summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/ecc-realtek.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/ecc-realtek.c')
-rw-r--r--drivers/mtd/nand/ecc-realtek.c464
1 files changed, 464 insertions, 0 deletions
diff --git a/drivers/mtd/nand/ecc-realtek.c b/drivers/mtd/nand/ecc-realtek.c
new file mode 100644
index 000000000000..7d718934c909
--- /dev/null
+++ b/drivers/mtd/nand/ecc-realtek.c
@@ -0,0 +1,464 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Support for Realtek hardware ECC engine in RTL93xx SoCs
+ */
+
+#include <linux/bitfield.h>
+#include <linux/dma-mapping.h>
+#include <linux/mtd/nand.h>
+#include <linux/mutex.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+
+/*
+ * The Realtek ECC engine has two operation modes.
+ *
+ * - BCH6 : Generate 10 ECC bytes from 512 data bytes plus 6 free bytes
+ * - BCH12 : Generate 20 ECC bytes from 512 data bytes plus 6 free bytes
+ *
+ * It can run for arbitrary NAND flash chips with different block and OOB sizes. Currently there
+ * are only two known devices in the wild that have NAND flash and make use of this ECC engine
+ * (Linksys LGS328C & LGS352C). To keep compatibility with vendor firmware, new modes can only
+ * be added when new data layouts have been analyzed. For now allow BCH6 on flash with 2048 byte
+ * blocks and 64 bytes oob.
+ *
+ * This driver aligns with kernel ECC naming conventions. Neverthless a short notice on the
+ * Realtek naming conventions for the different structures in the OOB area.
+ *
+ * - BBI : Bad block indicator. The first two bytes of OOB. Protected by ECC!
+ * - tag : 6 User/free bytes. First tag "contains" 2 bytes BBI. Protected by ECC!
+ * - syndrome : ECC/parity bytes
+ *
+ * Altogether this gives currently the following block layout.
+ *
+ * +------+------+------+------+-----+------+------+------+------+-----+-----+-----+-----+
+ * | 512 | 512 | 512 | 512 | 2 | 4 | 6 | 6 | 6 | 10 | 10 | 10 | 10 |
+ * +------+------+------+------+-----+------+------+------+------+-----+-----+-----+-----+
+ * | data | data | data | data | BBI | free | free | free | free | ECC | ECC | ECC | ECC |
+ * +------+------+------+------+-----+------+------+------+------+-----+-----+-----+-----+
+ */
+
+#define RTL_ECC_ALLOWED_PAGE_SIZE 2048
+#define RTL_ECC_ALLOWED_OOB_SIZE 64
+#define RTL_ECC_ALLOWED_STRENGTH 6
+
+#define RTL_ECC_BLOCK_SIZE 512
+#define RTL_ECC_FREE_SIZE 6
+#define RTL_ECC_PARITY_SIZE_BCH6 10
+#define RTL_ECC_PARITY_SIZE_BCH12 20
+
+/*
+ * The engine is fed with two DMA regions. One for data (always 512 bytes) and one for free bytes
+ * and parity (either 16 bytes for BCH6 or 26 bytes for BCH12). Start and length of each must be
+ * aligned to a multiple of 4.
+ */
+
+#define RTL_ECC_DMA_FREE_PARITY_SIZE ALIGN(RTL_ECC_FREE_SIZE + RTL_ECC_PARITY_SIZE_BCH12, 4)
+#define RTL_ECC_DMA_SIZE (RTL_ECC_BLOCK_SIZE + RTL_ECC_DMA_FREE_PARITY_SIZE)
+
+#define RTL_ECC_CFG 0x00
+#define RTL_ECC_BCH6 0
+#define RTL_ECC_BCH12 BIT(28)
+#define RTL_ECC_DMA_PRECISE BIT(12)
+#define RTL_ECC_BURST_128 GENMASK(1, 0)
+#define RTL_ECC_DMA_TRIGGER 0x08
+#define RTL_ECC_OP_DECODE 0
+#define RTL_ECC_OP_ENCODE BIT(0)
+#define RTL_ECC_DMA_START 0x0c
+#define RTL_ECC_DMA_TAG 0x10
+#define RTL_ECC_STATUS 0x14
+#define RTL_ECC_CORR_COUNT GENMASK(19, 12)
+#define RTL_ECC_RESULT BIT(8)
+#define RTL_ECC_ALL_ONE BIT(4)
+#define RTL_ECC_OP_STATUS BIT(0)
+
+struct rtl_ecc_engine {
+ struct device *dev;
+ struct nand_ecc_engine engine;
+ struct mutex lock;
+ char *buf;
+ dma_addr_t buf_dma;
+ struct regmap *regmap;
+};
+
+struct rtl_ecc_ctx {
+ struct rtl_ecc_engine * rtlc;
+ struct nand_ecc_req_tweak_ctx req_ctx;
+ int steps;
+ int bch_mode;
+ int strength;
+ int parity_size;
+};
+
+static const struct regmap_config rtl_ecc_regmap_config = {
+ .reg_bits = 32,
+ .val_bits = 32,
+ .reg_stride = 4,
+};
+
+static inline void *nand_to_ctx(struct nand_device *nand)
+{
+ return nand->ecc.ctx.priv;
+}
+
+static inline struct rtl_ecc_engine *nand_to_rtlc(struct nand_device *nand)
+{
+ struct nand_ecc_engine *eng = nand->ecc.engine;
+
+ return container_of(eng, struct rtl_ecc_engine, engine);
+}
+
+static int rtl_ecc_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
+
+ if (section < 0 || section >= ctx->steps)
+ return -ERANGE;
+
+ oobregion->offset = ctx->steps * RTL_ECC_FREE_SIZE + section * ctx->parity_size;
+ oobregion->length = ctx->parity_size;
+
+ return 0;
+}
+
+static int rtl_ecc_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
+ int bbm;
+
+ if (section < 0 || section >= ctx->steps)
+ return -ERANGE;
+
+ /* reserve 2 BBM bytes in first block */
+ bbm = section ? 0 : 2;
+ oobregion->offset = section * RTL_ECC_FREE_SIZE + bbm;
+ oobregion->length = RTL_ECC_FREE_SIZE - bbm;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops rtl_ecc_ooblayout_ops = {
+ .ecc = rtl_ecc_ooblayout_ecc,
+ .free = rtl_ecc_ooblayout_free,
+};
+
+static void rtl_ecc_kick_engine(struct rtl_ecc_ctx *ctx, int operation)
+{
+ struct rtl_ecc_engine *rtlc = ctx->rtlc;
+
+ regmap_write(rtlc->regmap, RTL_ECC_CFG,
+ ctx->bch_mode | RTL_ECC_BURST_128 | RTL_ECC_DMA_PRECISE);
+
+ regmap_write(rtlc->regmap, RTL_ECC_DMA_START, rtlc->buf_dma);
+ regmap_write(rtlc->regmap, RTL_ECC_DMA_TAG, rtlc->buf_dma + RTL_ECC_BLOCK_SIZE);
+ regmap_write(rtlc->regmap, RTL_ECC_DMA_TRIGGER, operation);
+}
+
+static int rtl_ecc_wait_for_engine(struct rtl_ecc_ctx *ctx)
+{
+ struct rtl_ecc_engine *rtlc = ctx->rtlc;
+ int ret, status, bitflips;
+ bool all_one;
+
+ /*
+ * The ECC engine needs 6-8 us to encode/decode a BCH6 syndrome for 512 bytes of data
+ * and 6 free bytes. In case the NAND area has been erased and all data and oob is
+ * set to 0xff, decoding takes 30us (reason unknown). Although the engine can trigger
+ * interrupts when finished, use active polling for now. 12 us maximum wait time has
+ * proven to be a good tradeoff between performance and overhead.
+ */
+
+ ret = regmap_read_poll_timeout(rtlc->regmap, RTL_ECC_STATUS, status,
+ !(status & RTL_ECC_OP_STATUS), 12, 1000000);
+ if (ret)
+ return ret;
+
+ ret = FIELD_GET(RTL_ECC_RESULT, status);
+ all_one = FIELD_GET(RTL_ECC_ALL_ONE, status);
+ bitflips = FIELD_GET(RTL_ECC_CORR_COUNT, status);
+
+ /* For erased blocks (all bits one) error status can be ignored */
+ if (all_one)
+ ret = 0;
+
+ return ret ? -EBADMSG : bitflips;
+}
+
+static int rtl_ecc_run_engine(struct rtl_ecc_ctx *ctx, char *data, char *free,
+ char *parity, int operation)
+{
+ struct rtl_ecc_engine *rtlc = ctx->rtlc;
+ char *buf_parity = rtlc->buf + RTL_ECC_BLOCK_SIZE + RTL_ECC_FREE_SIZE;
+ char *buf_free = rtlc->buf + RTL_ECC_BLOCK_SIZE;
+ char *buf_data = rtlc->buf;
+ int ret;
+
+ mutex_lock(&rtlc->lock);
+
+ memcpy(buf_data, data, RTL_ECC_BLOCK_SIZE);
+ memcpy(buf_free, free, RTL_ECC_FREE_SIZE);
+ memcpy(buf_parity, parity, ctx->parity_size);
+
+ dma_sync_single_for_device(rtlc->dev, rtlc->buf_dma, RTL_ECC_DMA_SIZE, DMA_TO_DEVICE);
+ rtl_ecc_kick_engine(ctx, operation);
+ ret = rtl_ecc_wait_for_engine(ctx);
+ dma_sync_single_for_cpu(rtlc->dev, rtlc->buf_dma, RTL_ECC_DMA_SIZE, DMA_FROM_DEVICE);
+
+ if (ret >= 0) {
+ memcpy(data, buf_data, RTL_ECC_BLOCK_SIZE);
+ memcpy(free, buf_free, RTL_ECC_FREE_SIZE);
+ memcpy(parity, buf_parity, ctx->parity_size);
+ }
+
+ mutex_unlock(&rtlc->lock);
+
+ return ret;
+}
+
+static int rtl_ecc_prepare_io_req(struct nand_device *nand, struct nand_page_io_req *req)
+{
+ struct rtl_ecc_engine *rtlc = nand_to_rtlc(nand);
+ struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
+ char *data, *free, *parity;
+ int ret = 0;
+
+ if (req->mode == MTD_OPS_RAW)
+ return 0;
+
+ nand_ecc_tweak_req(&ctx->req_ctx, req);
+
+ if (req->type == NAND_PAGE_READ)
+ return 0;
+
+ free = req->oobbuf.in;
+ data = req->databuf.in;
+ parity = req->oobbuf.in + ctx->steps * RTL_ECC_FREE_SIZE;
+
+ for (int i = 0; i < ctx->steps; i++) {
+ ret |= rtl_ecc_run_engine(ctx, data, free, parity, RTL_ECC_OP_ENCODE);
+
+ free += RTL_ECC_FREE_SIZE;
+ data += RTL_ECC_BLOCK_SIZE;
+ parity += ctx->parity_size;
+ }
+
+ if (unlikely(ret))
+ dev_dbg(rtlc->dev, "ECC calculation failed\n");
+
+ return ret ? -EBADMSG : 0;
+}
+
+static int rtl_ecc_finish_io_req(struct nand_device *nand, struct nand_page_io_req *req)
+{
+ struct rtl_ecc_engine *rtlc = nand_to_rtlc(nand);
+ struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ char *data, *free, *parity;
+ bool failure = false;
+ int bitflips = 0;
+
+ if (req->mode == MTD_OPS_RAW)
+ return 0;
+
+ if (req->type == NAND_PAGE_WRITE) {
+ nand_ecc_restore_req(&ctx->req_ctx, req);
+ return 0;
+ }
+
+ free = req->oobbuf.in;
+ data = req->databuf.in;
+ parity = req->oobbuf.in + ctx->steps * RTL_ECC_FREE_SIZE;
+
+ for (int i = 0 ; i < ctx->steps; i++) {
+ int ret = rtl_ecc_run_engine(ctx, data, free, parity, RTL_ECC_OP_DECODE);
+
+ if (unlikely(ret < 0))
+ /* ECC totally fails for bitflips in erased blocks */
+ ret = nand_check_erased_ecc_chunk(data, RTL_ECC_BLOCK_SIZE,
+ parity, ctx->parity_size,
+ free, RTL_ECC_FREE_SIZE,
+ ctx->strength);
+ if (unlikely(ret < 0)) {
+ failure = true;
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += ret;
+ bitflips = max_t(unsigned int, bitflips, ret);
+ }
+
+ free += RTL_ECC_FREE_SIZE;
+ data += RTL_ECC_BLOCK_SIZE;
+ parity += ctx->parity_size;
+ }
+
+ nand_ecc_restore_req(&ctx->req_ctx, req);
+
+ if (unlikely(failure))
+ dev_dbg(rtlc->dev, "ECC correction failed\n");
+ else if (unlikely(bitflips > 2))
+ dev_dbg(rtlc->dev, "%d bitflips detected\n", bitflips);
+
+ return failure ? -EBADMSG : bitflips;
+}
+
+static int rtl_ecc_check_support(struct nand_device *nand)
+{
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ struct device *dev = nand->ecc.engine->dev;
+
+ if (mtd->oobsize != RTL_ECC_ALLOWED_OOB_SIZE ||
+ mtd->writesize != RTL_ECC_ALLOWED_PAGE_SIZE) {
+ dev_err(dev, "only flash geometry data=%d, oob=%d supported\n",
+ RTL_ECC_ALLOWED_PAGE_SIZE, RTL_ECC_ALLOWED_OOB_SIZE);
+ return -EINVAL;
+ }
+
+ if (nand->ecc.user_conf.algo != NAND_ECC_ALGO_BCH ||
+ nand->ecc.user_conf.strength != RTL_ECC_ALLOWED_STRENGTH ||
+ nand->ecc.user_conf.placement != NAND_ECC_PLACEMENT_OOB ||
+ nand->ecc.user_conf.step_size != RTL_ECC_BLOCK_SIZE) {
+ dev_err(dev, "only algo=bch, strength=%d, placement=oob, step=%d supported\n",
+ RTL_ECC_ALLOWED_STRENGTH, RTL_ECC_BLOCK_SIZE);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int rtl_ecc_init_ctx(struct nand_device *nand)
+{
+ struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
+ struct rtl_ecc_engine *rtlc = nand_to_rtlc(nand);
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ int strength = nand->ecc.user_conf.strength;
+ struct device *dev = nand->ecc.engine->dev;
+ struct rtl_ecc_ctx *ctx;
+ int ret;
+
+ ret = rtl_ecc_check_support(nand);
+ if (ret)
+ return ret;
+
+ ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
+ if (!ctx)
+ return -ENOMEM;
+
+ nand->ecc.ctx.priv = ctx;
+ mtd_set_ooblayout(mtd, &rtl_ecc_ooblayout_ops);
+
+ conf->algo = NAND_ECC_ALGO_BCH;
+ conf->strength = strength;
+ conf->step_size = RTL_ECC_BLOCK_SIZE;
+ conf->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+
+ ctx->rtlc = rtlc;
+ ctx->steps = mtd->writesize / RTL_ECC_BLOCK_SIZE;
+ ctx->strength = strength;
+ ctx->bch_mode = strength == 6 ? RTL_ECC_BCH6 : RTL_ECC_BCH12;
+ ctx->parity_size = strength == 6 ? RTL_ECC_PARITY_SIZE_BCH6 : RTL_ECC_PARITY_SIZE_BCH12;
+
+ ret = nand_ecc_init_req_tweaking(&ctx->req_ctx, nand);
+ if (ret)
+ return ret;
+
+ dev_dbg(dev, "using bch%d with geometry data=%dx%d, free=%dx6, parity=%dx%d",
+ conf->strength, ctx->steps, conf->step_size,
+ ctx->steps, ctx->steps, ctx->parity_size);
+
+ return 0;
+}
+
+static void rtl_ecc_cleanup_ctx(struct nand_device *nand)
+{
+ struct rtl_ecc_ctx *ctx = nand_to_ctx(nand);
+
+ if (ctx)
+ nand_ecc_cleanup_req_tweaking(&ctx->req_ctx);
+}
+
+static struct nand_ecc_engine_ops rtl_ecc_engine_ops = {
+ .init_ctx = rtl_ecc_init_ctx,
+ .cleanup_ctx = rtl_ecc_cleanup_ctx,
+ .prepare_io_req = rtl_ecc_prepare_io_req,
+ .finish_io_req = rtl_ecc_finish_io_req,
+};
+
+static int rtl_ecc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct rtl_ecc_engine *rtlc;
+ void __iomem *base;
+ int ret;
+
+ rtlc = devm_kzalloc(dev, sizeof(*rtlc), GFP_KERNEL);
+ if (!rtlc)
+ return -ENOMEM;
+
+ base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(base))
+ return PTR_ERR(base);
+
+ ret = devm_mutex_init(dev, &rtlc->lock);
+ if (ret)
+ return ret;
+
+ rtlc->regmap = devm_regmap_init_mmio(dev, base, &rtl_ecc_regmap_config);
+ if (IS_ERR(rtlc->regmap))
+ return PTR_ERR(rtlc->regmap);
+
+ /*
+ * Focus on simplicity and use a preallocated DMA buffer for data exchange with the
+ * engine. For now make it a noncoherent memory model as invalidating/flushing caches
+ * is faster than reading/writing uncached memory on the known architectures.
+ */
+
+ rtlc->buf = dma_alloc_noncoherent(dev, RTL_ECC_DMA_SIZE, &rtlc->buf_dma,
+ DMA_BIDIRECTIONAL, GFP_KERNEL);
+ if (IS_ERR(rtlc->buf))
+ return PTR_ERR(rtlc->buf);
+
+ rtlc->dev = dev;
+ rtlc->engine.dev = dev;
+ rtlc->engine.ops = &rtl_ecc_engine_ops;
+ rtlc->engine.integration = NAND_ECC_ENGINE_INTEGRATION_EXTERNAL;
+
+ nand_ecc_register_on_host_hw_engine(&rtlc->engine);
+
+ platform_set_drvdata(pdev, rtlc);
+
+ return 0;
+}
+
+static void rtl_ecc_remove(struct platform_device *pdev)
+{
+ struct rtl_ecc_engine *rtlc = platform_get_drvdata(pdev);
+
+ nand_ecc_unregister_on_host_hw_engine(&rtlc->engine);
+ dma_free_noncoherent(rtlc->dev, RTL_ECC_DMA_SIZE, rtlc->buf, rtlc->buf_dma,
+ DMA_BIDIRECTIONAL);
+}
+
+static const struct of_device_id rtl_ecc_of_ids[] = {
+ {
+ .compatible = "realtek,rtl9301-ecc",
+ },
+ { /* sentinel */ },
+};
+
+static struct platform_driver rtl_ecc_driver = {
+ .driver = {
+ .name = "rtl-nand-ecc-engine",
+ .of_match_table = rtl_ecc_of_ids,
+ },
+ .probe = rtl_ecc_probe,
+ .remove = rtl_ecc_remove,
+};
+module_platform_driver(rtl_ecc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Markus Stockhausen <markus.stockhausen@gmx.de>");
+MODULE_DESCRIPTION("Realtek NAND hardware ECC controller");