diff options
Diffstat (limited to 'include/linux/mmap_lock.h')
-rw-r--r-- | include/linux/mmap_lock.h | 85 |
1 files changed, 0 insertions, 85 deletions
diff --git a/include/linux/mmap_lock.h b/include/linux/mmap_lock.h index 11a078de9150..2c9fffa58714 100644 --- a/include/linux/mmap_lock.h +++ b/include/linux/mmap_lock.h @@ -148,91 +148,6 @@ static inline void vma_refcount_put(struct vm_area_struct *vma) } /* - * Try to read-lock a vma. The function is allowed to occasionally yield false - * locked result to avoid performance overhead, in which case we fall back to - * using mmap_lock. The function should never yield false unlocked result. - * False locked result is possible if mm_lock_seq overflows or if vma gets - * reused and attached to a different mm before we lock it. - * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got - * detached. - * - * WARNING! The vma passed to this function cannot be used if the function - * fails to lock it because in certain cases RCU lock is dropped and then - * reacquired. Once RCU lock is dropped the vma can be concurently freed. - */ -static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, - struct vm_area_struct *vma) -{ - int oldcnt; - - /* - * Check before locking. A race might cause false locked result. - * We can use READ_ONCE() for the mm_lock_seq here, and don't need - * ACQUIRE semantics, because this is just a lockless check whose result - * we don't rely on for anything - the mm_lock_seq read against which we - * need ordering is below. - */ - if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence)) - return NULL; - - /* - * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire() - * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET. - * Acquire fence is required here to avoid reordering against later - * vm_lock_seq check and checks inside lock_vma_under_rcu(). - */ - if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, - VMA_REF_LIMIT))) { - /* return EAGAIN if vma got detached from under us */ - return oldcnt ? NULL : ERR_PTR(-EAGAIN); - } - - rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); - - /* - * If vma got attached to another mm from under us, that mm is not - * stable and can be freed in the narrow window after vma->vm_refcnt - * is dropped and before rcuwait_wake_up(mm) is called. Grab it before - * releasing vma->vm_refcnt. - */ - if (unlikely(vma->vm_mm != mm)) { - /* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */ - struct mm_struct *other_mm = vma->vm_mm; - - /* - * __mmdrop() is a heavy operation and we don't need RCU - * protection here. Release RCU lock during these operations. - * We reinstate the RCU read lock as the caller expects it to - * be held when this function returns even on error. - */ - rcu_read_unlock(); - mmgrab(other_mm); - vma_refcount_put(vma); - mmdrop(other_mm); - rcu_read_lock(); - return NULL; - } - - /* - * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result. - * False unlocked result is impossible because we modify and check - * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq - * modification invalidates all existing locks. - * - * We must use ACQUIRE semantics for the mm_lock_seq so that if we are - * racing with vma_end_write_all(), we only start reading from the VMA - * after it has been unlocked. - * This pairs with RELEASE semantics in vma_end_write_all(). - */ - if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) { - vma_refcount_put(vma); - return NULL; - } - - return vma; -} - -/* * Use only while holding mmap read lock which guarantees that locking will not * fail (nobody can concurrently write-lock the vma). vma_start_read() should * not be used in such cases because it might fail due to mm_lock_seq overflow. |