as_ref(),
c_str!("nova-drm"),
@@ -54,4 +82,8 @@ impl pci::Driver for NovaCore {
Ok(this)
}
+
+ fn unbind(pdev: &pci::Device<Core>, this: Pin<&Self>) {
+ this.gpu.unbind(pdev.as_ref());
+ }
}
diff --git a/drivers/gpu/nova-core/falcon.rs b/drivers/gpu/nova-core/falcon.rs
index 50437c67c14a..37e6298195e4 100644
--- a/drivers/gpu/nova-core/falcon.rs
+++ b/drivers/gpu/nova-core/falcon.rs
@@ -4,16 +4,17 @@
use core::ops::Deref;
use hal::FalconHal;
-use kernel::bindings;
use kernel::device;
+use kernel::dma::DmaAddress;
use kernel::prelude::*;
+use kernel::sync::aref::ARef;
use kernel::time::Delta;
-use kernel::types::ARef;
use crate::dma::DmaObject;
use crate::driver::Bar0;
use crate::gpu::Chipset;
use crate::regs;
+use crate::regs::macros::RegisterBase;
use crate::util;
pub(crate) mod gsp;
@@ -274,14 +275,25 @@ impl From<bool> for FalconFbifMemType {
}
}
-/// Trait defining the parameters of a given Falcon instance.
-pub(crate) trait FalconEngine: Sync {
- /// Base I/O address for the falcon, relative from which its registers are accessed.
- const BASE: usize;
+/// Type used to represent the `PFALCON` registers address base for a given falcon engine.
+pub(crate) struct PFalconBase(());
+
+/// Type used to represent the `PFALCON2` registers address base for a given falcon engine.
+pub(crate) struct PFalcon2Base(());
+
+/// Trait defining the parameters of a given Falcon engine.
+///
+/// Each engine provides one base for `PFALCON` and `PFALCON2` registers. The `ID` constant is used
+/// to identify a given Falcon instance with register I/O methods.
+pub(crate) trait FalconEngine:
+ Send + Sync + RegisterBase<PFalconBase> + RegisterBase<PFalcon2Base> + Sized
+{
+ /// Singleton of the engine, used to identify it with register I/O methods.
+ const ID: Self;
}
/// Represents a portion of the firmware to be loaded into a particular memory (e.g. IMEM or DMEM).
-#[derive(Debug)]
+#[derive(Debug, Clone)]
pub(crate) struct FalconLoadTarget {
/// Offset from the start of the source object to copy from.
pub(crate) src_start: u32,
@@ -292,7 +304,7 @@ pub(crate) struct FalconLoadTarget {
}
/// Parameters for the falcon boot ROM.
-#[derive(Debug)]
+#[derive(Debug, Clone)]
pub(crate) struct FalconBromParams {
/// Offset in `DMEM`` of the firmware's signature.
pub(crate) pkc_data_offset: u32,
@@ -343,13 +355,13 @@ impl<E: FalconEngine + 'static> Falcon<E> {
bar: &Bar0,
need_riscv: bool,
) -> Result<Self> {
- let hwcfg1 = regs::NV_PFALCON_FALCON_HWCFG1::read(bar, E::BASE);
+ let hwcfg1 = regs::NV_PFALCON_FALCON_HWCFG1::read(bar, &E::ID);
// Check that the revision and security model contain valid values.
let _ = hwcfg1.core_rev()?;
let _ = hwcfg1.security_model()?;
if need_riscv {
- let hwcfg2 = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
+ let hwcfg2 = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, &E::ID);
if !hwcfg2.riscv() {
dev_err!(
dev,
@@ -369,7 +381,7 @@ impl<E: FalconEngine + 'static> Falcon<E> {
fn reset_wait_mem_scrubbing(&self, bar: &Bar0) -> Result {
// TIMEOUT: memory scrubbing should complete in less than 20ms.
util::wait_on(Delta::from_millis(20), || {
- if regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE).mem_scrubbing_done() {
+ if regs::NV_PFALCON_FALCON_HWCFG2::read(bar, &E::ID).mem_scrubbing_done() {
Some(())
} else {
None
@@ -379,12 +391,12 @@ impl<E: FalconEngine + 'static> Falcon<E> {
/// Reset the falcon engine.
fn reset_eng(&self, bar: &Bar0) -> Result {
- let _ = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
+ let _ = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, &E::ID);
// According to OpenRM's `kflcnPreResetWait_GA102` documentation, HW sometimes does not set
// RESET_READY so a non-failing timeout is used.
let _ = util::wait_on(Delta::from_micros(150), || {
- let r = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
+ let r = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, &E::ID);
if r.reset_ready() {
Some(())
} else {
@@ -392,13 +404,13 @@ impl<E: FalconEngine + 'static> Falcon<E> {
}
});
- regs::NV_PFALCON_FALCON_ENGINE::alter(bar, E::BASE, |v| v.set_reset(true));
+ regs::NV_PFALCON_FALCON_ENGINE::alter(bar, &E::ID, |v| v.set_reset(true));
// TODO[DLAY]: replace with udelay() or equivalent once available.
// TIMEOUT: falcon engine should not take more than 10us to reset.
let _: Result = util::wait_on(Delta::from_micros(10), || None);
- regs::NV_PFALCON_FALCON_ENGINE::alter(bar, E::BASE, |v| v.set_reset(false));
+ regs::NV_PFALCON_FALCON_ENGINE::alter(bar, &E::ID, |v| v.set_reset(false));
self.reset_wait_mem_scrubbing(bar)?;
@@ -413,7 +425,7 @@ impl<E: FalconEngine + 'static> Falcon<E> {
regs::NV_PFALCON_FALCON_RM::default()
.set_value(regs::NV_PMC_BOOT_0::read(bar).into())
- .write(bar, E::BASE);
+ .write(bar, &E::ID);
Ok(())
}
@@ -443,7 +455,7 @@ impl<E: FalconEngine + 'static> Falcon<E> {
fw.dma_handle_with_offset(load_offsets.src_start as usize)?,
),
};
- if dma_start % bindings::dma_addr_t::from(DMA_LEN) > 0 {
+ if dma_start % DmaAddress::from(DMA_LEN) > 0 {
dev_err!(
self.dev,
"DMA transfer start addresses must be a multiple of {}",
@@ -451,44 +463,57 @@ impl<E: FalconEngine + 'static> Falcon<E> {
);
return Err(EINVAL);
}
- if load_offsets.len % DMA_LEN > 0 {
- dev_err!(
- self.dev,
- "DMA transfer length must be a multiple of {}",
- DMA_LEN
- );
- return Err(EINVAL);
- }
+
+ // DMA transfers can only be done in units of 256 bytes. Compute how many such transfers we
+ // need to perform.
+ let num_transfers = load_offsets.len.div_ceil(DMA_LEN);
+
+ // Check that the area we are about to transfer is within the bounds of the DMA object.
+ // Upper limit of transfer is `(num_transfers * DMA_LEN) + load_offsets.src_start`.
+ match num_transfers
+ .checked_mul(DMA_LEN)
+ .and_then(|size| size.checked_add(load_offsets.src_start))
+ {
+ None => {
+ dev_err!(self.dev, "DMA transfer length overflow");
+ return Err(EOVERFLOW);
+ }
+ Some(upper_bound) if upper_bound as usize > fw.size() => {
+ dev_err!(self.dev, "DMA transfer goes beyond range of DMA object");
+ return Err(EINVAL);
+ }
+ Some(_) => (),
+ };
// Set up the base source DMA address.
regs::NV_PFALCON_FALCON_DMATRFBASE::default()
.set_base((dma_start >> 8) as u32)
- .write(bar, E::BASE);
+ .write(bar, &E::ID);
regs::NV_PFALCON_FALCON_DMATRFBASE1::default()
.set_base((dma_start >> 40) as u16)
- .write(bar, E::BASE);
+ .write(bar, &E::ID);
let cmd = regs::NV_PFALCON_FALCON_DMATRFCMD::default()
.set_size(DmaTrfCmdSize::Size256B)
.set_imem(target_mem == FalconMem::Imem)
.set_sec(if sec { 1 } else { 0 });
- for pos in (0..load_offsets.len).step_by(DMA_LEN as usize) {
+ for pos in (0..num_transfers).map(|i| i * DMA_LEN) {
// Perform a transfer of size `DMA_LEN`.
regs::NV_PFALCON_FALCON_DMATRFMOFFS::default()
.set_offs(load_offsets.dst_start + pos)
- .write(bar, E::BASE);
+ .write(bar, &E::ID);
regs::NV_PFALCON_FALCON_DMATRFFBOFFS::default()
.set_offs(src_start + pos)
- .write(bar, E::BASE);
- cmd.write(bar, E::BASE);
+ .write(bar, &E::ID);
+ cmd.write(bar, &E::ID);
// Wait for the transfer to complete.
// TIMEOUT: arbitrarily large value, no DMA transfer to the falcon's small memories
// should ever take that long.
util::wait_on(Delta::from_secs(2), || {
- let r = regs::NV_PFALCON_FALCON_DMATRFCMD::read(bar, E::BASE);
+ let r = regs::NV_PFALCON_FALCON_DMATRFCMD::read(bar, &E::ID);
if r.idle() {
Some(())
} else {
@@ -502,9 +527,9 @@ impl<E: FalconEngine + 'static> Falcon<E> {
/// Perform a DMA load into `IMEM` and `DMEM` of `fw`, and prepare the falcon to run it.
pub(crate) fn dma_load<F: FalconFirmware<Target = E>>(&self, bar: &Bar0, fw: &F) -> Result {
- regs::NV_PFALCON_FBIF_CTL::alter(bar, E::BASE, |v| v.set_allow_phys_no_ctx(true));
- regs::NV_PFALCON_FALCON_DMACTL::default().write(bar, E::BASE);
- regs::NV_PFALCON_FBIF_TRANSCFG::alter(bar, E::BASE, |v| {
+ regs::NV_PFALCON_FBIF_CTL::alter(bar, &E::ID, |v| v.set_allow_phys_no_ctx(true));
+ regs::NV_PFALCON_FALCON_DMACTL::default().write(bar, &E::ID);
+ regs::NV_PFALCON_FBIF_TRANSCFG::alter(bar, &E::ID, 0, |v| {
v.set_target(FalconFbifTarget::CoherentSysmem)
.set_mem_type(FalconFbifMemType::Physical)
});
@@ -517,7 +542,7 @@ impl<E: FalconEngine + 'static> Falcon<E> {
// Set `BootVec` to start of non-secure code.
regs::NV_PFALCON_FALCON_BOOTVEC::default()
.set_value(fw.boot_addr())
- .write(bar, E::BASE);
+ .write(bar, &E::ID);
Ok(())
}
@@ -538,27 +563,27 @@ impl<E: FalconEngine + 'static> Falcon<E> {
if let Some(mbox0) = mbox0 {
regs::NV_PFALCON_FALCON_MAILBOX0::default()
.set_value(mbox0)
- .write(bar, E::BASE);
+ .write(bar, &E::ID);
}
if let Some(mbox1) = mbox1 {
regs::NV_PFALCON_FALCON_MAILBOX1::default()
.set_value(mbox1)
- .write(bar, E::BASE);
+ .write(bar, &E::ID);
}
- match regs::NV_PFALCON_FALCON_CPUCTL::read(bar, E::BASE).alias_en() {
+ match regs::NV_PFALCON_FALCON_CPUCTL::read(bar, &E::ID).alias_en() {
true => regs::NV_PFALCON_FALCON_CPUCTL_ALIAS::default()
.set_startcpu(true)
- .write(bar, E::BASE),
+ .write(bar, &E::ID),
false => regs::NV_PFALCON_FALCON_CPUCTL::default()
.set_startcpu(true)
- .write(bar, E::BASE),
+ .write(bar, &E::ID),
}
// TIMEOUT: arbitrarily large value, firmwares should complete in less than 2 seconds.
util::wait_on(Delta::from_secs(2), || {
- let r = regs::NV_PFALCON_FALCON_CPUCTL::read(bar, E::BASE);
+ let r = regs::NV_PFALCON_FALCON_CPUCTL::read(bar, &E::ID);
if r.halted() {
Some(())
} else {
@@ -567,8 +592,8 @@ impl<E: FalconEngine + 'static> Falcon<E> {
})?;
let (mbox0, mbox1) = (
- regs::NV_PFALCON_FALCON_MAILBOX0::read(bar, E::BASE).value(),
- regs::NV_PFALCON_FALCON_MAILBOX1::read(bar, E::BASE).value(),
+ regs::NV_PFALCON_FALCON_MAILBOX0::read(bar, &E::ID).value(),
+ regs::NV_PFALCON_FALCON_MAILBOX1::read(bar, &E::ID).value(),
);
Ok((mbox0, mbox1))
diff --git a/drivers/gpu/nova-core/falcon/gsp.rs b/drivers/gpu/nova-core/falcon/gsp.rs
index d622e9a64470..f17599cb49fa 100644
--- a/drivers/gpu/nova-core/falcon/gsp.rs
+++ b/drivers/gpu/nova-core/falcon/gsp.rs
@@ -2,23 +2,31 @@
use crate::{
driver::Bar0,
- falcon::{Falcon, FalconEngine},
- regs,
+ falcon::{Falcon, FalconEngine, PFalcon2Base, PFalconBase},
+ regs::{self, macros::RegisterBase},
};
/// Type specifying the `Gsp` falcon engine. Cannot be instantiated.
pub(crate) struct Gsp(());
-impl FalconEngine for Gsp {
+impl RegisterBase<PFalconBase> for Gsp {
const BASE: usize = 0x00110000;
}
+impl RegisterBase<PFalcon2Base> for Gsp {
+ const BASE: usize = 0x00111000;
+}
+
+impl FalconEngine for Gsp {
+ const ID: Self = Gsp(());
+}
+
impl Falcon<Gsp> {
/// Clears the SWGEN0 bit in the Falcon's IRQ status clear register to
/// allow GSP to signal CPU for processing new messages in message queue.
pub(crate) fn clear_swgen0_intr(&self, bar: &Bar0) {
regs::NV_PFALCON_FALCON_IRQSCLR::default()
.set_swgen0(true)
- .write(bar, Gsp::BASE);
+ .write(bar, &Gsp::ID);
}
}
diff --git a/drivers/gpu/nova-core/falcon/hal.rs b/drivers/gpu/nova-core/falcon/hal.rs
index b233bc365882..bba288455617 100644
--- a/drivers/gpu/nova-core/falcon/hal.rs
+++ b/drivers/gpu/nova-core/falcon/hal.rs
@@ -13,7 +13,7 @@ mod ga102;
/// Implements chipset-specific low-level operations. The trait is generic against [`FalconEngine`]
/// so its `BASE` parameter can be used in order to avoid runtime bound checks when accessing
/// registers.
-pub(crate) trait FalconHal<E: FalconEngine>: Sync {
+pub(crate) trait FalconHal<E: FalconEngine>: Send + Sync {
/// Activates the Falcon core if the engine is a risvc/falcon dual engine.
fn select_core(&self, _falcon: &Falcon<E>, _bar: &Bar0) -> Result {
Ok(())
diff --git a/drivers/gpu/nova-core/falcon/hal/ga102.rs b/drivers/gpu/nova-core/falcon/hal/ga102.rs
index 52c33d3f22a8..0b1cbe7853b3 100644
--- a/drivers/gpu/nova-core/falcon/hal/ga102.rs
+++ b/drivers/gpu/nova-core/falcon/hal/ga102.rs
@@ -16,15 +16,15 @@ use crate::util;
use super::FalconHal;
fn select_core_ga102<E: FalconEngine>(bar: &Bar0) -> Result {
- let bcr_ctrl = regs::NV_PRISCV_RISCV_BCR_CTRL::read(bar, E::BASE);
+ let bcr_ctrl = regs::NV_PRISCV_RISCV_BCR_CTRL::read(bar, &E::ID);
if bcr_ctrl.core_select() != PeregrineCoreSelect::Falcon {
regs::NV_PRISCV_RISCV_BCR_CTRL::default()
.set_core_select(PeregrineCoreSelect::Falcon)
- .write(bar, E::BASE);
+ .write(bar, &E::ID);
// TIMEOUT: falcon core should take less than 10ms to report being enabled.
util::wait_on(Delta::from_millis(10), || {
- let r = regs::NV_PRISCV_RISCV_BCR_CTRL::read(bar, E::BASE);
+ let r = regs::NV_PRISCV_RISCV_BCR_CTRL::read(bar, &E::ID);
if r.valid() {
Some(())
} else {
@@ -42,50 +42,47 @@ fn signature_reg_fuse_version_ga102(
engine_id_mask: u16,
ucode_id: u8,
) -> Result<u32> {
- // TODO[REGA]: The ucode fuse versions are contained in the
- // FUSE_OPT_FPF_<ENGINE>_UCODE<X>_VERSION registers, which are an array. Our register
- // definition macros do not allow us to manage them properly, so we need to hardcode their
- // addresses for now. Clean this up once we support register arrays.
+ const NV_FUSE_OPT_FPF_SIZE: u8 = regs::NV_FUSE_OPT_FPF_SIZE as u8;
// Each engine has 16 ucode version registers numbered from 1 to 16.
- if ucode_id == 0 || ucode_id > 16 {
- dev_err!(dev, "invalid ucode id {:#x}", ucode_id);
- return Err(EINVAL);
- }
+ let ucode_idx = match ucode_id {
+ 1..=NV_FUSE_OPT_FPF_SIZE => (ucode_id - 1) as usize,
+ _ => {
+ dev_err!(dev, "invalid ucode id {:#x}", ucode_id);
+ return Err(EINVAL);
+ }
+ };
- // Base address of the FUSE registers array corresponding to the engine.
- let reg_fuse_base = if engine_id_mask & 0x0001 != 0 {
- regs::NV_FUSE_OPT_FPF_SEC2_UCODE1_VERSION::OFFSET
+ // `ucode_idx` is guaranteed to be in the range [0..15], making the `read` calls provable valid
+ // at build-time.
+ let reg_fuse_version = if engine_id_mask & 0x0001 != 0 {
+ regs::NV_FUSE_OPT_FPF_SEC2_UCODE1_VERSION::read(bar, ucode_idx).data()
} else if engine_id_mask & 0x0004 != 0 {
- regs::NV_FUSE_OPT_FPF_NVDEC_UCODE1_VERSION::OFFSET
+ regs::NV_FUSE_OPT_FPF_NVDEC_UCODE1_VERSION::read(bar, ucode_idx).data()
} else if engine_id_mask & 0x0400 != 0 {
- regs::NV_FUSE_OPT_FPF_GSP_UCODE1_VERSION::OFFSET
+ regs::NV_FUSE_OPT_FPF_GSP_UCODE1_VERSION::read(bar, ucode_idx).data()
} else {
dev_err!(dev, "unexpected engine_id_mask {:#x}", engine_id_mask);
return Err(EINVAL);
};
- // Read `reg_fuse_base[ucode_id - 1]`.
- let reg_fuse_version =
- bar.read32(reg_fuse_base + ((ucode_id - 1) as usize * core::mem::size_of::<u32>()));
-
// TODO[NUMM]: replace with `last_set_bit` once it lands.
- Ok(u32::BITS - reg_fuse_version.leading_zeros())
+ Ok(u16::BITS - reg_fuse_version.leading_zeros())
}
fn program_brom_ga102<E: FalconEngine>(bar: &Bar0, params: &FalconBromParams) -> Result {
regs::NV_PFALCON2_FALCON_BROM_PARAADDR::default()
.set_value(params.pkc_data_offset)
- .write(bar, E::BASE);
+ .write(bar, &E::ID, 0);
regs::NV_PFALCON2_FALCON_BROM_ENGIDMASK::default()
.set_value(u32::from(params.engine_id_mask))
- .write(bar, E::BASE);
+ .write(bar, &E::ID);
regs::NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID::default()
.set_ucode_id(params.ucode_id)
- .write(bar, E::BASE);
+ .write(bar, &E::ID);
regs::NV_PFALCON2_FALCON_MOD_SEL::default()
.set_algo(FalconModSelAlgo::Rsa3k)
- .write(bar, E::BASE);
+ .write(bar, &E::ID);
Ok(())
}
diff --git a/drivers/gpu/nova-core/falcon/sec2.rs b/drivers/gpu/nova-core/falcon/sec2.rs
index 5147d9e2a7fe..815786c8480d 100644
--- a/drivers/gpu/nova-core/falcon/sec2.rs
+++ b/drivers/gpu/nova-core/falcon/sec2.rs
@@ -1,10 +1,19 @@
// SPDX-License-Identifier: GPL-2.0
-use crate::falcon::FalconEngine;
+use crate::falcon::{FalconEngine, PFalcon2Base, PFalconBase};
+use crate::regs::macros::RegisterBase;
/// Type specifying the `Sec2` falcon engine. Cannot be instantiated.
pub(crate) struct Sec2(());
-impl FalconEngine for Sec2 {
+impl RegisterBase<PFalconBase> for Sec2 {
const BASE: usize = 0x00840000;
}
+
+impl RegisterBase<PFalcon2Base> for Sec2 {
+ const BASE: usize = 0x00841000;
+}
+
+impl FalconEngine for Sec2 {
+ const ID: Self = Sec2(());
+}
diff --git a/drivers/gpu/nova-core/fb.rs b/drivers/gpu/nova-core/fb.rs
index 4a702525fff4..27d9edab8347 100644
--- a/drivers/gpu/nova-core/fb.rs
+++ b/drivers/gpu/nova-core/fb.rs
@@ -3,8 +3,9 @@
use core::ops::Range;
use kernel::prelude::*;
+use kernel::ptr::{Alignable, Alignment};
use kernel::sizes::*;
-use kernel::types::ARef;
+use kernel::sync::aref::ARef;
use kernel::{dev_warn, device};
use crate::dma::DmaObject;
@@ -130,10 +131,9 @@ impl FbLayout {
};
let frts = {
- const FRTS_DOWN_ALIGN: u64 = SZ_128K as u64;
+ const FRTS_DOWN_ALIGN: Alignment = Alignment::new::<SZ_128K>();
const FRTS_SIZE: u64 = SZ_1M as u64;
- // TODO[NUMM]: replace with `align_down` once it lands.
- let frts_base = (vga_workspace.start & !(FRTS_DOWN_ALIGN - 1)) - FRTS_SIZE;
+ let frts_base = vga_workspace.start.align_down(FRTS_DOWN_ALIGN) - FRTS_SIZE;
frts_base..frts_base + FRTS_SIZE
};
diff --git a/drivers/gpu/nova-core/firmware.rs b/drivers/gpu/nova-core/firmware.rs
index 2931912ddba0..4179a74a2342 100644
--- a/drivers/gpu/nova-core/firmware.rs
+++ b/drivers/gpu/nova-core/firmware.rs
@@ -4,48 +4,36 @@
//! to be loaded into a given execution unit.
use core::marker::PhantomData;
+use core::mem::size_of;
use kernel::device;
use kernel::firmware;
use kernel::prelude::*;
use kernel::str::CString;
+use kernel::transmute::FromBytes;
use crate::dma::DmaObject;
use crate::falcon::FalconFirmware;
use crate::gpu;
-use crate::gpu::Chipset;
+pub(crate) mod booter;
pub(crate) mod fwsec;
-
-pub(crate) const FIRMWARE_VERSION: &str = "535.113.01";
-
-/// Structure encapsulating the firmware blobs required for the GPU to operate.
-#[expect(dead_code)]
-pub(crate) struct Firmware {
- booter_load: firmware::Firmware,
- booter_unload: firmware::Firmware,
- bootloader: firmware::Firmware,
- gsp: firmware::Firmware,
-}
-
-impl Firmware {
- pub(crate) fn new(dev: &device::Device, chipset: Chipset, ver: &str) -> Result<Firmware> {
- let mut chip_name = CString::try_from_fmt(fmt!("{chipset}"))?;
- chip_name.make_ascii_lowercase();
- let chip_name = &*chip_name;
-
- let request = |name_| {
- CString::try_from_fmt(fmt!("nvidia/{chip_name}/gsp/{name_}-{ver}.bin"))
- .and_then(|path| firmware::Firmware::request(&path, dev))
- };
-
- Ok(Firmware {
- booter_load: request("booter_load")?,
- booter_unload: request("booter_unload")?,
- bootloader: request("bootloader")?,
- gsp: request("gsp")?,
- })
- }
+pub(crate) mod gsp;
+pub(crate) mod riscv;
+
+pub(crate) const FIRMWARE_VERSION: &str = "570.144";
+
+/// Requests the GPU firmware `name` suitable for `chipset`, with version `ver`.
+fn request_firmware(
+ dev: &device::Device,
+ chipset: gpu::Chipset,
+ name: &str,
+ ver: &str,
+) -> Result<firmware::Firmware> {
+ let chip_name = chipset.name();
+
+ CString::try_from_fmt(fmt!("nvidia/{chip_name}/gsp/{name}-{ver}.bin"))
+ .and_then(|path| firmware::Firmware::request(&path, dev))
}
/// Structure used to describe some firmwares, notably FWSEC-FRTS.
@@ -150,6 +138,65 @@ impl<F: FalconFirmware> FirmwareDmaObject<F, Unsigned> {
}
}
+/// Header common to most firmware files.
+#[repr(C)]
+#[derive(Debug, Clone)]
+struct BinHdr {
+ /// Magic number, must be `0x10de`.
+ bin_magic: u32,
+ /// Version of the header.
+ bin_ver: u32,
+ /// Size in bytes of the binary (to be ignored).
+ bin_size: u32,
+ /// Offset of the start of the application-specific header.
+ header_offset: u32,
+ /// Offset of the start of the data payload.
+ data_offset: u32,
+ /// Size in bytes of the data payload.
+ data_size: u32,
+}
+
+// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
+unsafe impl FromBytes for BinHdr {}
+
+// A firmware blob starting with a `BinHdr`.
+struct BinFirmware<'a> {
+ hdr: BinHdr,
+ fw: &'a [u8],
+}
+
+impl<'a> BinFirmware<'a> {
+ /// Interpret `fw` as a firmware image starting with a [`BinHdr`], and returns the
+ /// corresponding [`BinFirmware`] that can be used to extract its payload.
+ fn new(fw: &'a firmware::Firmware) -> Result<Self> {
+ const BIN_MAGIC: u32 = 0x10de;
+ let fw = fw.data();
+
+ fw.get(0..size_of::<BinHdr>())
+ // Extract header.
+ .and_then(BinHdr::from_bytes_copy)
+ // Validate header.
+ .and_then(|hdr| {
+ if hdr.bin_magic == BIN_MAGIC {
+ Some(hdr)
+ } else {
+ None
+ }
+ })
+ .map(|hdr| Self { hdr, fw })
+ .ok_or(EINVAL)
+ }
+
+ /// Returns the data payload of the firmware, or `None` if the data range is out of bounds of
+ /// the firmware image.
+ fn data(&self) -> Option<&[u8]> {
+ let fw_start = self.hdr.data_offset as usize;
+ let fw_size = self.hdr.data_size as usize;
+
+ self.fw.get(fw_start..fw_start + fw_size)
+ }
+}
+
pub(crate) struct ModInfoBuilder<const N: usize>(firmware::ModInfoBuilder<N>);
impl<const N: usize> ModInfoBuilder<N> {
@@ -180,8 +227,8 @@ impl<const N: usize> ModInfoBuilder<N> {
let mut this = Self(firmware::ModInfoBuilder::new(module_name));
let mut i = 0;
- while i < gpu::Chipset::NAMES.len() {
- this = this.make_entry_chipset(gpu::Chipset::NAMES[i]);
+ while i < gpu::Chipset::ALL.len() {
+ this = this.make_entry_chipset(gpu::Chipset::ALL[i].name());
i += 1;
}
diff --git a/drivers/gpu/nova-core/firmware/booter.rs b/drivers/gpu/nova-core/firmware/booter.rs
new file mode 100644
index 000000000000..b4ff1b17e4a0
--- /dev/null
+++ b/drivers/gpu/nova-core/firmware/booter.rs
@@ -0,0 +1,375 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Support for loading and patching the `Booter` firmware. `Booter` is a Heavy Secured firmware
+//! running on [`Sec2`], that is used on Turing/Ampere to load the GSP firmware into the GSP falcon
+//! (and optionally unload it through a separate firmware image).
+
+use core::marker::PhantomData;
+use core::mem::size_of;
+use core::ops::Deref;
+
+use kernel::device;
+use kernel::prelude::*;
+use kernel::transmute::FromBytes;
+
+use crate::dma::DmaObject;
+use crate::driver::Bar0;
+use crate::falcon::sec2::Sec2;
+use crate::falcon::{Falcon, FalconBromParams, FalconFirmware, FalconLoadParams, FalconLoadTarget};
+use crate::firmware::{BinFirmware, FirmwareDmaObject, FirmwareSignature, Signed, Unsigned};
+use crate::gpu::Chipset;
+
+/// Local convenience function to return a copy of `S` by reinterpreting the bytes starting at
+/// `offset` in `slice`.
+fn frombytes_at<S: FromBytes + Sized>(slice: &[u8], offset: usize) -> Result<S> {
+ slice
+ .get(offset..offset + size_of::<S>())
+ .and_then(S::from_bytes_copy)
+ .ok_or(EINVAL)
+}
+
+/// Heavy-Secured firmware header.
+///
+/// Such firmwares have an application-specific payload that needs to be patched with a given
+/// signature.
+#[repr(C)]
+#[derive(Debug, Clone)]
+struct HsHeaderV2 {
+ /// Offset to the start of the signatures.
+ sig_prod_offset: u32,
+ /// Size in bytes of the signatures.
+ sig_prod_size: u32,
+ /// Offset to a `u32` containing the location at which to patch the signature in the microcode
+ /// image.
+ patch_loc_offset: u32,
+ /// Offset to a `u32` containing the index of the signature to patch.
+ patch_sig_offset: u32,
+ /// Start offset to the signature metadata.
+ meta_data_offset: u32,
+ /// Size in bytes of the signature metadata.
+ meta_data_size: u32,
+ /// Offset to a `u32` containing the number of signatures in the signatures section.
+ num_sig_offset: u32,
+ /// Offset of the application-specific header.
+ header_offset: u32,
+ /// Size in bytes of the application-specific header.
+ header_size: u32,
+}
+
+// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
+unsafe impl FromBytes for HsHeaderV2 {}
+
+/// Heavy-Secured Firmware image container.
+///
+/// This provides convenient access to the fields of [`HsHeaderV2`] that are actually indices to
+/// read from in the firmware data.
+struct HsFirmwareV2<'a> {
+ hdr: HsHeaderV2,
+ fw: &'a [u8],
+}
+
+impl<'a> HsFirmwareV2<'a> {
+ /// Interprets the header of `bin_fw` as a [`HsHeaderV2`] and returns an instance of
+ /// `HsFirmwareV2` for further parsing.
+ ///
+ /// Fails if the header pointed at by `bin_fw` is not within the bounds of the firmware image.
+ fn new(bin_fw: &BinFirmware<'a>) -> Result<Self> {
+ frombytes_at::<HsHeaderV2>(bin_fw.fw, bin_fw.hdr.header_offset as usize)
+ .map(|hdr| Self { hdr, fw: bin_fw.fw })
+ }
+
+ /// Returns the location at which the signatures should be patched in the microcode image.
+ ///
+ /// Fails if the offset of the patch location is outside the bounds of the firmware
+ /// image.
+ fn patch_location(&self) -> Result<u32> {
+ frombytes_at::<u32>(self.fw, self.hdr.patch_loc_offset as usize)
+ }
+
+ /// Returns an iterator to the signatures of the firmware. The iterator can be empty if the
+ /// firmware is unsigned.
+ ///
+ /// Fails if the pointed signatures are outside the bounds of the firmware image.
+ fn signatures_iter(&'a self) -> Result<impl Iterator<Item = BooterSignature<'a>>> {
+ let num_sig = frombytes_at::<u32>(self.fw, self.hdr.num_sig_offset as usize)?;
+ let iter = match self.hdr.sig_prod_size.checked_div(num_sig) {
+ // If there are no signatures, return an iterator that will yield zero elements.
+ None => (&[] as &[u8]).chunks_exact(1),
+ Some(sig_size) => {
+ let patch_sig = frombytes_at::<u32>(self.fw, self.hdr.patch_sig_offset as usize)?;
+ let signatures_start = (self.hdr.sig_prod_offset + patch_sig) as usize;
+
+ self.fw
+ // Get signatures range.
+ .get(signatures_start..signatures_start + self.hdr.sig_prod_size as usize)
+ .ok_or(EINVAL)?
+ .chunks_exact(sig_size as usize)
+ }
+ };
+
+ // Map the byte slices into signatures.
+ Ok(iter.map(BooterSignature))
+ }
+}
+
+/// Signature parameters, as defined in the firmware.
+#[repr(C)]
+struct HsSignatureParams {
+ /// Fuse version to use.
+ fuse_ver: u32,
+ /// Mask of engine IDs this firmware applies to.
+ engine_id_mask: u32,
+ /// ID of the microcode.
+ ucode_id: u32,
+}
+
+// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
+unsafe impl FromBytes for HsSignatureParams {}
+
+impl HsSignatureParams {
+ /// Returns the signature parameters contained in `hs_fw`.
+ ///
+ /// Fails if the meta data parameter of `hs_fw` is outside the bounds of the firmware image, or
+ /// if its size doesn't match that of [`HsSignatureParams`].
+ fn new(hs_fw: &HsFirmwareV2<'_>) -> Result<Self> {
+ let start = hs_fw.hdr.meta_data_offset as usize;
+ let end = start
+ .checked_add(hs_fw.hdr.meta_data_size as usize)
+ .ok_or(EINVAL)?;
+
+ hs_fw
+ .fw
+ .get(start..end)
+ .and_then(Self::from_bytes_copy)
+ .ok_or(EINVAL)
+ }
+}
+
+/// Header for code and data load offsets.
+#[repr(C)]
+#[derive(Debug, Clone)]
+struct HsLoadHeaderV2 {
+ // Offset at which the code starts.
+ os_code_offset: u32,
+ // Total size of the code, for all apps.
+ os_code_size: u32,
+ // Offset at which the data starts.
+ os_data_offset: u32,
+ // Size of the data.
+ os_data_size: u32,
+ // Number of apps following this header. Each app is described by a [`HsLoadHeaderV2App`].
+ num_apps: u32,
+}
+
+// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
+unsafe impl FromBytes for HsLoadHeaderV2 {}
+
+impl HsLoadHeaderV2 {
+ /// Returns the load header contained in `hs_fw`.
+ ///
+ /// Fails if the header pointed at by `hs_fw` is not within the bounds of the firmware image.
+ fn new(hs_fw: &HsFirmwareV2<'_>) -> Result<Self> {
+ frombytes_at::<Self>(hs_fw.fw, hs_fw.hdr.header_offset as usize)
+ }
+}
+
+/// Header for app code loader.
+#[repr(C)]
+#[derive(Debug, Clone)]
+struct HsLoadHeaderV2App {
+ /// Offset at which to load the app code.
+ offset: u32,
+ /// Length in bytes of the app code.
+ len: u32,
+}
+
+// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
+unsafe impl FromBytes for HsLoadHeaderV2App {}
+
+impl HsLoadHeaderV2App {
+ /// Returns the [`HsLoadHeaderV2App`] for app `idx` of `hs_fw`.
+ ///
+ /// Fails if `idx` is larger than the number of apps declared in `hs_fw`, or if the header is
+ /// not within the bounds of the firmware image.
+ fn new(hs_fw: &HsFirmwareV2<'_>, idx: u32) -> Result<Self> {
+ let load_hdr = HsLoadHeaderV2::new(hs_fw)?;
+ if idx >= load_hdr.num_apps {
+ Err(EINVAL)
+ } else {
+ frombytes_at::<Self>(
+ hs_fw.fw,
+ (hs_fw.hdr.header_offset as usize)
+ // Skip the load header...
+ .checked_add(size_of::<HsLoadHeaderV2>())
+ // ... and jump to app header `idx`.
+ .and_then(|offset| {
+ offset.checked_add((idx as usize).checked_mul(size_of::<Self>())?)
+ })
+ .ok_or(EINVAL)?,
+ )
+ }
+ }
+}
+
+/// Signature for Booter firmware. Their size is encoded into the header and not known a compile
+/// time, so we just wrap a byte slices on which we can implement [`FirmwareSignature`].
+struct BooterSignature<'a>(&'a [u8]);
+
+impl<'a> AsRef<[u8]> for BooterSignature<'a> {
+ fn as_ref(&self) -> &[u8] {
+ self.0
+ }
+}
+
+impl<'a> FirmwareSignature<BooterFirmware> for BooterSignature<'a> {}
+
+/// The `Booter` loader firmware, responsible for loading the GSP.
+pub(crate) struct BooterFirmware {
+ // Load parameters for `IMEM` falcon memory.
+ imem_load_target: FalconLoadTarget,
+ // Load parameters for `DMEM` falcon memory.
+ dmem_load_target: FalconLoadTarget,
+ // BROM falcon parameters.
+ brom_params: FalconBromParams,
+ // Device-mapped firmware image.
+ ucode: FirmwareDmaObject<Self, Signed>,
+}
+
+impl FirmwareDmaObject<BooterFirmware, Unsigned> {
+ fn new_booter(dev: &device::Device<device::Bound>, data: &[u8]) -> Result<Self> {
+ DmaObject::from_data(dev, data).map(|ucode| Self(ucode, PhantomData))
+ }
+}
+
+#[derive(Copy, Clone, Debug, PartialEq)]
+pub(crate) enum BooterKind {
+ Loader,
+ #[expect(unused)]
+ Unloader,
+}
+
+impl BooterFirmware {
+ /// Parses the Booter firmware contained in `fw`, and patches the correct signature so it is
+ /// ready to be loaded and run on `falcon`.
+ pub(crate) fn new(
+ dev: &device::Device<device::Bound>,
+ kind: BooterKind,
+ chipset: Chipset,
+ ver: &str,
+ falcon: &Falcon<<Self as FalconFirmware>::Target>,
+ bar: &Bar0,
+ ) -> Result<Self> {
+ let fw_name = match kind {
+ BooterKind::Loader => "booter_load",
+ BooterKind::Unloader => "booter_unload",
+ };
+ let fw = super::request_firmware(dev, chipset, fw_name, ver)?;
+ let bin_fw = BinFirmware::new(&fw)?;
+
+ // The binary firmware embeds a Heavy-Secured firmware.
+ let hs_fw = HsFirmwareV2::new(&bin_fw)?;
+
+ // The Heavy-Secured firmware embeds a firmware load descriptor.
+ let load_hdr = HsLoadHeaderV2::new(&hs_fw)?;
+
+ // Offset in `ucode` where to patch the signature.
+ let patch_loc = hs_fw.patch_location()?;
+
+ let sig_params = HsSignatureParams::new(&hs_fw)?;
+ let brom_params = FalconBromParams {
+ // `load_hdr.os_data_offset` is an absolute index, but `pkc_data_offset` is from the
+ // signature patch location.
+ pkc_data_offset: patch_loc
+ .checked_sub(load_hdr.os_data_offset)
+ .ok_or(EINVAL)?,
+ engine_id_mask: u16::try_from(sig_params.engine_id_mask).map_err(|_| EINVAL)?,
+ ucode_id: u8::try_from(sig_params.ucode_id).map_err(|_| EINVAL)?,
+ };
+ let app0 = HsLoadHeaderV2App::new(&hs_fw, 0)?;
+
+ // Object containing the firmware microcode to be signature-patched.
+ let ucode = bin_fw
+ .data()
+ .ok_or(EINVAL)
+ .and_then(|data| FirmwareDmaObject::<Self, _>::new_booter(dev, data))?;
+
+ let ucode_signed = {
+ let mut signatures = hs_fw.signatures_iter()?.peekable();
+
+ if signatures.peek().is_none() {
+ // If there are no signatures, then the firmware is unsigned.
+ ucode.no_patch_signature()
+ } else {
+ // Obtain the version from the fuse register, and extract the corresponding
+ // signature.
+ let reg_fuse_version = falcon.signature_reg_fuse_version(
+ bar,
+ brom_params.engine_id_mask,
+ brom_params.ucode_id,
+ )?;
+
+ // `0` means the last signature should be used.
+ const FUSE_VERSION_USE_LAST_SIG: u32 = 0;
+ let signature = match reg_fuse_version {
+ FUSE_VERSION_USE_LAST_SIG => signatures.last(),
+ // Otherwise hardware fuse version needs to be subtracted to obtain the index.
+ reg_fuse_version => {
+ let Some(idx) = sig_params.fuse_ver.checked_sub(reg_fuse_version) else {
+ dev_err!(dev, "invalid fuse version for Booter firmware\n");
+ return Err(EINVAL);
+ };
+ signatures.nth(idx as usize)
+ }
+ }
+ .ok_or(EINVAL)?;
+
+ ucode.patch_signature(&signature, patch_loc as usize)?
+ }
+ };
+
+ Ok(Self {
+ imem_load_target: FalconLoadTarget {
+ src_start: app0.offset,
+ dst_start: 0,
+ len: app0.len,
+ },
+ dmem_load_target: FalconLoadTarget {
+ src_start: load_hdr.os_data_offset,
+ dst_start: 0,
+ len: load_hdr.os_data_size,
+ },
+ brom_params,
+ ucode: ucode_signed,
+ })
+ }
+}
+
+impl FalconLoadParams for BooterFirmware {
+ fn imem_load_params(&self) -> FalconLoadTarget {
+ self.imem_load_target.clone()
+ }
+
+ fn dmem_load_params(&self) -> FalconLoadTarget {
+ self.dmem_load_target.clone()
+ }
+
+ fn brom_params(&self) -> FalconBromParams {
+ self.brom_params.clone()
+ }
+
+ fn boot_addr(&self) -> u32 {
+ self.imem_load_target.src_start
+ }
+}
+
+impl Deref for BooterFirmware {
+ type Target = DmaObject;
+
+ fn deref(&self) -> &Self::Target {
+ &self.ucode.0
+ }
+}
+
+impl FalconFirmware for BooterFirmware {
+ type Target = Sec2;
+}
diff --git a/drivers/gpu/nova-core/firmware/fwsec.rs b/drivers/gpu/nova-core/firmware/fwsec.rs
index 0dff3cfa90af..8edbb5c0572c 100644
--- a/drivers/gpu/nova-core/firmware/fwsec.rs
+++ b/drivers/gpu/nova-core/firmware/fwsec.rs
@@ -202,9 +202,6 @@ pub(crate) struct FwsecFirmware {
ucode: FirmwareDmaObject<Self, Signed>,
}
-// We need to load full DMEM pages.
-const DMEM_LOAD_SIZE_ALIGN: u32 = 256;
-
impl FalconLoadParams for FwsecFirmware {
fn imem_load_params(&self) -> FalconLoadTarget {
FalconLoadTarget {
@@ -218,11 +215,7 @@ impl FalconLoadParams for FwsecFirmware {
FalconLoadTarget {
src_start: self.desc.imem_load_size,
dst_start: self.desc.dmem_phys_base,
- // TODO[NUMM]: replace with `align_up` once it lands.
- len: self
- .desc
- .dmem_load_size
- .next_multiple_of(DMEM_LOAD_SIZE_ALIGN),
+ len: self.desc.dmem_load_size,
}
}
@@ -253,8 +246,8 @@ impl FalconFirmware for FwsecFirmware {
impl FirmwareDmaObject<FwsecFirmware, Unsigned> {
fn new_fwsec(dev: &Device<device::Bound>, bios: &Vbios, cmd: FwsecCommand) -> Result<Self> {
- let desc = bios.fwsec_image().header(dev)?;
- let ucode = bios.fwsec_image().ucode(dev, desc)?;
+ let desc = bios.fwsec_image().header()?;
+ let ucode = bios.fwsec_image().ucode(desc)?;
let mut dma_object = DmaObject::from_data(dev, ucode)?;
let hdr_offset = (desc.imem_load_size + desc.interface_offset) as usize;
@@ -343,7 +336,7 @@ impl FwsecFirmware {
let ucode_dma = FirmwareDmaObject::<Self, _>::new_fwsec(dev, bios, cmd)?;
// Patch signature if needed.
- let desc = bios.fwsec_image().header(dev)?;
+ let desc = bios.fwsec_image().header()?;
let ucode_signed = if desc.signature_count != 0 {
let sig_base_img = (desc.imem_load_size + desc.pkc_data_offset) as usize;
let desc_sig_versions = u32::from(desc.signature_versions);
@@ -382,7 +375,7 @@ impl FwsecFirmware {
dev_dbg!(dev, "patching signature with index {}\n", signature_idx);
let signature = bios
.fwsec_image()
- .sigs(dev, desc)
+ .sigs(desc)
.and_then(|sigs| sigs.get(signature_idx).ok_or(EINVAL))?;
ucode_dma.patch_signature(signature, sig_base_img)?
diff --git a/drivers/gpu/nova-core/firmware/gsp.rs b/drivers/gpu/nova-core/firmware/gsp.rs
new file mode 100644
index 000000000000..9b70095434c6
--- /dev/null
+++ b/drivers/gpu/nova-core/firmware/gsp.rs
@@ -0,0 +1,243 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use core::mem::size_of_val;
+
+use kernel::device;
+use kernel::dma::{DataDirection, DmaAddress};
+use kernel::kvec;
+use kernel::prelude::*;
+use kernel::scatterlist::{Owned, SGTable};
+
+use crate::dma::DmaObject;
+use crate::firmware::riscv::RiscvFirmware;
+use crate::gpu::{Architecture, Chipset};
+use crate::gsp::GSP_PAGE_SIZE;
+
+/// Ad-hoc and temporary module to extract sections from ELF images.
+///
+/// Some firmware images are currently packaged as ELF files, where sections names are used as keys
+/// to specific and related bits of data. Future firmware versions are scheduled to move away from
+/// that scheme before nova-core becomes stable, which means this module will eventually be
+/// removed.
+mod elf {
+ use core::mem::size_of;
+
+ use kernel::bindings;
+ use kernel::str::CStr;
+ use kernel::transmute::FromBytes;
+
+ /// Newtype to provide a [`FromBytes`] implementation.
+ #[repr(transparent)]
+ struct Elf64Hdr(bindings::elf64_hdr);
+ // SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
+ unsafe impl FromBytes for Elf64Hdr {}
+
+ #[repr(transparent)]
+ struct Elf64SHdr(bindings::elf64_shdr);
+ // SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
+ unsafe impl FromBytes for Elf64SHdr {}
+
+ /// Tries to extract section with name `name` from the ELF64 image `elf`, and returns it.
+ pub(super) fn elf64_section<'a, 'b>(elf: &'a [u8], name: &'b str) -> Option<&'a [u8]> {
+ let hdr = &elf
+ .get(0..size_of::<bindings::elf64_hdr>())
+ .and_then(Elf64Hdr::from_bytes)?
+ .0;
+
+ // Get all the section headers.
+ let mut shdr = {
+ let shdr_num = usize::from(hdr.e_shnum);
+ let shdr_start = usize::try_from(hdr.e_shoff).ok()?;
+ let shdr_end = shdr_num
+ .checked_mul(size_of::<Elf64SHdr>())
+ .and_then(|v| v.checked_add(shdr_start))?;
+
+ elf.get(shdr_start..shdr_end)
+ .map(|slice| slice.chunks_exact(size_of::<Elf64SHdr>()))?
+ };
+
+ // Get the strings table.
+ let strhdr = shdr
+ .clone()
+ .nth(usize::from(hdr.e_shstrndx))
+ .and_then(Elf64SHdr::from_bytes)?;
+
+ // Find the section which name matches `name` and return it.
+ shdr.find(|&sh| {
+ let Some(hdr) = Elf64SHdr::from_bytes(sh) else {
+ return false;
+ };
+
+ let Some(name_idx) = strhdr
+ .0
+ .sh_offset
+ .checked_add(u64::from(hdr.0.sh_name))
+ .and_then(|idx| usize::try_from(idx).ok())
+ else {
+ return false;
+ };
+
+ // Get the start of the name.
+ elf.get(name_idx..)
+ // Stop at the first `0`.
+ .and_then(|nstr| nstr.get(0..=nstr.iter().position(|b| *b == 0)?))
+ // Convert into CStr. This should never fail because of the line above.
+ .and_then(|nstr| CStr::from_bytes_with_nul(nstr).ok())
+ // Convert into str.
+ .and_then(|c_str| c_str.to_str().ok())
+ // Check that the name matches.
+ .map(|str| str == name)
+ .unwrap_or(false)
+ })
+ // Return the slice containing the section.
+ .and_then(|sh| {
+ let hdr = Elf64SHdr::from_bytes(sh)?;
+ let start = usize::try_from(hdr.0.sh_offset).ok()?;
+ let end = usize::try_from(hdr.0.sh_size)
+ .ok()
+ .and_then(|sh_size| start.checked_add(sh_size))?;
+
+ elf.get(start..end)
+ })
+ }
+}
+
+/// GSP firmware with 3-level radix page tables for the GSP bootloader.
+///
+/// The bootloader expects firmware to be mapped starting at address 0 in GSP's virtual address
+/// space:
+///
+/// ```text
+/// Level 0: 1 page, 1 entry -> points to first level 1 page
+/// Level 1: Multiple pages/entries -> each entry points to a level 2 page
+/// Level 2: Multiple pages/entries -> each entry points to a firmware page
+/// ```
+///
+/// Each page is 4KB, each entry is 8 bytes (64-bit DMA address).
+/// Also known as "Radix3" firmware.
+#[pin_data]
+pub(crate) struct GspFirmware {
+ /// The GSP firmware inside a [`VVec`], device-mapped via a SG table.
+ #[pin]
+ fw: SGTable<Owned<VVec<u8>>>,
+ /// Level 2 page table whose entries contain DMA addresses of firmware pages.
+ #[pin]
+ level2: SGTable<Owned<VVec<u8>>>,
+ /// Level 1 page table whose entries contain DMA addresses of level 2 pages.
+ #[pin]
+ level1: SGTable<Owned<VVec<u8>>>,
+ /// Level 0 page table (single 4KB page) with one entry: DMA address of first level 1 page.
+ level0: DmaObject,
+ /// Size in bytes of the firmware contained in [`Self::fw`].
+ size: usize,
+ /// Device-mapped GSP signatures matching the GPU's [`Chipset`].
+ signatures: DmaObject,
+ /// GSP bootloader, verifies the GSP firmware before loading and running it.
+ bootloader: RiscvFirmware,
+}
+
+impl GspFirmware {
+ /// Loads the GSP firmware binaries, map them into `dev`'s address-space, and creates the page
+ /// tables expected by the GSP bootloader to load it.
+ pub(crate) fn new<'a, 'b>(
+ dev: &'a device::Device<device::Bound>,
+ chipset: Chipset,
+ ver: &'b str,
+ ) -> Result<impl PinInit<Self, Error> + 'a> {
+ let fw = super::request_firmware(dev, chipset, "gsp", ver)?;
+
+ let fw_section = elf::elf64_section(fw.data(), ".fwimage").ok_or(EINVAL)?;
+
+ let sigs_section = match chipset.arch() {
+ Architecture::Ampere => ".fwsignature_ga10x",
+ _ => return Err(ENOTSUPP),
+ };
+ let signatures = elf::elf64_section(fw.data(), sigs_section)
+ .ok_or(EINVAL)
+ .and_then(|data| DmaObject::from_data(dev, data))?;
+
+ let size = fw_section.len();
+
+ // Move the firmware into a vmalloc'd vector and map it into the device address
+ // space.
+ let fw_vvec = VVec::with_capacity(fw_section.len(), GFP_KERNEL)
+ .and_then(|mut v| {
+ v.extend_from_slice(fw_section, GFP_KERNEL)?;
+ Ok(v)
+ })
+ .map_err(|_| ENOMEM)?;
+
+ let bl = super::request_firmware(dev, chipset, "bootloader", ver)?;
+ let bootloader = RiscvFirmware::new(dev, &bl)?;
+
+ Ok(try_pin_init!(Self {
+ fw <- SGTable::new(dev, fw_vvec, DataDirection::ToDevice, GFP_KERNEL),
+ level2 <- {
+ // Allocate the level 2 page table, map the firmware onto it, and map it into the
+ // device address space.
+ VVec::<u8>::with_capacity(
+ fw.iter().count() * core::mem::size_of::<u64>(),
+ GFP_KERNEL,
+ )
+ .map_err(|_| ENOMEM)
+ .and_then(|level2| map_into_lvl(&fw, level2))
+ .map(|level2| SGTable::new(dev, level2, DataDirection::ToDevice, GFP_KERNEL))?
+ },
+ level1 <- {
+ // Allocate the level 1 page table, map the level 2 page table onto it, and map it
+ // into the device address space.
+ VVec::<u8>::with_capacity(
+ level2.iter().count() * core::mem::size_of::<u64>(),
+ GFP_KERNEL,
+ )
+ .map_err(|_| ENOMEM)
+ .and_then(|level1| map_into_lvl(&level2, level1))
+ .map(|level1| SGTable::new(dev, level1, DataDirection::ToDevice, GFP_KERNEL))?
+ },
+ level0: {
+ // Allocate the level 0 page table as a device-visible DMA object, and map the
+ // level 1 page table onto it.
+
+ // Level 0 page table data.
+ let mut level0_data = kvec![0u8; GSP_PAGE_SIZE]?;
+
+ // Fill level 1 page entry.
+ #[allow(clippy::useless_conversion)]
+ let level1_entry = u64::from(level1.iter().next().unwrap().dma_address());
+ let dst = &mut level0_data[..size_of_val(&level1_entry)];
+ dst.copy_from_slice(&level1_entry.to_le_bytes());
+
+ // Turn the level0 page table into a [`DmaObject`].
+ DmaObject::from_data(dev, &level0_data)?
+ },
+ size,
+ signatures,
+ bootloader,
+ }))
+ }
+
+ #[expect(unused)]
+ /// Returns the DMA handle of the radix3 level 0 page table.
+ pub(crate) fn radix3_dma_handle(&self) -> DmaAddress {
+ self.level0.dma_handle()
+ }
+}
+
+/// Build a page table from a scatter-gather list.
+///
+/// Takes each DMA-mapped region from `sg_table` and writes page table entries
+/// for all 4KB pages within that region. For example, a 16KB SG entry becomes
+/// 4 consecutive page table entries.
+fn map_into_lvl(sg_table: &SGTable<Owned<VVec<u8>>>, mut dst: VVec<u8>) -> Result<VVec<u8>> {
+ for sg_entry in sg_table.iter() {
+ // Number of pages we need to map.
+ let num_pages = (sg_entry.dma_len() as usize).div_ceil(GSP_PAGE_SIZE);
+
+ for i in 0..num_pages {
+ let entry = sg_entry.dma_address() + (i as u64 * GSP_PAGE_SIZE as u64);
+ dst.extend_from_slice(&entry.to_le_bytes(), GFP_KERNEL)?;
+ }
+ }
+
+ Ok(dst)
+}
diff --git a/drivers/gpu/nova-core/firmware/riscv.rs b/drivers/gpu/nova-core/firmware/riscv.rs
new file mode 100644
index 000000000000..afb08f5bc4ba
--- /dev/null
+++ b/drivers/gpu/nova-core/firmware/riscv.rs
@@ -0,0 +1,91 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Support for firmware binaries designed to run on a RISC-V core. Such firmwares files have a
+//! dedicated header.
+
+use core::mem::size_of;
+
+use kernel::device;
+use kernel::firmware::Firmware;
+use kernel::prelude::*;
+use kernel::transmute::FromBytes;
+
+use crate::dma::DmaObject;
+use crate::firmware::BinFirmware;
+
+/// Descriptor for microcode running on a RISC-V core.
+#[repr(C)]
+#[derive(Debug)]
+struct RmRiscvUCodeDesc {
+ version: u32,
+ bootloader_offset: u32,
+ bootloader_size: u32,
+ bootloader_param_offset: u32,
+ bootloader_param_size: u32,
+ riscv_elf_offset: u32,
+ riscv_elf_size: u32,
+ app_version: u32,
+ manifest_offset: u32,
+ manifest_size: u32,
+ monitor_data_offset: u32,
+ monitor_data_size: u32,
+ monitor_code_offset: u32,
+ monitor_code_size: u32,
+}
+
+// SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
+unsafe impl FromBytes for RmRiscvUCodeDesc {}
+
+impl RmRiscvUCodeDesc {
+ /// Interprets the header of `bin_fw` as a [`RmRiscvUCodeDesc`] and returns it.
+ ///
+ /// Fails if the header pointed at by `bin_fw` is not within the bounds of the firmware image.
+ fn new(bin_fw: &BinFirmware<'_>) -> Result<Self> {
+ let offset = bin_fw.hdr.header_offset as usize;
+
+ bin_fw
+ .fw
+ .get(offset..offset + size_of::<Self>())
+ .and_then(Self::from_bytes_copy)
+ .ok_or(EINVAL)
+ }
+}
+
+/// A parsed firmware for a RISC-V core, ready to be loaded and run.
+#[expect(unused)]
+pub(crate) struct RiscvFirmware {
+ /// Offset at which the code starts in the firmware image.
+ code_offset: u32,
+ /// Offset at which the data starts in the firmware image.
+ data_offset: u32,
+ /// Offset at which the manifest starts in the firmware image.
+ manifest_offset: u32,
+ /// Application version.
+ app_version: u32,
+ /// Device-mapped firmware image.
+ ucode: DmaObject,
+}
+
+impl RiscvFirmware {
+ /// Parses the RISC-V firmware image contained in `fw`.
+ pub(crate) fn new(dev: &device::Device<device::Bound>, fw: &Firmware) -> Result<Self> {
+ let bin_fw = BinFirmware::new(fw)?;
+
+ let riscv_desc = RmRiscvUCodeDesc::new(&bin_fw)?;
+
+ let ucode = {
+ let start = bin_fw.hdr.data_offset as usize;
+ let len = bin_fw.hdr.data_size as usize;
+
+ DmaObject::from_data(dev, fw.data().get(start..start + len).ok_or(EINVAL)?)?
+ };
+
+ Ok(Self {
+ ucode,
+ code_offset: riscv_desc.monitor_code_offset,
+ data_offset: riscv_desc.monitor_data_offset,
+ manifest_offset: riscv_desc.manifest_offset,
+ app_version: riscv_desc.app_version,
+ })
+ }
+}
diff --git a/drivers/gpu/nova-core/gpu.rs b/drivers/gpu/nova-core/gpu.rs
index b5c9786619a9..af20e2daea24 100644
--- a/drivers/gpu/nova-core/gpu.rs
+++ b/drivers/gpu/nova-core/gpu.rs
@@ -1,18 +1,13 @@
// SPDX-License-Identifier: GPL-2.0
-use kernel::{device, devres::Devres, error::code::*, pci, prelude::*, sync::Arc};
+use kernel::{device, devres::Devres, error::code::*, fmt, pci, prelude::*, sync::Arc};
use crate::driver::Bar0;
-use crate::falcon::{gsp::Gsp, sec2::Sec2, Falcon};
-use crate::fb::FbLayout;
+use crate::falcon::{gsp::Gsp as GspFalcon, sec2::Sec2 as Sec2Falcon, Falcon};
use crate::fb::SysmemFlush;
-use crate::firmware::fwsec::{FwsecCommand, FwsecFirmware};
-use crate::firmware::{Firmware, FIRMWARE_VERSION};
use crate::gfw;
+use crate::gsp::Gsp;
use crate::regs;
-use crate::util;
-use crate::vbios::Vbios;
-use core::fmt;
macro_rules! define_chipset {
({ $($variant:ident = $value:expr),* $(,)* }) =>
@@ -28,13 +23,23 @@ macro_rules! define_chipset {
$( Chipset::$variant, )*
];
- pub(crate) const NAMES: [&'static str; Self::ALL.len()] = [
- $( util::const_bytes_to_str(
- util::to_lowercase_bytes::<{ stringify!($variant).len() }>(
- stringify!($variant)
- ).as_slice()
- ), )*
- ];
+ ::kernel::macros::paste!(
+ /// Returns the name of this chipset, in lowercase.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let chipset = Chipset::GA102;
+ /// assert_eq!(chipset.name(), "ga102");
+ /// ```
+ pub(crate) const fn name(&self) -> &'static str {
+ match *self {
+ $(
+ Chipset::$variant => stringify!([<$variant:lower>]),
+ )*
+ }
+ }
+ );
}
// TODO[FPRI]: replace with something like derive(FromPrimitive)
@@ -163,150 +168,74 @@ impl Spec {
}
/// Structure holding the resources required to operate the GPU.
-#[pin_data(PinnedDrop)]
+#[pin_data]
pub(crate) struct Gpu {
spec: Spec,
/// MMIO mapping of PCI BAR 0
bar: Arc<Devres<Bar0>>,
- fw: Firmware,
/// System memory page required for flushing all pending GPU-side memory writes done through
/// PCIE into system memory, via sysmembar (A GPU-initiated HW memory-barrier operation).
sysmem_flush: SysmemFlush,
-}
-
-#[pinned_drop]
-impl PinnedDrop for Gpu {
- fn drop(self: Pin<&mut Self>) {
- // Unregister the sysmem flush page before we release it.
- self.bar
- .try_access_with(|b| self.sysmem_flush.unregister(b));
- }
+ /// GSP falcon instance, used for GSP boot up and cleanup.
+ gsp_falcon: Falcon<GspFalcon>,
+ /// SEC2 falcon instance, used for GSP boot up and cleanup.
+ sec2_falcon: Falcon<Sec2Falcon>,
+ /// GSP runtime data. Temporarily an empty placeholder.
+ #[pin]
+ gsp: Gsp,
}
impl Gpu {
- /// Helper function to load and run the FWSEC-FRTS firmware and confirm that it has properly
- /// created the WPR2 region.
- ///
- /// TODO: this needs to be moved into a larger type responsible for booting the whole GSP
- /// (`GspBooter`?).
- fn run_fwsec_frts(
- dev: &device::Device<device::Bound>,
- falcon: &Falcon<Gsp>,
- bar: &Bar0,
- bios: &Vbios,
- fb_layout: &FbLayout,
- ) -> Result<()> {
- // Check that the WPR2 region does not already exists - if it does, we cannot run
- // FWSEC-FRTS until the GPU is reset.
- if regs::NV_PFB_PRI_MMU_WPR2_ADDR_HI::read(bar).higher_bound() != 0 {
- dev_err!(
- dev,
- "WPR2 region already exists - GPU needs to be reset to proceed\n"
- );
- return Err(EBUSY);
- }
+ pub(crate) fn new<'a>(
+ pdev: &'a pci::Device<device::Bound>,
+ devres_bar: Arc<Devres<Bar0>>,
+ bar: &'a Bar0,
+ ) -> impl PinInit<Self, Error> + 'a {
+ try_pin_init!(Self {
+ spec: Spec::new(bar).inspect(|spec| {
+ dev_info!(
+ pdev.as_ref(),
+ "NVIDIA (Chipset: {}, Architecture: {:?}, Revision: {})\n",
+ spec.chipset,
+ spec.chipset.arch(),
+ spec.revision
+ );
+ })?,
- let fwsec_frts = FwsecFirmware::new(
- dev,
- falcon,
- bar,
- bios,
- FwsecCommand::Frts {
- frts_addr: fb_layout.frts.start,
- frts_size: fb_layout.frts.end - fb_layout.frts.start,
+ // We must wait for GFW_BOOT completion before doing any significant setup on the GPU.
+ _: {
+ gfw::wait_gfw_boot_completion(bar)
+ .inspect_err(|_| dev_err!(pdev.as_ref(), "GFW boot did not complete"))?;
},
- )?;
- // Run FWSEC-FRTS to create the WPR2 region.
- fwsec_frts.run(dev, falcon, bar)?;
+ sysmem_flush: SysmemFlush::register(pdev.as_ref(), bar, spec.chipset)?,
- // SCRATCH_E contains the error code for FWSEC-FRTS.
- let frts_status = regs::NV_PBUS_SW_SCRATCH_0E::read(bar).frts_err_code();
- if frts_status != 0 {
- dev_err!(
- dev,
- "FWSEC-FRTS returned with error code {:#x}",
- frts_status
- );
+ gsp_falcon: Falcon::new(
+ pdev.as_ref(),
+ spec.chipset,
+ bar,
+ spec.chipset > Chipset::GA100,
+ )
+ .inspect(|falcon| falcon.clear_swgen0_intr(bar))?,
- return Err(EIO);
- }
+ sec2_falcon: Falcon::new(pdev.as_ref(), spec.chipset, bar, true)?,
- // Check that the WPR2 region has been created as we requested.
- let (wpr2_lo, wpr2_hi) = (
- regs::NV_PFB_PRI_MMU_WPR2_ADDR_LO::read(bar).lower_bound(),
- regs::NV_PFB_PRI_MMU_WPR2_ADDR_HI::read(bar).higher_bound(),
- );
+ gsp <- Gsp::new(),
- match (wpr2_lo, wpr2_hi) {
- (_, 0) => {
- dev_err!(dev, "WPR2 region not created after running FWSEC-FRTS\n");
+ _: { gsp.boot(pdev, bar, spec.chipset, gsp_falcon, sec2_falcon)? },
- Err(EIO)
- }
- (wpr2_lo, _) if wpr2_lo != fb_layout.frts.start => {
- dev_err!(
- dev,
- "WPR2 region created at unexpected address {:#x}; expected {:#x}\n",
- wpr2_lo,
- fb_layout.frts.start,
- );
-
- Err(EIO)
- }
- (wpr2_lo, wpr2_hi) => {
- dev_dbg!(dev, "WPR2: {:#x}-{:#x}\n", wpr2_lo, wpr2_hi);
- dev_dbg!(dev, "GPU instance built\n");
-
- Ok(())
- }
- }
+ bar: devres_bar,
+ })
}
- pub(crate) fn new(
- pdev: &pci::Device<device::Bound>,
- devres_bar: Arc<Devres<Bar0>>,
- ) -> Result<impl PinInit<Self>> {
- let bar = devres_bar.access(pdev.as_ref())?;
- let spec = Spec::new(bar)?;
- let fw = Firmware::new(pdev.as_ref(), spec.chipset, FIRMWARE_VERSION)?;
-
- dev_info!(
- pdev.as_ref(),
- "NVIDIA (Chipset: {}, Architecture: {:?}, Revision: {})\n",
- spec.chipset,
- spec.chipset.arch(),
- spec.revision
- );
-
- // We must wait for GFW_BOOT completion before doing any significant setup on the GPU.
- gfw::wait_gfw_boot_completion(bar)
- .inspect_err(|_| dev_err!(pdev.as_ref(), "GFW boot did not complete"))?;
-
- let sysmem_flush = SysmemFlush::register(pdev.as_ref(), bar, spec.chipset)?;
-
- let gsp_falcon = Falcon::<Gsp>::new(
- pdev.as_ref(),
- spec.chipset,
- bar,
- spec.chipset > Chipset::GA100,
- )?;
- gsp_falcon.clear_swgen0_intr(bar);
-
- let _sec2_falcon = Falcon::<Sec2>::new(pdev.as_ref(), spec.chipset, bar, true)?;
-
- let fb_layout = FbLayout::new(spec.chipset, bar)?;
- dev_dbg!(pdev.as_ref(), "{:#x?}\n", fb_layout);
-
- let bios = Vbios::new(pdev, bar)?;
-
- Self::run_fwsec_frts(pdev.as_ref(), &gsp_falcon, bar, &bios, &fb_layout)?;
-
- Ok(pin_init!(Self {
- spec,
- bar: devres_bar,
- fw,
- sysmem_flush,
- }))
+ /// Called when the corresponding [`Device`](device::Device) is unbound.
+ ///
+ /// Note: This method must only be called from `Driver::unbind`.
+ pub(crate) fn unbind(&self, dev: &device::Device<device::Core>) {
+ kernel::warn_on!(self
+ .bar
+ .access(dev)
+ .inspect(|bar| self.sysmem_flush.unregister(bar))
+ .is_err());
}
}
diff --git a/drivers/gpu/nova-core/gsp.rs b/drivers/gpu/nova-core/gsp.rs
new file mode 100644
index 000000000000..64e472e7a9d3
--- /dev/null
+++ b/drivers/gpu/nova-core/gsp.rs
@@ -0,0 +1,22 @@
+// SPDX-License-Identifier: GPL-2.0
+
+mod boot;
+
+use kernel::prelude::*;
+
+mod fw;
+
+pub(crate) const GSP_PAGE_SHIFT: usize = 12;
+pub(crate) const GSP_PAGE_SIZE: usize = 1 << GSP_PAGE_SHIFT;
+
+/// GSP runtime data.
+///
+/// This is an empty pinned placeholder for now.
+#[pin_data]
+pub(crate) struct Gsp {}
+
+impl Gsp {
+ pub(crate) fn new() -> impl PinInit<Self> {
+ pin_init!(Self {})
+ }
+}
diff --git a/drivers/gpu/nova-core/gsp/boot.rs b/drivers/gpu/nova-core/gsp/boot.rs
new file mode 100644
index 000000000000..2800f3aee37d
--- /dev/null
+++ b/drivers/gpu/nova-core/gsp/boot.rs
@@ -0,0 +1,137 @@
+// SPDX-License-Identifier: GPL-2.0
+
+use kernel::device;
+use kernel::pci;
+use kernel::prelude::*;
+
+use crate::driver::Bar0;
+use crate::falcon::{gsp::Gsp, sec2::Sec2, Falcon};
+use crate::fb::FbLayout;
+use crate::firmware::{
+ booter::{BooterFirmware, BooterKind},
+ fwsec::{FwsecCommand, FwsecFirmware},
+ gsp::GspFirmware,
+ FIRMWARE_VERSION,
+};
+use crate::gpu::Chipset;
+use crate::regs;
+use crate::vbios::Vbios;
+
+impl super::Gsp {
+ /// Helper function to load and run the FWSEC-FRTS firmware and confirm that it has properly
+ /// created the WPR2 region.
+ fn run_fwsec_frts(
+ dev: &device::Device<device::Bound>,
+ falcon: &Falcon<Gsp>,
+ bar: &Bar0,
+ bios: &Vbios,
+ fb_layout: &FbLayout,
+ ) -> Result<()> {
+ // Check that the WPR2 region does not already exists - if it does, we cannot run
+ // FWSEC-FRTS until the GPU is reset.
+ if regs::NV_PFB_PRI_MMU_WPR2_ADDR_HI::read(bar).higher_bound() != 0 {
+ dev_err!(
+ dev,
+ "WPR2 region already exists - GPU needs to be reset to proceed\n"
+ );
+ return Err(EBUSY);
+ }
+
+ let fwsec_frts = FwsecFirmware::new(
+ dev,
+ falcon,
+ bar,
+ bios,
+ FwsecCommand::Frts {
+ frts_addr: fb_layout.frts.start,
+ frts_size: fb_layout.frts.end - fb_layout.frts.start,
+ },
+ )?;
+
+ // Run FWSEC-FRTS to create the WPR2 region.
+ fwsec_frts.run(dev, falcon, bar)?;
+
+ // SCRATCH_E contains the error code for FWSEC-FRTS.
+ let frts_status = regs::NV_PBUS_SW_SCRATCH_0E_FRTS_ERR::read(bar).frts_err_code();
+ if frts_status != 0 {
+ dev_err!(
+ dev,
+ "FWSEC-FRTS returned with error code {:#x}",
+ frts_status
+ );
+
+ return Err(EIO);
+ }
+
+ // Check that the WPR2 region has been created as we requested.
+ let (wpr2_lo, wpr2_hi) = (
+ regs::NV_PFB_PRI_MMU_WPR2_ADDR_LO::read(bar).lower_bound(),
+ regs::NV_PFB_PRI_MMU_WPR2_ADDR_HI::read(bar).higher_bound(),
+ );
+
+ match (wpr2_lo, wpr2_hi) {
+ (_, 0) => {
+ dev_err!(dev, "WPR2 region not created after running FWSEC-FRTS\n");
+
+ Err(EIO)
+ }
+ (wpr2_lo, _) if wpr2_lo != fb_layout.frts.start => {
+ dev_err!(
+ dev,
+ "WPR2 region created at unexpected address {:#x}; expected {:#x}\n",
+ wpr2_lo,
+ fb_layout.frts.start,
+ );
+
+ Err(EIO)
+ }
+ (wpr2_lo, wpr2_hi) => {
+ dev_dbg!(dev, "WPR2: {:#x}-{:#x}\n", wpr2_lo, wpr2_hi);
+ dev_dbg!(dev, "GPU instance built\n");
+
+ Ok(())
+ }
+ }
+ }
+
+ /// Attempt to boot the GSP.
+ ///
+ /// This is a GPU-dependent and complex procedure that involves loading firmware files from
+ /// user-space, patching them with signatures, and building firmware-specific intricate data
+ /// structures that the GSP will use at runtime.
+ ///
+ /// Upon return, the GSP is up and running, and its runtime object given as return value.
+ pub(crate) fn boot(
+ self: Pin<&mut Self>,
+ pdev: &pci::Device<device::Bound>,
+ bar: &Bar0,
+ chipset: Chipset,
+ gsp_falcon: &Falcon<Gsp>,
+ sec2_falcon: &Falcon<Sec2>,
+ ) -> Result {
+ let dev = pdev.as_ref();
+
+ let bios = Vbios::new(dev, bar)?;
+
+ let _gsp_fw = KBox::pin_init(
+ GspFirmware::new(dev, chipset, FIRMWARE_VERSION)?,
+ GFP_KERNEL,
+ )?;
+
+ let fb_layout = FbLayout::new(chipset, bar)?;
+ dev_dbg!(dev, "{:#x?}\n", fb_layout);
+
+ Self::run_fwsec_frts(dev, gsp_falcon, bar, &bios, &fb_layout)?;
+
+ let _booter_loader = BooterFirmware::new(
+ dev,
+ BooterKind::Loader,
+ chipset,
+ FIRMWARE_VERSION,
+ sec2_falcon,
+ bar,
+ )?;
+
+ Ok(())
+ }
+}
diff --git a/drivers/gpu/nova-core/gsp/fw.rs b/drivers/gpu/nova-core/gsp/fw.rs
new file mode 100644
index 000000000000..34226dd00982
--- /dev/null
+++ b/drivers/gpu/nova-core/gsp/fw.rs
@@ -0,0 +1,7 @@
+// SPDX-License-Identifier: GPL-2.0
+
+mod r570_144;
+
+// Alias to avoid repeating the version number with every use.
+#[expect(unused)]
+use r570_144 as bindings;
diff --git a/drivers/gpu/nova-core/gsp/fw/r570_144.rs b/drivers/gpu/nova-core/gsp/fw/r570_144.rs
new file mode 100644
index 000000000000..35cb0370a7c9
--- /dev/null
+++ b/drivers/gpu/nova-core/gsp/fw/r570_144.rs
@@ -0,0 +1,29 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Firmware bindings.
+//!
+//! Imports the generated bindings by `bindgen`.
+//!
+//! This module may not be directly used. Please abstract or re-export the needed symbols in the
+//! parent module instead.
+
+#![cfg_attr(test, allow(deref_nullptr))]
+#![cfg_attr(test, allow(unaligned_references))]
+#![cfg_attr(test, allow(unsafe_op_in_unsafe_fn))]
+#![allow(
+ dead_code,
+ unused_imports,
+ clippy::all,
+ clippy::undocumented_unsafe_blocks,
+ clippy::ptr_as_ptr,
+ clippy::ref_as_ptr,
+ missing_docs,
+ non_camel_case_types,
+ non_upper_case_globals,
+ non_snake_case,
+ improper_ctypes,
+ unreachable_pub,
+ unsafe_op_in_unsafe_fn
+)]
+use kernel::ffi;
+include!("r570_144/bindings.rs");
diff --git a/drivers/gpu/nova-core/gsp/fw/r570_144/bindings.rs b/drivers/gpu/nova-core/gsp/fw/r570_144/bindings.rs
new file mode 100644
index 000000000000..cec594032515
--- /dev/null
+++ b/drivers/gpu/nova-core/gsp/fw/r570_144/bindings.rs
@@ -0,0 +1 @@
+// SPDX-License-Identifier: GPL-2.0
diff --git a/drivers/gpu/nova-core/nova_core.rs b/drivers/gpu/nova-core/nova_core.rs
index cb2bbb30cba1..fffcaee2249f 100644
--- a/drivers/gpu/nova-core/nova_core.rs
+++ b/drivers/gpu/nova-core/nova_core.rs
@@ -9,6 +9,7 @@ mod fb;
mod firmware;
mod gfw;
mod gpu;
+mod gsp;
mod regs;
mod util;
mod vbios;
diff --git a/drivers/gpu/nova-core/regs.rs b/drivers/gpu/nova-core/regs.rs
index d49fddf6a3c6..206dab2e1335 100644
--- a/drivers/gpu/nova-core/regs.rs
+++ b/drivers/gpu/nova-core/regs.rs
@@ -5,11 +5,11 @@
#![allow(non_camel_case_types)]
#[macro_use]
-mod macros;
+pub(crate) mod macros;
use crate::falcon::{
DmaTrfCmdSize, FalconCoreRev, FalconCoreRevSubversion, FalconFbifMemType, FalconFbifTarget,
- FalconModSelAlgo, FalconSecurityModel, PeregrineCoreSelect,
+ FalconModSelAlgo, FalconSecurityModel, PFalcon2Base, PFalconBase, PeregrineCoreSelect,
};
use crate::gpu::{Architecture, Chipset};
use kernel::prelude::*;
@@ -28,7 +28,7 @@ impl NV_PMC_BOOT_0 {
/// Combines `architecture_0` and `architecture_1` to obtain the architecture of the chip.
pub(crate) fn architecture(self) -> Result<Architecture> {
Architecture::try_from(
- self.architecture_0() | (self.architecture_1() << Self::ARCHITECTURE_0.len()),
+ self.architecture_0() | (self.architecture_1() << Self::ARCHITECTURE_0_RANGE.len()),
)
}
@@ -36,7 +36,8 @@ impl NV_PMC_BOOT_0 {
pub(crate) fn chipset(self) -> Result<Chipset> {
self.architecture()
.map(|arch| {
- ((arch as u32) << Self::IMPLEMENTATION.len()) | u32::from(self.implementation())
+ ((arch as u32) << Self::IMPLEMENTATION_RANGE.len())
+ | u32::from(self.implementation())
})
.and_then(Chipset::try_from)
}
@@ -44,8 +45,10 @@ impl NV_PMC_BOOT_0 {
// PBUS
-// TODO[REGA]: this is an array of registers.
-register!(NV_PBUS_SW_SCRATCH_0E@0x00001438 {
+register!(NV_PBUS_SW_SCRATCH @ 0x00001400[64] {});
+
+register!(NV_PBUS_SW_SCRATCH_0E_FRTS_ERR => NV_PBUS_SW_SCRATCH[0xe],
+ "scratch register 0xe used as FRTS firmware error code" {
31:16 frts_err_code as u16;
});
@@ -123,13 +126,12 @@ register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_PRIV_LEVEL_MASK @ 0x00118128,
0:0 read_protection_level0 as bool, "Set after FWSEC lowers its protection level";
});
-// TODO[REGA]: This is an array of registers.
-register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05 @ 0x00118234 {
- 31:0 value as u32;
-});
+// OpenRM defines this as a register array, but doesn't specify its size and only uses its first
+// element. Be conservative until we know the actual size or need to use more registers.
+register!(NV_PGC6_AON_SECURE_SCRATCH_GROUP_05 @ 0x00118234[1] {});
register!(
- NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT => NV_PGC6_AON_SECURE_SCRATCH_GROUP_05,
+ NV_PGC6_AON_SECURE_SCRATCH_GROUP_05_0_GFW_BOOT => NV_PGC6_AON_SECURE_SCRATCH_GROUP_05[0],
"Scratch group 05 register 0 used as GFW boot progress indicator" {
7:0 progress as u8, "Progress of GFW boot (0xff means completed)";
}
@@ -180,38 +182,40 @@ impl NV_PDISP_VGA_WORKSPACE_BASE {
// FUSE
-register!(NV_FUSE_OPT_FPF_NVDEC_UCODE1_VERSION @ 0x00824100 {
+pub(crate) const NV_FUSE_OPT_FPF_SIZE: usize = 16;
+
+register!(NV_FUSE_OPT_FPF_NVDEC_UCODE1_VERSION @ 0x00824100[NV_FUSE_OPT_FPF_SIZE] {
15:0 data as u16;
});
-register!(NV_FUSE_OPT_FPF_SEC2_UCODE1_VERSION @ 0x00824140 {
+register!(NV_FUSE_OPT_FPF_SEC2_UCODE1_VERSION @ 0x00824140[NV_FUSE_OPT_FPF_SIZE] {
15:0 data as u16;
});
-register!(NV_FUSE_OPT_FPF_GSP_UCODE1_VERSION @ 0x008241c0 {
+register!(NV_FUSE_OPT_FPF_GSP_UCODE1_VERSION @ 0x008241c0[NV_FUSE_OPT_FPF_SIZE] {
15:0 data as u16;
});
// PFALCON
-register!(NV_PFALCON_FALCON_IRQSCLR @ +0x00000004 {
+register!(NV_PFALCON_FALCON_IRQSCLR @ PFalconBase[0x00000004] {
4:4 halt as bool;
6:6 swgen0 as bool;
});
-register!(NV_PFALCON_FALCON_MAILBOX0 @ +0x00000040 {
+register!(NV_PFALCON_FALCON_MAILBOX0 @ PFalconBase[0x00000040] {
31:0 value as u32;
});
-register!(NV_PFALCON_FALCON_MAILBOX1 @ +0x00000044 {
+register!(NV_PFALCON_FALCON_MAILBOX1 @ PFalconBase[0x00000044] {
31:0 value as u32;
});
-register!(NV_PFALCON_FALCON_RM @ +0x00000084 {
+register!(NV_PFALCON_FALCON_RM @ PFalconBase[0x00000084] {
31:0 value as u32;
});
-register!(NV_PFALCON_FALCON_HWCFG2 @ +0x000000f4 {
+register!(NV_PFALCON_FALCON_HWCFG2 @ PFalconBase[0x000000f4] {
10:10 riscv as bool;
12:12 mem_scrubbing as bool, "Set to 0 after memory scrubbing is completed";
31:31 reset_ready as bool, "Signal indicating that reset is completed (GA102+)";
@@ -224,17 +228,17 @@ impl NV_PFALCON_FALCON_HWCFG2 {
}
}
-register!(NV_PFALCON_FALCON_CPUCTL @ +0x00000100 {
+register!(NV_PFALCON_FALCON_CPUCTL @ PFalconBase[0x00000100] {
1:1 startcpu as bool;
4:4 halted as bool;
6:6 alias_en as bool;
});
-register!(NV_PFALCON_FALCON_BOOTVEC @ +0x00000104 {
+register!(NV_PFALCON_FALCON_BOOTVEC @ PFalconBase[0x00000104] {
31:0 value as u32;
});
-register!(NV_PFALCON_FALCON_DMACTL @ +0x0000010c {
+register!(NV_PFALCON_FALCON_DMACTL @ PFalconBase[0x0000010c] {
0:0 require_ctx as bool;
1:1 dmem_scrubbing as bool;
2:2 imem_scrubbing as bool;
@@ -242,15 +246,15 @@ register!(NV_PFALCON_FALCON_DMACTL @ +0x0000010c {
7:7 secure_stat as bool;
});
-register!(NV_PFALCON_FALCON_DMATRFBASE @ +0x00000110 {
+register!(NV_PFALCON_FALCON_DMATRFBASE @ PFalconBase[0x00000110] {
31:0 base as u32;
});
-register!(NV_PFALCON_FALCON_DMATRFMOFFS @ +0x00000114 {
+register!(NV_PFALCON_FALCON_DMATRFMOFFS @ PFalconBase[0x00000114] {
23:0 offs as u32;
});
-register!(NV_PFALCON_FALCON_DMATRFCMD @ +0x00000118 {
+register!(NV_PFALCON_FALCON_DMATRFCMD @ PFalconBase[0x00000118] {
0:0 full as bool;
1:1 idle as bool;
3:2 sec as u8;
@@ -261,60 +265,62 @@ register!(NV_PFALCON_FALCON_DMATRFCMD @ +0x00000118 {
16:16 set_dmtag as u8;
});
-register!(NV_PFALCON_FALCON_DMATRFFBOFFS @ +0x0000011c {
+register!(NV_PFALCON_FALCON_DMATRFFBOFFS @ PFalconBase[0x0000011c] {
31:0 offs as u32;
});
-register!(NV_PFALCON_FALCON_DMATRFBASE1 @ +0x00000128 {
+register!(NV_PFALCON_FALCON_DMATRFBASE1 @ PFalconBase[0x00000128] {
8:0 base as u16;
});
-register!(NV_PFALCON_FALCON_HWCFG1 @ +0x0000012c {
+register!(NV_PFALCON_FALCON_HWCFG1 @ PFalconBase[0x0000012c] {
3:0 core_rev as u8 ?=> FalconCoreRev, "Core revision";
5:4 security_model as u8 ?=> FalconSecurityModel, "Security model";
7:6 core_rev_subversion as u8 ?=> FalconCoreRevSubversion, "Core revision subversion";
});
-register!(NV_PFALCON_FALCON_CPUCTL_ALIAS @ +0x00000130 {
+register!(NV_PFALCON_FALCON_CPUCTL_ALIAS @ PFalconBase[0x00000130] {
1:1 startcpu as bool;
});
// Actually known as `NV_PSEC_FALCON_ENGINE` and `NV_PGSP_FALCON_ENGINE` depending on the falcon
// instance.
-register!(NV_PFALCON_FALCON_ENGINE @ +0x000003c0 {
+register!(NV_PFALCON_FALCON_ENGINE @ PFalconBase[0x000003c0] {
0:0 reset as bool;
});
-// TODO[REGA]: this is an array of registers.
-register!(NV_PFALCON_FBIF_TRANSCFG @ +0x00000600 {
+register!(NV_PFALCON_FBIF_TRANSCFG @ PFalconBase[0x00000600[8]] {
1:0 target as u8 ?=> FalconFbifTarget;
2:2 mem_type as bool => FalconFbifMemType;
});
-register!(NV_PFALCON_FBIF_CTL @ +0x00000624 {
+register!(NV_PFALCON_FBIF_CTL @ PFalconBase[0x00000624] {
7:7 allow_phys_no_ctx as bool;
});
-register!(NV_PFALCON2_FALCON_MOD_SEL @ +0x00001180 {
+/* PFALCON2 */
+
+register!(NV_PFALCON2_FALCON_MOD_SEL @ PFalcon2Base[0x00000180] {
7:0 algo as u8 ?=> FalconModSelAlgo;
});
-register!(NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID @ +0x00001198 {
+register!(NV_PFALCON2_FALCON_BROM_CURR_UCODE_ID @ PFalcon2Base[0x00000198] {
7:0 ucode_id as u8;
});
-register!(NV_PFALCON2_FALCON_BROM_ENGIDMASK @ +0x0000119c {
+register!(NV_PFALCON2_FALCON_BROM_ENGIDMASK @ PFalcon2Base[0x0000019c] {
31:0 value as u32;
});
-// TODO[REGA]: this is an array of registers.
-register!(NV_PFALCON2_FALCON_BROM_PARAADDR @ +0x00001210 {
+// OpenRM defines this as a register array, but doesn't specify its size and only uses its first
+// element. Be conservative until we know the actual size or need to use more registers.
+register!(NV_PFALCON2_FALCON_BROM_PARAADDR @ PFalcon2Base[0x00000210[1]] {
31:0 value as u32;
});
// PRISCV
-register!(NV_PRISCV_RISCV_BCR_CTRL @ +0x00001668 {
+register!(NV_PRISCV_RISCV_BCR_CTRL @ PFalconBase[0x00001668] {
0:0 valid as bool;
4:4 core_select as bool => PeregrineCoreSelect;
8:8 br_fetch as bool;
diff --git a/drivers/gpu/nova-core/regs/macros.rs b/drivers/gpu/nova-core/regs/macros.rs
index a3e6de1779d4..8058e1696df9 100644
--- a/drivers/gpu/nova-core/regs/macros.rs
+++ b/drivers/gpu/nova-core/regs/macros.rs
@@ -1,17 +1,27 @@
// SPDX-License-Identifier: GPL-2.0
-//! Macro to define register layout and accessors.
+//! `register!` macro to define register layout and accessors.
//!
//! A single register typically includes several fields, which are accessed through a combination
//! of bit-shift and mask operations that introduce a class of potential mistakes, notably because
//! not all possible field values are necessarily valid.
//!
-//! The macro in this module allow to define, using an intruitive and readable syntax, a dedicated
-//! type for each register with its own field accessors that can return an error is a field's value
-//! is invalid.
+//! The `register!` macro in this module provides an intuitive and readable syntax for defining a
+//! dedicated type for each register. Each such type comes with its own field accessors that can
+//! return an error if a field's value is invalid.
-/// Defines a dedicated type for a register with an absolute offset, alongside with getter and
-/// setter methods for its fields and methods to read and write it from an `Io` region.
+/// Trait providing a base address to be added to the offset of a relative register to obtain
+/// its actual offset.
+///
+/// The `T` generic argument is used to distinguish which base to use, in case a type provides
+/// several bases. It is given to the `register!` macro to restrict the use of the register to
+/// implementors of this particular variant.
+pub(crate) trait RegisterBase<T> {
+ const BASE: usize;
+}
+
+/// Defines a dedicated type for a register with an absolute offset, including getter and setter
+/// methods for its fields and methods to read and write it from an `Io` region.
///
/// Example:
///
@@ -24,7 +34,7 @@
/// ```
///
/// This defines a `BOOT_0` type which can be read or written from offset `0x100` of an `Io`
-/// region. It is composed of 3 fields, for instance `minor_revision` is made of the 4 less
+/// region. It is composed of 3 fields, for instance `minor_revision` is made of the 4 least
/// significant bits of the register. Each field can be accessed and modified using accessor
/// methods:
///
@@ -33,130 +43,344 @@
/// let boot0 = BOOT_0::read(&bar);
/// pr_info!("chip revision: {}.{}", boot0.major_revision(), boot0.minor_revision());
///
-/// // `Chipset::try_from` will be called with the value of the field and returns an error if the
-/// // value is invalid.
+/// // `Chipset::try_from` is called with the value of the `chipset` field and returns an
+/// // error if it is invalid.
/// let chipset = boot0.chipset()?;
///
/// // Update some fields and write the value back.
/// boot0.set_major_revision(3).set_minor_revision(10).write(&bar);
///
-/// // Or just read and update the register in a single step:
+/// // Or, just read and update the register in a single step:
/// BOOT_0::alter(&bar, |r| r.set_major_revision(3).set_minor_revision(10));
/// ```
///
-/// Fields can be defined as follows:
+/// Fields are defined as follows:
///
-/// - `as <type>` simply returns the field value casted as the requested integer type, typically
-/// `u32`, `u16`, `u8` or `bool`. Note that `bool` fields must have a range of 1 bit.
+/// - `as <type>` simply returns the field value casted to <type>, typically `u32`, `u16`, `u8` or
+/// `bool`. Note that `bool` fields must have a range of 1 bit.
/// - `as <type> => <into_type>` calls `<into_type>`'s `From::<<type>>` implementation and returns
/// the result.
/// - `as <type> ?=> <try_into_type>` calls `<try_into_type>`'s `TryFrom::<<type>>` implementation
-/// and returns the result. This is useful on fields for which not all values are value.
+/// and returns the result. This is useful with fields for which not all values are valid.
///
/// The documentation strings are optional. If present, they will be added to the type's
/// definition, or the field getter and setter methods they are attached to.
///
-/// Putting a `+` before the address of the register makes it relative to a base: the `read` and
-/// `write` methods take a `base` argument that is added to the specified address before access,
-/// and `try_read` and `try_write` methods are also created, allowing access with offsets unknown
-/// at compile-time:
+/// It is also possible to create a alias register by using the `=> ALIAS` syntax. This is useful
+/// for cases where a register's interpretation depends on the context:
///
/// ```no_run
-/// register!(CPU_CTL @ +0x0000010, "CPU core control" {
-/// 0:0 start as bool, "Start the CPU core";
+/// register!(SCRATCH @ 0x00000200, "Scratch register" {
+/// 31:0 value as u32, "Raw value";
/// });
///
-/// // Flip the `start` switch for the CPU core which base address is at `CPU_BASE`.
-/// let cpuctl = CPU_CTL::read(&bar, CPU_BASE);
-/// pr_info!("CPU CTL: {:#x}", cpuctl);
-/// cpuctl.set_start(true).write(&bar, CPU_BASE);
+/// register!(SCRATCH_BOOT_STATUS => SCRATCH, "Boot status of the firmware" {
+/// 0:0 completed as bool, "Whether the firmware has completed booting";
+/// });
/// ```
///
-/// It is also possible to create a alias register by using the `=> ALIAS` syntax. This is useful
-/// for cases where a register's interpretation depends on the context:
+/// In this example, `SCRATCH_0_BOOT_STATUS` uses the same I/O address as `SCRATCH`, while also
+/// providing its own `completed` field.
+///
+/// ## Relative registers
+///
+/// A register can be defined as being accessible from a fixed offset of a provided base. For
+/// instance, imagine the following I/O space:
+///
+/// ```text
+/// +-----------------------------+
+/// | ... |
+/// | |
+/// 0x100--->+------------CPU0-------------+
+/// | |
+/// 0x110--->+-----------------------------+
+/// | CPU_CTL |
+/// +-----------------------------+
+/// | ... |
+/// | |
+/// | |
+/// 0x200--->+------------CPU1-------------+
+/// | |
+/// 0x210--->+-----------------------------+
+/// | CPU_CTL |
+/// +-----------------------------+
+/// | ... |
+/// +-----------------------------+
+/// ```
+///
+/// `CPU0` and `CPU1` both have a `CPU_CTL` register that starts at offset `0x10` of their I/O
+/// space segment. Since both instances of `CPU_CTL` share the same layout, we don't want to define
+/// them twice and would prefer a way to select which one to use from a single definition
+///
+/// This can be done using the `Base[Offset]` syntax when specifying the register's address.
+///
+/// `Base` is an arbitrary type (typically a ZST) to be used as a generic parameter of the
+/// [`RegisterBase`] trait to provide the base as a constant, i.e. each type providing a base for
+/// this register needs to implement `RegisterBase<Base>`. Here is the above example translated
+/// into code:
///
/// ```no_run
-/// register!(SCRATCH_0 @ 0x0000100, "Scratch register 0" {
-/// 31:0 value as u32, "Raw value";
+/// // Type used to identify the base.
+/// pub(crate) struct CpuCtlBase;
///
-/// register!(SCRATCH_0_BOOT_STATUS => SCRATCH_0, "Boot status of the firmware" {
-/// 0:0 completed as bool, "Whether the firmware has completed booting";
+/// // ZST describing `CPU0`.
+/// struct Cpu0;
+/// impl RegisterBase<CpuCtlBase> for Cpu0 {
+/// const BASE: usize = 0x100;
+/// }
+/// // Singleton of `CPU0` used to identify it.
+/// const CPU0: Cpu0 = Cpu0;
+///
+/// // ZST describing `CPU1`.
+/// struct Cpu1;
+/// impl RegisterBase<CpuCtlBase> for Cpu1 {
+/// const BASE: usize = 0x200;
+/// }
+/// // Singleton of `CPU1` used to identify it.
+/// const CPU1: Cpu1 = Cpu1;
+///
+/// // This makes `CPU_CTL` accessible from all implementors of `RegisterBase<CpuCtlBase>`.
+/// register!(CPU_CTL @ CpuCtlBase[0x10], "CPU core control" {
+/// 0:0 start as bool, "Start the CPU core";
+/// });
+///
+/// // The `read`, `write` and `alter` methods of relative registers take an extra `base` argument
+/// // that is used to resolve its final address by adding its `BASE` to the offset of the
+/// // register.
+///
+/// // Start `CPU0`.
+/// CPU_CTL::alter(bar, &CPU0, |r| r.set_start(true));
+///
+/// // Start `CPU1`.
+/// CPU_CTL::alter(bar, &CPU1, |r| r.set_start(true));
+///
+/// // Aliases can also be defined for relative register.
+/// register!(CPU_CTL_ALIAS => CpuCtlBase[CPU_CTL], "Alias to CPU core control" {
+/// 1:1 alias_start as bool, "Start the aliased CPU core";
+/// });
+///
+/// // Start the aliased `CPU0`.
+/// CPU_CTL_ALIAS::alter(bar, &CPU0, |r| r.set_alias_start(true));
/// ```
///
-/// In this example, `SCRATCH_0_BOOT_STATUS` uses the same I/O address as `SCRATCH_0`, while also
-/// providing its own `completed` method.
+/// ## Arrays of registers
+///
+/// Some I/O areas contain consecutive values that can be interpreted in the same way. These areas
+/// can be defined as an array of identical registers, allowing them to be accessed by index with
+/// compile-time or runtime bound checking. Simply define their address as `Address[Size]`, and add
+/// an `idx` parameter to their `read`, `write` and `alter` methods:
+///
+/// ```no_run
+/// # fn no_run() -> Result<(), Error> {
+/// # fn get_scratch_idx() -> usize {
+/// # 0x15
+/// # }
+/// // Array of 64 consecutive registers with the same layout starting at offset `0x80`.
+/// register!(SCRATCH @ 0x00000080[64], "Scratch registers" {
+/// 31:0 value as u32;
+/// });
+///
+/// // Read scratch register 0, i.e. I/O address `0x80`.
+/// let scratch_0 = SCRATCH::read(bar, 0).value();
+/// // Read scratch register 15, i.e. I/O address `0x80 + (15 * 4)`.
+/// let scratch_15 = SCRATCH::read(bar, 15).value();
+///
+/// // This is out of bounds and won't build.
+/// // let scratch_128 = SCRATCH::read(bar, 128).value();
+///
+/// // Runtime-obtained array index.
+/// let scratch_idx = get_scratch_idx();
+/// // Access on a runtime index returns an error if it is out-of-bounds.
+/// let some_scratch = SCRATCH::try_read(bar, scratch_idx)?.value();
+///
+/// // Alias to a particular register in an array.
+/// // Here `SCRATCH[8]` is used to convey the firmware exit code.
+/// register!(FIRMWARE_STATUS => SCRATCH[8], "Firmware exit status code" {
+/// 7:0 status as u8;
+/// });
+///
+/// let status = FIRMWARE_STATUS::read(bar).status();
+///
+/// // Non-contiguous register arrays can be defined by adding a stride parameter.
+/// // Here, each of the 16 registers of the array are separated by 8 bytes, meaning that the
+/// // registers of the two declarations below are interleaved.
+/// register!(SCRATCH_INTERLEAVED_0 @ 0x000000c0[16 ; 8], "Scratch registers bank 0" {
+/// 31:0 value as u32;
+/// });
+/// register!(SCRATCH_INTERLEAVED_1 @ 0x000000c4[16 ; 8], "Scratch registers bank 1" {
+/// 31:0 value as u32;
+/// });
+/// # Ok(())
+/// # }
+/// ```
+///
+/// ## Relative arrays of registers
+///
+/// Combining the two features described in the sections above, arrays of registers accessible from
+/// a base can also be defined:
+///
+/// ```no_run
+/// # fn no_run() -> Result<(), Error> {
+/// # fn get_scratch_idx() -> usize {
+/// # 0x15
+/// # }
+/// // Type used as parameter of `RegisterBase` to specify the base.
+/// pub(crate) struct CpuCtlBase;
+///
+/// // ZST describing `CPU0`.
+/// struct Cpu0;
+/// impl RegisterBase<CpuCtlBase> for Cpu0 {
+/// const BASE: usize = 0x100;
+/// }
+/// // Singleton of `CPU0` used to identify it.
+/// const CPU0: Cpu0 = Cpu0;
+///
+/// // ZST describing `CPU1`.
+/// struct Cpu1;
+/// impl RegisterBase<CpuCtlBase> for Cpu1 {
+/// const BASE: usize = 0x200;
+/// }
+/// // Singleton of `CPU1` used to identify it.
+/// const CPU1: Cpu1 = Cpu1;
+///
+/// // 64 per-cpu scratch registers, arranged as an contiguous array.
+/// register!(CPU_SCRATCH @ CpuCtlBase[0x00000080[64]], "Per-CPU scratch registers" {
+/// 31:0 value as u32;
+/// });
+///
+/// let cpu0_scratch_0 = CPU_SCRATCH::read(bar, &Cpu0, 0).value();
+/// let cpu1_scratch_15 = CPU_SCRATCH::read(bar, &Cpu1, 15).value();
+///
+/// // This won't build.
+/// // let cpu0_scratch_128 = CPU_SCRATCH::read(bar, &Cpu0, 128).value();
+///
+/// // Runtime-obtained array index.
+/// let scratch_idx = get_scratch_idx();
+/// // Access on a runtime value returns an error if it is out-of-bounds.
+/// let cpu0_some_scratch = CPU_SCRATCH::try_read(bar, &Cpu0, scratch_idx)?.value();
+///
+/// // `SCRATCH[8]` is used to convey the firmware exit code.
+/// register!(CPU_FIRMWARE_STATUS => CpuCtlBase[CPU_SCRATCH[8]],
+/// "Per-CPU firmware exit status code" {
+/// 7:0 status as u8;
+/// });
+///
+/// let cpu0_status = CPU_FIRMWARE_STATUS::read(bar, &Cpu0).status();
+///
+/// // Non-contiguous register arrays can be defined by adding a stride parameter.
+/// // Here, each of the 16 registers of the array are separated by 8 bytes, meaning that the
+/// // registers of the two declarations below are interleaved.
+/// register!(CPU_SCRATCH_INTERLEAVED_0 @ CpuCtlBase[0x00000d00[16 ; 8]],
+/// "Scratch registers bank 0" {
+/// 31:0 value as u32;
+/// });
+/// register!(CPU_SCRATCH_INTERLEAVED_1 @ CpuCtlBase[0x00000d04[16 ; 8]],
+/// "Scratch registers bank 1" {
+/// 31:0 value as u32;
+/// });
+/// # Ok(())
+/// # }
+/// ```
macro_rules! register {
// Creates a register at a fixed offset of the MMIO space.
+ ($name:ident @ $offset:literal $(, $comment:literal)? { $($fields:tt)* } ) => {
+ register!(@core $name $(, $comment)? { $($fields)* } );
+ register!(@io_fixed $name @ $offset);
+ };
+
+ // Creates an alias register of fixed offset register `alias` with its own fields.
+ ($name:ident => $alias:ident $(, $comment:literal)? { $($fields:tt)* } ) => {
+ register!(@core $name $(, $comment)? { $($fields)* } );
+ register!(@io_fixed $name @ $alias::OFFSET);
+ };
+
+ // Creates a register at a relative offset from a base address provider.
+ ($name:ident @ $base:ty [ $offset:literal ] $(, $comment:literal)? { $($fields:tt)* } ) => {
+ register!(@core $name $(, $comment)? { $($fields)* } );
+ register!(@io_relative $name @ $base [ $offset ]);
+ };
+
+ // Creates an alias register of relative offset register `alias` with its own fields.
+ ($name:ident => $base:ty [ $alias:ident ] $(, $comment:literal)? { $($fields:tt)* }) => {
+ register!(@core $name $(, $comment)? { $($fields)* } );
+ register!(@io_relative $name @ $base [ $alias::OFFSET ]);
+ };
+
+ // Creates an array of registers at a fixed offset of the MMIO space.
(
- $name:ident @ $offset:literal $(, $comment:literal)? {
+ $name:ident @ $offset:literal [ $size:expr ; $stride:expr ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
- register!(@common $name @ $offset $(, $comment)?);
- register!(@field_accessors $name { $($fields)* });
- register!(@io $name @ $offset);
+ static_assert!(::core::mem::size_of::<u32>() <= $stride);
+ register!(@core $name $(, $comment)? { $($fields)* } );
+ register!(@io_array $name @ $offset [ $size ; $stride ]);
};
- // Creates a alias register of fixed offset register `alias` with its own fields.
+ // Shortcut for contiguous array of registers (stride == size of element).
(
- $name:ident => $alias:ident $(, $comment:literal)? {
+ $name:ident @ $offset:literal [ $size:expr ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
- register!(@common $name @ $alias::OFFSET $(, $comment)?);
- register!(@field_accessors $name { $($fields)* });
- register!(@io $name @ $alias::OFFSET);
+ register!($name @ $offset [ $size ; ::core::mem::size_of::<u32>() ] $(, $comment)? {
+ $($fields)*
+ } );
+ };
+
+ // Creates an array of registers at a relative offset from a base address provider.
+ (
+ $name:ident @ $base:ty [ $offset:literal [ $size:expr ; $stride:expr ] ]
+ $(, $comment:literal)? { $($fields:tt)* }
+ ) => {
+ static_assert!(::core::mem::size_of::<u32>() <= $stride);
+ register!(@core $name $(, $comment)? { $($fields)* } );
+ register!(@io_relative_array $name @ $base [ $offset [ $size ; $stride ] ]);
};
- // Creates a register at a relative offset from a base address.
+ // Shortcut for contiguous array of relative registers (stride == size of element).
(
- $name:ident @ + $offset:literal $(, $comment:literal)? {
+ $name:ident @ $base:ty [ $offset:literal [ $size:expr ] ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
- register!(@common $name @ $offset $(, $comment)?);
- register!(@field_accessors $name { $($fields)* });
- register!(@io$name @ + $offset);
+ register!($name @ $base [ $offset [ $size ; ::core::mem::size_of::<u32>() ] ]
+ $(, $comment)? { $($fields)* } );
};
- // Creates a alias register of relative offset register `alias` with its own fields.
+ // Creates an alias of register `idx` of relative array of registers `alias` with its own
+ // fields.
(
- $name:ident => + $alias:ident $(, $comment:literal)? {
+ $name:ident => $base:ty [ $alias:ident [ $idx:expr ] ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
- register!(@common $name @ $alias::OFFSET $(, $comment)?);
- register!(@field_accessors $name { $($fields)* });
- register!(@io $name @ + $alias::OFFSET);
+ static_assert!($idx < $alias::SIZE);
+ register!(@core $name $(, $comment)? { $($fields)* } );
+ register!(@io_relative $name @ $base [ $alias::OFFSET + $idx * $alias::STRIDE ] );
+ };
+
+ // Creates an alias of register `idx` of array of registers `alias` with its own fields.
+ // This rule belongs to the (non-relative) register arrays set, but needs to be put last
+ // to avoid it being interpreted in place of the relative register array alias rule.
+ ($name:ident => $alias:ident [ $idx:expr ] $(, $comment:literal)? { $($fields:tt)* }) => {
+ static_assert!($idx < $alias::SIZE);
+ register!(@core $name $(, $comment)? { $($fields)* } );
+ register!(@io_fixed $name @ $alias::OFFSET + $idx * $alias::STRIDE );
};
// All rules below are helpers.
- // Defines the wrapper `$name` type, as well as its relevant implementations (`Debug`, `BitOr`,
- // and conversion to regular `u32`).
- (@common $name:ident @ $offset:expr $(, $comment:literal)?) => {
+ // Defines the wrapper `$name` type, as well as its relevant implementations (`Debug`,
+ // `Default`, `BitOr`, and conversion to the value type) and field accessor methods.
+ (@core $name:ident $(, $comment:literal)? { $($fields:tt)* }) => {
$(
#[doc=$comment]
)?
#[repr(transparent)]
- #[derive(Clone, Copy, Default)]
+ #[derive(Clone, Copy)]
pub(crate) struct $name(u32);
- #[allow(dead_code)]
- impl $name {
- pub(crate) const OFFSET: usize = $offset;
- }
-
- // TODO[REGA]: display the raw hex value, then the value of all the fields. This requires
- // matching the fields, which will complexify the syntax considerably...
- impl ::core::fmt::Debug for $name {
- fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
- f.debug_tuple(stringify!($name))
- .field(&format_args!("0x{0:x}", &self.0))
- .finish()
- }
- }
-
impl ::core::ops::BitOr for $name {
type Output = Self;
@@ -170,6 +394,34 @@ macro_rules! register {
reg.0
}
}
+
+ register!(@fields_dispatcher $name { $($fields)* });
+ };
+
+ // Captures the fields and passes them to all the implementers that require field information.
+ //
+ // Used to simplify the matching rules for implementers, so they don't need to match the entire
+ // complex fields rule even though they only make use of part of it.
+ (@fields_dispatcher $name:ident {
+ $($hi:tt:$lo:tt $field:ident as $type:tt
+ $(?=> $try_into_type:ty)?
+ $(=> $into_type:ty)?
+ $(, $comment:literal)?
+ ;
+ )*
+ }
+ ) => {
+ register!(@field_accessors $name {
+ $(
+ $hi:$lo $field as $type
+ $(?=> $try_into_type)?
+ $(=> $into_type)?
+ $(, $comment)?
+ ;
+ )*
+ });
+ register!(@debug $name { $($field;)* });
+ register!(@default $name { $($field;)* });
};
// Defines all the field getter/methods methods for `$name`.
@@ -228,7 +480,7 @@ macro_rules! register {
$(, $comment:literal)?;
) => {
register!(
- @leaf_accessor $name $hi:$lo $field as bool
+ @leaf_accessor $name $hi:$lo $field
{ |f| <$into_type>::from(if f != 0 { true } else { false }) }
$into_type => $into_type $(, $comment)?;
);
@@ -246,7 +498,7 @@ macro_rules! register {
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt ?=> $try_into_type:ty
$(, $comment:literal)?;
) => {
- register!(@leaf_accessor $name $hi:$lo $field as $type
+ register!(@leaf_accessor $name $hi:$lo $field
{ |f| <$try_into_type>::try_from(f as $type) } $try_into_type =>
::core::result::Result<
$try_into_type,
@@ -260,11 +512,11 @@ macro_rules! register {
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt => $into_type:ty
$(, $comment:literal)?;
) => {
- register!(@leaf_accessor $name $hi:$lo $field as $type
+ register!(@leaf_accessor $name $hi:$lo $field
{ |f| <$into_type>::from(f as $type) } $into_type => $into_type $(, $comment)?;);
};
- // Shortcut for fields defined as non-`bool` without the `=>` or `?=>` syntax.
+ // Shortcut for non-boolean fields defined without the `=>` or `?=>` syntax.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt
$(, $comment:literal)?;
@@ -274,11 +526,11 @@ macro_rules! register {
// Generates the accessor methods for a single field.
(
- @leaf_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:ty
+ @leaf_accessor $name:ident $hi:tt:$lo:tt $field:ident
{ $process:expr } $to_type:ty => $res_type:ty $(, $comment:literal)?;
) => {
::kernel::macros::paste!(
- const [<$field:upper>]: ::core::ops::RangeInclusive<u8> = $lo..=$hi;
+ const [<$field:upper _RANGE>]: ::core::ops::RangeInclusive<u8> = $lo..=$hi;
const [<$field:upper _MASK>]: u32 = ((((1 << $hi) - 1) << 1) + 1) - ((1 << $lo) - 1);
const [<$field:upper _SHIFT>]: u32 = Self::[<$field:upper _MASK>].trailing_zeros();
);
@@ -287,7 +539,7 @@ macro_rules! register {
#[doc="Returns the value of this field:"]
#[doc=$comment]
)?
- #[inline]
+ #[inline(always)]
pub(crate) fn $field(self) -> $res_type {
::kernel::macros::paste!(
const MASK: u32 = $name::[<$field:upper _MASK>];
@@ -303,7 +555,7 @@ macro_rules! register {
#[doc="Sets the value of this field:"]
#[doc=$comment]
)?
- #[inline]
+ #[inline(always)]
pub(crate) fn [<set_ $field>](mut self, value: $to_type) -> Self {
const MASK: u32 = $name::[<$field:upper _MASK>];
const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
@@ -315,25 +567,64 @@ macro_rules! register {
);
};
- // Creates the IO accessors for a fixed offset register.
- (@io $name:ident @ $offset:expr) => {
+ // Generates the `Debug` implementation for `$name`.
+ (@debug $name:ident { $($field:ident;)* }) => {
+ impl ::kernel::fmt::Debug for $name {
+ fn fmt(&self, f: &mut ::kernel::fmt::Formatter<'_>) -> ::kernel::fmt::Result {
+ f.debug_struct(stringify!($name))
+ .field("<raw>", &::kernel::prelude::fmt!("{:#x}", &self.0))
+ $(
+ .field(stringify!($field), &self.$field())
+ )*
+ .finish()
+ }
+ }
+ };
+
+ // Generates the `Default` implementation for `$name`.
+ (@default $name:ident { $($field:ident;)* }) => {
+ /// Returns a value for the register where all fields are set to their default value.
+ impl ::core::default::Default for $name {
+ fn default() -> Self {
+ #[allow(unused_mut)]
+ let mut value = Self(Default::default());
+
+ ::kernel::macros::paste!(
+ $(
+ value.[<set_ $field>](Default::default());
+ )*
+ );
+
+ value
+ }
+ }
+ };
+
+ // Generates the IO accessors for a fixed offset register.
+ (@io_fixed $name:ident @ $offset:expr) => {
#[allow(dead_code)]
impl $name {
- #[inline]
+ pub(crate) const OFFSET: usize = $offset;
+
+ /// Read the register from its address in `io`.
+ #[inline(always)]
pub(crate) fn read<const SIZE: usize, T>(io: &T) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
Self(io.read32($offset))
}
- #[inline]
+ /// Write the value contained in `self` to the register address in `io`.
+ #[inline(always)]
pub(crate) fn write<const SIZE: usize, T>(self, io: &T) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
io.write32(self.0, $offset)
}
- #[inline]
+ /// Read the register from its address in `io` and run `f` on its value to obtain a new
+ /// value to write back.
+ #[inline(always)]
pub(crate) fn alter<const SIZE: usize, T, F>(
io: &T,
f: F,
@@ -347,76 +638,322 @@ macro_rules! register {
}
};
- // Create the IO accessors for a relative offset register.
- (@io $name:ident @ + $offset:literal) => {
+ // Generates the IO accessors for a relative offset register.
+ (@io_relative $name:ident @ $base:ty [ $offset:expr ]) => {
+ #[allow(dead_code)]
+ impl $name {
+ pub(crate) const OFFSET: usize = $offset;
+
+ /// Read the register from `io`, using the base address provided by `base` and adding
+ /// the register's offset to it.
+ #[inline(always)]
+ pub(crate) fn read<const SIZE: usize, T, B>(
+ io: &T,
+ #[allow(unused_variables)]
+ base: &B,
+ ) -> Self where
+ T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
+ B: crate::regs::macros::RegisterBase<$base>,
+ {
+ const OFFSET: usize = $name::OFFSET;
+
+ let value = io.read32(
+ <B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET
+ );
+
+ Self(value)
+ }
+
+ /// Write the value contained in `self` to `io`, using the base address provided by
+ /// `base` and adding the register's offset to it.
+ #[inline(always)]
+ pub(crate) fn write<const SIZE: usize, T, B>(
+ self,
+ io: &T,
+ #[allow(unused_variables)]
+ base: &B,
+ ) where
+ T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
+ B: crate::regs::macros::RegisterBase<$base>,
+ {
+ const OFFSET: usize = $name::OFFSET;
+
+ io.write32(
+ self.0,
+ <B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET
+ );
+ }
+
+ /// Read the register from `io`, using the base address provided by `base` and adding
+ /// the register's offset to it, then run `f` on its value to obtain a new value to
+ /// write back.
+ #[inline(always)]
+ pub(crate) fn alter<const SIZE: usize, T, B, F>(
+ io: &T,
+ base: &B,
+ f: F,
+ ) where
+ T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
+ B: crate::regs::macros::RegisterBase<$base>,
+ F: ::core::ops::FnOnce(Self) -> Self,
+ {
+ let reg = f(Self::read(io, base));
+ reg.write(io, base);
+ }
+ }
+ };
+
+ // Generates the IO accessors for an array of registers.
+ (@io_array $name:ident @ $offset:literal [ $size:expr ; $stride:expr ]) => {
#[allow(dead_code)]
impl $name {
- #[inline]
+ pub(crate) const OFFSET: usize = $offset;
+ pub(crate) const SIZE: usize = $size;
+ pub(crate) const STRIDE: usize = $stride;
+
+ /// Read the array register at index `idx` from its address in `io`.
+ #[inline(always)]
pub(crate) fn read<const SIZE: usize, T>(
io: &T,
- base: usize,
+ idx: usize,
) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
- Self(io.read32(base + $offset))
+ build_assert!(idx < Self::SIZE);
+
+ let offset = Self::OFFSET + (idx * Self::STRIDE);
+ let value = io.read32(offset);
+
+ Self(value)
}
- #[inline]
+ /// Write the value contained in `self` to the array register with index `idx` in `io`.
+ #[inline(always)]
pub(crate) fn write<const SIZE: usize, T>(
self,
io: &T,
- base: usize,
+ idx: usize
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
- io.write32(self.0, base + $offset)
+ build_assert!(idx < Self::SIZE);
+
+ let offset = Self::OFFSET + (idx * Self::STRIDE);
+
+ io.write32(self.0, offset);
}
- #[inline]
+ /// Read the array register at index `idx` in `io` and run `f` on its value to obtain a
+ /// new value to write back.
+ #[inline(always)]
pub(crate) fn alter<const SIZE: usize, T, F>(
io: &T,
- base: usize,
+ idx: usize,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
- let reg = f(Self::read(io, base));
- reg.write(io, base);
+ let reg = f(Self::read(io, idx));
+ reg.write(io, idx);
}
- #[inline]
+ /// Read the array register at index `idx` from its address in `io`.
+ ///
+ /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
+ /// access was out-of-bounds.
+ #[inline(always)]
pub(crate) fn try_read<const SIZE: usize, T>(
io: &T,
- base: usize,
+ idx: usize,
) -> ::kernel::error::Result<Self> where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
- io.try_read32(base + $offset).map(Self)
+ if idx < Self::SIZE {
+ Ok(Self::read(io, idx))
+ } else {
+ Err(EINVAL)
+ }
}
- #[inline]
+ /// Write the value contained in `self` to the array register with index `idx` in `io`.
+ ///
+ /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
+ /// access was out-of-bounds.
+ #[inline(always)]
pub(crate) fn try_write<const SIZE: usize, T>(
self,
io: &T,
- base: usize,
- ) -> ::kernel::error::Result<()> where
+ idx: usize,
+ ) -> ::kernel::error::Result where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
- io.try_write32(self.0, base + $offset)
+ if idx < Self::SIZE {
+ Ok(self.write(io, idx))
+ } else {
+ Err(EINVAL)
+ }
}
- #[inline]
+ /// Read the array register at index `idx` in `io` and run `f` on its value to obtain a
+ /// new value to write back.
+ ///
+ /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
+ /// access was out-of-bounds.
+ #[inline(always)]
pub(crate) fn try_alter<const SIZE: usize, T, F>(
io: &T,
- base: usize,
+ idx: usize,
+ f: F,
+ ) -> ::kernel::error::Result where
+ T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
+ F: ::core::ops::FnOnce(Self) -> Self,
+ {
+ if idx < Self::SIZE {
+ Ok(Self::alter(io, idx, f))
+ } else {
+ Err(EINVAL)
+ }
+ }
+ }
+ };
+
+ // Generates the IO accessors for an array of relative registers.
+ (
+ @io_relative_array $name:ident @ $base:ty
+ [ $offset:literal [ $size:expr ; $stride:expr ] ]
+ ) => {
+ #[allow(dead_code)]
+ impl $name {
+ pub(crate) const OFFSET: usize = $offset;
+ pub(crate) const SIZE: usize = $size;
+ pub(crate) const STRIDE: usize = $stride;
+
+ /// Read the array register at index `idx` from `io`, using the base address provided
+ /// by `base` and adding the register's offset to it.
+ #[inline(always)]
+ pub(crate) fn read<const SIZE: usize, T, B>(
+ io: &T,
+ #[allow(unused_variables)]
+ base: &B,
+ idx: usize,
+ ) -> Self where
+ T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
+ B: crate::regs::macros::RegisterBase<$base>,
+ {
+ build_assert!(idx < Self::SIZE);
+
+ let offset = <B as crate::regs::macros::RegisterBase<$base>>::BASE +
+ Self::OFFSET + (idx * Self::STRIDE);
+ let value = io.read32(offset);
+
+ Self(value)
+ }
+
+ /// Write the value contained in `self` to `io`, using the base address provided by
+ /// `base` and adding the offset of array register `idx` to it.
+ #[inline(always)]
+ pub(crate) fn write<const SIZE: usize, T, B>(
+ self,
+ io: &T,
+ #[allow(unused_variables)]
+ base: &B,
+ idx: usize
+ ) where
+ T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
+ B: crate::regs::macros::RegisterBase<$base>,
+ {
+ build_assert!(idx < Self::SIZE);
+
+ let offset = <B as crate::regs::macros::RegisterBase<$base>>::BASE +
+ Self::OFFSET + (idx * Self::STRIDE);
+
+ io.write32(self.0, offset);
+ }
+
+ /// Read the array register at index `idx` from `io`, using the base address provided
+ /// by `base` and adding the register's offset to it, then run `f` on its value to
+ /// obtain a new value to write back.
+ #[inline(always)]
+ pub(crate) fn alter<const SIZE: usize, T, B, F>(
+ io: &T,
+ base: &B,
+ idx: usize,
+ f: F,
+ ) where
+ T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
+ B: crate::regs::macros::RegisterBase<$base>,
+ F: ::core::ops::FnOnce(Self) -> Self,
+ {
+ let reg = f(Self::read(io, base, idx));
+ reg.write(io, base, idx);
+ }
+
+ /// Read the array register at index `idx` from `io`, using the base address provided
+ /// by `base` and adding the register's offset to it.
+ ///
+ /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
+ /// access was out-of-bounds.
+ #[inline(always)]
+ pub(crate) fn try_read<const SIZE: usize, T, B>(
+ io: &T,
+ base: &B,
+ idx: usize,
+ ) -> ::kernel::error::Result<Self> where
+ T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
+ B: crate::regs::macros::RegisterBase<$base>,
+ {
+ if idx < Self::SIZE {
+ Ok(Self::read(io, base, idx))
+ } else {
+ Err(EINVAL)
+ }
+ }
+
+ /// Write the value contained in `self` to `io`, using the base address provided by
+ /// `base` and adding the offset of array register `idx` to it.
+ ///
+ /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
+ /// access was out-of-bounds.
+ #[inline(always)]
+ pub(crate) fn try_write<const SIZE: usize, T, B>(
+ self,
+ io: &T,
+ base: &B,
+ idx: usize,
+ ) -> ::kernel::error::Result where
+ T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
+ B: crate::regs::macros::RegisterBase<$base>,
+ {
+ if idx < Self::SIZE {
+ Ok(self.write(io, base, idx))
+ } else {
+ Err(EINVAL)
+ }
+ }
+
+ /// Read the array register at index `idx` from `io`, using the base address provided
+ /// by `base` and adding the register's offset to it, then run `f` on its value to
+ /// obtain a new value to write back.
+ ///
+ /// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
+ /// access was out-of-bounds.
+ #[inline(always)]
+ pub(crate) fn try_alter<const SIZE: usize, T, B, F>(
+ io: &T,
+ base: &B,
+ idx: usize,
f: F,
- ) -> ::kernel::error::Result<()> where
+ ) -> ::kernel::error::Result where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
+ B: crate::regs::macros::RegisterBase<$base>,
F: ::core::ops::FnOnce(Self) -> Self,
{
- let reg = f(Self::try_read(io, base)?);
- reg.try_write(io, base)
+ if idx < Self::SIZE {
+ Ok(Self::alter(io, base, idx, f))
+ } else {
+ Err(EINVAL)
+ }
}
}
};
diff --git a/drivers/gpu/nova-core/util.rs b/drivers/gpu/nova-core/util.rs
index 76cedf3710d7..bf35f00cb732 100644
--- a/drivers/gpu/nova-core/util.rs
+++ b/drivers/gpu/nova-core/util.rs
@@ -3,26 +3,6 @@
use kernel::prelude::*;
use kernel::time::{Delta, Instant, Monotonic};
-pub(crate) const fn to_lowercase_bytes<const N: usize>(s: &str) -> [u8; N] {
- let src = s.as_bytes();
- let mut dst = [0; N];
- let mut i = 0;
-
- while i < src.len() && i < N {
- dst[i] = (src[i] as char).to_ascii_lowercase() as u8;
- i += 1;
- }
-
- dst
-}
-
-pub(crate) const fn const_bytes_to_str(bytes: &[u8]) -> &str {
- match core::str::from_utf8(bytes) {
- Ok(string) => string,
- Err(_) => kernel::build_error!("Bytes are not valid UTF-8."),
- }
-}
-
/// Wait until `cond` is true or `timeout` elapsed.
///
/// When `cond` evaluates to `Some`, its return value is returned.
diff --git a/drivers/gpu/nova-core/vbios.rs b/drivers/gpu/nova-core/vbios.rs
index 5b5d9f38cbb3..71fbe71b84db 100644
--- a/drivers/gpu/nova-core/vbios.rs
+++ b/drivers/gpu/nova-core/vbios.rs
@@ -8,8 +8,9 @@ use crate::firmware::FalconUCodeDescV3;
use core::convert::TryFrom;
use kernel::device;
use kernel::error::Result;
-use kernel::pci;
use kernel::prelude::*;
+use kernel::ptr::{Alignable, Alignment};
+use kernel::types::ARef;
/// The offset of the VBIOS ROM in the BAR0 space.
const ROM_OFFSET: usize = 0x300000;
@@ -31,7 +32,7 @@ const FALCON_UCODE_ENTRY_APPID_FWSEC_PROD: u8 = 0x85;
/// Vbios Reader for constructing the VBIOS data.
struct VbiosIterator<'a> {
- pdev: &'a pci::Device,
+ dev: &'a device::Device,
bar0: &'a Bar0,
/// VBIOS data vector: As BIOS images are scanned, they are added to this vector for reference
/// or copying into other data structures. It is the entire scanned contents of the VBIOS which
@@ -46,9 +47,9 @@ struct VbiosIterator<'a> {
}
impl<'a> VbiosIterator<'a> {
- fn new(pdev: &'a pci::Device, bar0: &'a Bar0) -> Result<Self> {
+ fn new(dev: &'a device::Device, bar0: &'a Bar0) -> Result<Self> {
Ok(Self {
- pdev,
+ dev,
bar0,
data: KVec::new(),
current_offset: 0,
@@ -64,7 +65,7 @@ impl<'a> VbiosIterator<'a> {
// Ensure length is a multiple of 4 for 32-bit reads
if len % core::mem::size_of::<u32>() != 0 {
dev_err!(
- self.pdev.as_ref(),
+ self.dev,
"VBIOS read length {} is not a multiple of 4\n",
len
);
@@ -89,7 +90,7 @@ impl<'a> VbiosIterator<'a> {
/// Read bytes at a specific offset, filling any gap.
fn read_more_at_offset(&mut self, offset: usize, len: usize) -> Result {
if offset > BIOS_MAX_SCAN_LEN {
- dev_err!(self.pdev.as_ref(), "Error: exceeded BIOS scan limit.\n");
+ dev_err!(self.dev, "Error: exceeded BIOS scan limit.\n");
return Err(EINVAL);
}
@@ -115,7 +116,7 @@ impl<'a> VbiosIterator<'a> {
if offset + len > data_len {
self.read_more_at_offset(offset, len).inspect_err(|e| {
dev_err!(
- self.pdev.as_ref(),
+ self.dev,
"Failed to read more at offset {:#x}: {:?}\n",
offset,
e
@@ -123,9 +124,9 @@ impl<'a> VbiosIterator<'a> {
})?;
}
- BiosImage::new(self.pdev, &self.data[offset..offset + len]).inspect_err(|err| {
+ BiosImage::new(self.dev, &self.data[offset..offset + len]).inspect_err(|err| {
dev_err!(
- self.pdev.as_ref(),
+ self.dev,
"Failed to {} at offset {:#x}: {:?}\n",
context,
offset,
@@ -146,10 +147,7 @@ impl<'a> Iterator for VbiosIterator<'a> {
}
if self.current_offset > BIOS_MAX_SCAN_LEN {
- dev_err!(
- self.pdev.as_ref(),
- "Error: exceeded BIOS scan limit, stopping scan\n"
- );
+ dev_err!(self.dev, "Error: exceeded BIOS scan limit, stopping scan\n");
return None;
}
@@ -177,8 +175,7 @@ impl<'a> Iterator for VbiosIterator<'a> {
// Advance to next image (aligned to 512 bytes).
self.current_offset += image_size;
- // TODO[NUMM]: replace with `align_up` once it lands.
- self.current_offset = self.current_offset.next_multiple_of(512);
+ self.current_offset = self.current_offset.align_up(Alignment::new::<512>())?;
Some(Ok(full_image))
}
@@ -192,18 +189,18 @@ impl Vbios {
/// Probe for VBIOS extraction.
///
/// Once the VBIOS object is built, `bar0` is not read for [`Vbios`] purposes anymore.
- pub(crate) fn new(pdev: &pci::Device, bar0: &Bar0) -> Result<Vbios> {
+ pub(crate) fn new(dev: &device::Device, bar0: &Bar0) -> Result<Vbios> {
// Images to extract from iteration
let mut pci_at_image: Option<PciAtBiosImage> = None;
let mut first_fwsec_image: Option<FwSecBiosBuilder> = None;
let mut second_fwsec_image: Option<FwSecBiosBuilder> = None;
// Parse all VBIOS images in the ROM
- for image_result in VbiosIterator::new(pdev, bar0)? {
+ for image_result in VbiosIterator::new(dev, bar0)? {
let full_image = image_result?;
dev_dbg!(
- pdev.as_ref(),
+ dev,
"Found BIOS image: size: {:#x}, type: {}, last: {}\n",
full_image.image_size_bytes(),
full_image.image_type_str(),
@@ -234,14 +231,14 @@ impl Vbios {
(second_fwsec_image, first_fwsec_image, pci_at_image)
{
second
- .setup_falcon_data(pdev, &pci_at, &first)
- .inspect_err(|e| dev_err!(pdev.as_ref(), "Falcon data setup failed: {:?}\n", e))?;
+ .setup_falcon_data(&pci_at, &first)
+ .inspect_err(|e| dev_err!(dev, "Falcon data setup failed: {:?}\n", e))?;
Ok(Vbios {
- fwsec_image: second.build(pdev)?,
+ fwsec_image: second.build()?,
})
} else {
dev_err!(
- pdev.as_ref(),
+ dev,
"Missing required images for falcon data setup, skipping\n"
);
Err(EINVAL)
@@ -284,9 +281,9 @@ struct PcirStruct {
}
impl PcirStruct {
- fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ fn new(dev: &device::Device, data: &[u8]) -> Result<Self> {
if data.len() < core::mem::size_of::<PcirStruct>() {
- dev_err!(pdev.as_ref(), "Not enough data for PcirStruct\n");
+ dev_err!(dev, "Not enough data for PcirStruct\n");
return Err(EINVAL);
}
@@ -295,11 +292,7 @@ impl PcirStruct {
// Signature should be "PCIR" (0x52494350) or "NPDS" (0x5344504e).
if &signature != b"PCIR" && &signature != b"NPDS" {
- dev_err!(
- pdev.as_ref(),
- "Invalid signature for PcirStruct: {:?}\n",
- signature
- );
+ dev_err!(dev, "Invalid signature for PcirStruct: {:?}\n", signature);
return Err(EINVAL);
}
@@ -308,7 +301,7 @@ impl PcirStruct {
let image_len = u16::from_le_bytes([data[16], data[17]]);
if image_len == 0 {
- dev_err!(pdev.as_ref(), "Invalid image length: 0\n");
+ dev_err!(dev, "Invalid image length: 0\n");
return Err(EINVAL);
}
@@ -345,7 +338,7 @@ impl PcirStruct {
/// its header) is in the [`PciAtBiosImage`] and the falcon data it is pointing to is in the
/// [`FwSecBiosImage`].
#[derive(Debug, Clone, Copy)]
-#[expect(dead_code)]
+#[repr(C)]
struct BitHeader {
/// 0h: BIT Header Identifier (BMP=0x7FFF/BIT=0xB8FF)
id: u16,
@@ -365,7 +358,7 @@ struct BitHeader {
impl BitHeader {
fn new(data: &[u8]) -> Result<Self> {
- if data.len() < 12 {
+ if data.len() < core::mem::size_of::<Self>() {
return Err(EINVAL);
}
@@ -467,7 +460,7 @@ struct PciRomHeader {
}
impl PciRomHeader {
- fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ fn new(dev: &device::Device, data: &[u8]) -> Result<Self> {
if data.len() < 26 {
// Need at least 26 bytes to read pciDataStrucPtr and sizeOfBlock.
return Err(EINVAL);
@@ -479,7 +472,7 @@ impl PciRomHeader {
match signature {
0xAA55 | 0xBB77 | 0x4E56 => {}
_ => {
- dev_err!(pdev.as_ref(), "ROM signature unknown {:#x}\n", signature);
+ dev_err!(dev, "ROM signature unknown {:#x}\n", signature);
return Err(EINVAL);
}
}
@@ -538,9 +531,9 @@ struct NpdeStruct {
}
impl NpdeStruct {
- fn new(pdev: &pci::Device, data: &[u8]) -> Option<Self> {
+ fn new(dev: &device::Device, data: &[u8]) -> Option<Self> {
if data.len() < core::mem::size_of::<Self>() {
- dev_dbg!(pdev.as_ref(), "Not enough data for NpdeStruct\n");
+ dev_dbg!(dev, "Not enough data for NpdeStruct\n");
return None;
}
@@ -549,17 +542,13 @@ impl NpdeStruct {
// Signature should be "NPDE" (0x4544504E).
if &signature != b"NPDE" {
- dev_dbg!(
- pdev.as_ref(),
- "Invalid signature for NpdeStruct: {:?}\n",
- signature
- );
+ dev_dbg!(dev, "Invalid signature for NpdeStruct: {:?}\n", signature);
return None;
}
let subimage_len = u16::from_le_bytes([data[8], data[9]]);
if subimage_len == 0 {
- dev_dbg!(pdev.as_ref(), "Invalid subimage length: 0\n");
+ dev_dbg!(dev, "Invalid subimage length: 0\n");
return None;
}
@@ -584,7 +573,7 @@ impl NpdeStruct {
/// Try to find NPDE in the data, the NPDE is right after the PCIR.
fn find_in_data(
- pdev: &pci::Device,
+ dev: &device::Device,
data: &[u8],
rom_header: &PciRomHeader,
pcir: &PcirStruct,
@@ -596,12 +585,12 @@ impl NpdeStruct {
// Check if we have enough data
if npde_start + core::mem::size_of::<Self>() > data.len() {
- dev_dbg!(pdev.as_ref(), "Not enough data for NPDE\n");
+ dev_dbg!(dev, "Not enough data for NPDE\n");
return None;
}
// Try to create NPDE from the data
- NpdeStruct::new(pdev, &data[npde_start..])
+ NpdeStruct::new(dev, &data[npde_start..])
}
}
@@ -669,10 +658,10 @@ impl BiosImage {
/// Create a [`BiosImageBase`] from a byte slice and convert it to a [`BiosImage`] which
/// triggers the constructor of the specific BiosImage enum variant.
- fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
- let base = BiosImageBase::new(pdev, data)?;
+ fn new(dev: &device::Device, data: &[u8]) -> Result<Self> {
+ let base = BiosImageBase::new(dev, data)?;
let image = base.into_image().inspect_err(|e| {
- dev_err!(pdev.as_ref(), "Failed to create BiosImage: {:?}\n", e);
+ dev_err!(dev, "Failed to create BiosImage: {:?}\n", e);
})?;
Ok(image)
@@ -754,9 +743,10 @@ impl TryFrom<BiosImageBase> for BiosImage {
///
/// Each BiosImage type has a BiosImageBase type along with other image-specific fields. Note that
/// Rust favors composition of types over inheritance.
-#[derive(Debug)]
#[expect(dead_code)]
struct BiosImageBase {
+ /// Used for logging.
+ dev: ARef<device::Device>,
/// PCI ROM Expansion Header
rom_header: PciRomHeader,
/// PCI Data Structure
@@ -773,16 +763,16 @@ impl BiosImageBase {
}
/// Creates a new BiosImageBase from raw byte data.
- fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ fn new(dev: &device::Device, data: &[u8]) -> Result<Self> {
// Ensure we have enough data for the ROM header.
if data.len() < 26 {
- dev_err!(pdev.as_ref(), "Not enough data for ROM header\n");
+ dev_err!(dev, "Not enough data for ROM header\n");
return Err(EINVAL);
}
// Parse the ROM header.
- let rom_header = PciRomHeader::new(pdev, &data[0..26])
- .inspect_err(|e| dev_err!(pdev.as_ref(), "Failed to create PciRomHeader: {:?}\n", e))?;
+ let rom_header = PciRomHeader::new(dev, &data[0..26])
+ .inspect_err(|e| dev_err!(dev, "Failed to create PciRomHeader: {:?}\n", e))?;
// Get the PCI Data Structure using the pointer from the ROM header.
let pcir_offset = rom_header.pci_data_struct_offset as usize;
@@ -791,28 +781,29 @@ impl BiosImageBase {
.ok_or(EINVAL)
.inspect_err(|_| {
dev_err!(
- pdev.as_ref(),
+ dev,
"PCIR offset {:#x} out of bounds (data length: {})\n",
pcir_offset,
data.len()
);
dev_err!(
- pdev.as_ref(),
+ dev,
"Consider reading more data for construction of BiosImage\n"
);
})?;
- let pcir = PcirStruct::new(pdev, pcir_data)
- .inspect_err(|e| dev_err!(pdev.as_ref(), "Failed to create PcirStruct: {:?}\n", e))?;
+ let pcir = PcirStruct::new(dev, pcir_data)
+ .inspect_err(|e| dev_err!(dev, "Failed to create PcirStruct: {:?}\n", e))?;
// Look for NPDE structure if this is not an NBSI image (type != 0x70).
- let npde = NpdeStruct::find_in_data(pdev, data, &rom_header, &pcir);
+ let npde = NpdeStruct::find_in_data(dev, data, &rom_header, &pcir);
// Create a copy of the data.
let mut data_copy = KVec::new();
data_copy.extend_from_slice(data, GFP_KERNEL)?;
Ok(BiosImageBase {
+ dev: dev.into(),
rom_header,
pcir,
npde,
@@ -848,7 +839,7 @@ impl PciAtBiosImage {
///
/// This is just a 4 byte structure that contains a pointer to the Falcon data in the FWSEC
/// image.
- fn falcon_data_ptr(&self, pdev: &pci::Device) -> Result<u32> {
+ fn falcon_data_ptr(&self) -> Result<u32> {
let token = self.get_bit_token(BIT_TOKEN_ID_FALCON_DATA)?;
// Make sure we don't go out of bounds
@@ -859,14 +850,14 @@ impl PciAtBiosImage {
// read the 4 bytes at the offset specified in the token
let offset = token.data_offset as usize;
let bytes: [u8; 4] = self.base.data[offset..offset + 4].try_into().map_err(|_| {
- dev_err!(pdev.as_ref(), "Failed to convert data slice to array");
+ dev_err!(self.base.dev, "Failed to convert data slice to array");
EINVAL
})?;
let data_ptr = u32::from_le_bytes(bytes);
if (data_ptr as usize) < self.base.data.len() {
- dev_err!(pdev.as_ref(), "Falcon data pointer out of bounds\n");
+ dev_err!(self.base.dev, "Falcon data pointer out of bounds\n");
return Err(EINVAL);
}
@@ -892,7 +883,7 @@ impl TryFrom<BiosImageBase> for PciAtBiosImage {
/// The [`PmuLookupTableEntry`] structure is a single entry in the [`PmuLookupTable`].
///
/// See the [`PmuLookupTable`] description for more information.
-#[expect(dead_code)]
+#[repr(C, packed)]
struct PmuLookupTableEntry {
application_id: u8,
target_id: u8,
@@ -901,7 +892,7 @@ struct PmuLookupTableEntry {
impl PmuLookupTableEntry {
fn new(data: &[u8]) -> Result<Self> {
- if data.len() < 6 {
+ if data.len() < core::mem::size_of::<Self>() {
return Err(EINVAL);
}
@@ -928,7 +919,7 @@ struct PmuLookupTable {
}
impl PmuLookupTable {
- fn new(pdev: &pci::Device, data: &[u8]) -> Result<Self> {
+ fn new(dev: &device::Device, data: &[u8]) -> Result<Self> {
if data.len() < 4 {
return Err(EINVAL);
}
@@ -940,10 +931,7 @@ impl PmuLookupTable {
let required_bytes = header_len + (entry_count * entry_len);
if data.len() < required_bytes {
- dev_err!(
- pdev.as_ref(),
- "PmuLookupTable data length less than required\n"
- );
+ dev_err!(dev, "PmuLookupTable data length less than required\n");
return Err(EINVAL);
}
@@ -956,11 +944,7 @@ impl PmuLookupTable {
// Debug logging of entries (dumps the table data to dmesg)
for i in (header_len..required_bytes).step_by(entry_len) {
- dev_dbg!(
- pdev.as_ref(),
- "PMU entry: {:02x?}\n",
- &data[i..][..entry_len]
- );
+ dev_dbg!(dev, "PMU entry: {:02x?}\n", &data[i..][..entry_len]);
}
Ok(PmuLookupTable {
@@ -997,11 +981,10 @@ impl PmuLookupTable {
impl FwSecBiosBuilder {
fn setup_falcon_data(
&mut self,
- pdev: &pci::Device,
pci_at_image: &PciAtBiosImage,
first_fwsec: &FwSecBiosBuilder,
) -> Result {
- let mut offset = pci_at_image.falcon_data_ptr(pdev)? as usize;
+ let mut offset = pci_at_image.falcon_data_ptr()? as usize;
let mut pmu_in_first_fwsec = false;
// The falcon data pointer assumes that the PciAt and FWSEC images
@@ -1024,10 +1007,15 @@ impl FwSecBiosBuilder {
self.falcon_data_offset = Some(offset);
if pmu_in_first_fwsec {
- self.pmu_lookup_table =
- Some(PmuLookupTable::new(pdev, &first_fwsec.base.data[offset..])?);
+ self.pmu_lookup_table = Some(PmuLookupTable::new(
+ &self.base.dev,
+ &first_fwsec.base.data[offset..],
+ )?);
} else {
- self.pmu_lookup_table = Some(PmuLookupTable::new(pdev, &self.base.data[offset..])?);
+ self.pmu_lookup_table = Some(PmuLookupTable::new(
+ &self.base.dev,
+ &self.base.data[offset..],
+ )?);
}
match self
@@ -1040,7 +1028,7 @@ impl FwSecBiosBuilder {
let mut ucode_offset = entry.data as usize;
ucode_offset -= pci_at_image.base.data.len();
if ucode_offset < first_fwsec.base.data.len() {
- dev_err!(pdev.as_ref(), "Falcon Ucode offset not in second Fwsec.\n");
+ dev_err!(self.base.dev, "Falcon Ucode offset not in second Fwsec.\n");
return Err(EINVAL);
}
ucode_offset -= first_fwsec.base.data.len();
@@ -1048,7 +1036,7 @@ impl FwSecBiosBuilder {
}
Err(e) => {
dev_err!(
- pdev.as_ref(),
+ self.base.dev,
"PmuLookupTableEntry not found, error: {:?}\n",
e
);
@@ -1059,7 +1047,7 @@ impl FwSecBiosBuilder {
}
/// Build the final FwSecBiosImage from this builder
- fn build(self, pdev: &pci::Device) -> Result<FwSecBiosImage> {
+ fn build(self) -> Result<FwSecBiosImage> {
let ret = FwSecBiosImage {
base: self.base,
falcon_ucode_offset: self.falcon_ucode_offset.ok_or(EINVAL)?,
@@ -1067,8 +1055,8 @@ impl FwSecBiosBuilder {
if cfg!(debug_assertions) {
// Print the desc header for debugging
- let desc = ret.header(pdev.as_ref())?;
- dev_dbg!(pdev.as_ref(), "PmuLookupTableEntry desc: {:#?}\n", desc);
+ let desc = ret.header()?;
+ dev_dbg!(ret.base.dev, "PmuLookupTableEntry desc: {:#?}\n", desc);
}
Ok(ret)
@@ -1077,13 +1065,16 @@ impl FwSecBiosBuilder {
impl FwSecBiosImage {
/// Get the FwSec header ([`FalconUCodeDescV3`]).
- pub(crate) fn header(&self, dev: &device::Device) -> Result<&FalconUCodeDescV3> {
+ pub(crate) fn header(&self) -> Result<&FalconUCodeDescV3> {
// Get the falcon ucode offset that was found in setup_falcon_data.
let falcon_ucode_offset = self.falcon_ucode_offset;
// Make sure the offset is within the data bounds.
if falcon_ucode_offset + core::mem::size_of::<FalconUCodeDescV3>() > self.base.data.len() {
- dev_err!(dev, "fwsec-frts header not contained within BIOS bounds\n");
+ dev_err!(
+ self.base.dev,
+ "fwsec-frts header not contained within BIOS bounds\n"
+ );
return Err(ERANGE);
}
@@ -1095,7 +1086,7 @@ impl FwSecBiosImage {
let ver = (hdr & 0xff00) >> 8;
if ver != 3 {
- dev_err!(dev, "invalid fwsec firmware version: {:?}\n", ver);
+ dev_err!(self.base.dev, "invalid fwsec firmware version: {:?}\n", ver);
return Err(EINVAL);
}
@@ -1115,7 +1106,7 @@ impl FwSecBiosImage {
}
/// Get the ucode data as a byte slice
- pub(crate) fn ucode(&self, dev: &device::Device, desc: &FalconUCodeDescV3) -> Result<&[u8]> {
+ pub(crate) fn ucode(&self, desc: &FalconUCodeDescV3) -> Result<&[u8]> {
let falcon_ucode_offset = self.falcon_ucode_offset;
// The ucode data follows the descriptor.
@@ -1127,15 +1118,16 @@ impl FwSecBiosImage {
.data
.get(ucode_data_offset..ucode_data_offset + size)
.ok_or(ERANGE)
- .inspect_err(|_| dev_err!(dev, "fwsec ucode data not contained within BIOS bounds\n"))
+ .inspect_err(|_| {
+ dev_err!(
+ self.base.dev,
+ "fwsec ucode data not contained within BIOS bounds\n"
+ )
+ })
}
/// Get the signatures as a byte slice
- pub(crate) fn sigs(
- &self,
- dev: &device::Device,
- desc: &FalconUCodeDescV3,
- ) -> Result<&[Bcrt30Rsa3kSignature]> {
+ pub(crate) fn sigs(&self, desc: &FalconUCodeDescV3) -> Result<&[Bcrt30Rsa3kSignature]> {
// The signatures data follows the descriptor.
let sigs_data_offset = self.falcon_ucode_offset + core::mem::size_of::<FalconUCodeDescV3>();
let sigs_size =
@@ -1144,7 +1136,7 @@ impl FwSecBiosImage {
// Make sure the data is within bounds.
if sigs_data_offset + sigs_size > self.base.data.len() {
dev_err!(
- dev,
+ self.base.dev,
"fwsec signatures data not contained within BIOS bounds\n"
);
return Err(ERANGE);