diff options
Diffstat (limited to 'lib/crypto/sha3.c')
| -rw-r--r-- | lib/crypto/sha3.c | 411 |
1 files changed, 411 insertions, 0 deletions
diff --git a/lib/crypto/sha3.c b/lib/crypto/sha3.c new file mode 100644 index 000000000000..32b7074de792 --- /dev/null +++ b/lib/crypto/sha3.c @@ -0,0 +1,411 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * SHA-3, as specified in + * https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf + * + * SHA-3 code by Jeff Garzik <jeff@garzik.org> + * Ard Biesheuvel <ard.biesheuvel@linaro.org> + * David Howells <dhowells@redhat.com> + * + * See also Documentation/crypto/sha3.rst + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt +#include <crypto/sha3.h> +#include <crypto/utils.h> +#include <linux/export.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/unaligned.h> +#include "fips.h" + +/* + * On some 32-bit architectures, such as h8300, GCC ends up using over 1 KB of + * stack if the round calculation gets inlined into the loop in + * sha3_keccakf_generic(). On the other hand, on 64-bit architectures with + * plenty of [64-bit wide] general purpose registers, not inlining it severely + * hurts performance. So let's use 64-bitness as a heuristic to decide whether + * to inline or not. + */ +#ifdef CONFIG_64BIT +#define SHA3_INLINE inline +#else +#define SHA3_INLINE noinline +#endif + +#define SHA3_KECCAK_ROUNDS 24 + +static const u64 sha3_keccakf_rndc[SHA3_KECCAK_ROUNDS] = { + 0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL, + 0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL, + 0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL, + 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL, + 0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, + 0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL, + 0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL, + 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL +}; + +/* + * Perform a single round of Keccak mixing. + */ +static SHA3_INLINE void sha3_keccakf_one_round_generic(u64 st[25], int round) +{ + u64 t[5], tt, bc[5]; + + /* Theta */ + bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20]; + bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21]; + bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22]; + bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23]; + bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24]; + + t[0] = bc[4] ^ rol64(bc[1], 1); + t[1] = bc[0] ^ rol64(bc[2], 1); + t[2] = bc[1] ^ rol64(bc[3], 1); + t[3] = bc[2] ^ rol64(bc[4], 1); + t[4] = bc[3] ^ rol64(bc[0], 1); + + st[0] ^= t[0]; + + /* Rho Pi */ + tt = st[1]; + st[ 1] = rol64(st[ 6] ^ t[1], 44); + st[ 6] = rol64(st[ 9] ^ t[4], 20); + st[ 9] = rol64(st[22] ^ t[2], 61); + st[22] = rol64(st[14] ^ t[4], 39); + st[14] = rol64(st[20] ^ t[0], 18); + st[20] = rol64(st[ 2] ^ t[2], 62); + st[ 2] = rol64(st[12] ^ t[2], 43); + st[12] = rol64(st[13] ^ t[3], 25); + st[13] = rol64(st[19] ^ t[4], 8); + st[19] = rol64(st[23] ^ t[3], 56); + st[23] = rol64(st[15] ^ t[0], 41); + st[15] = rol64(st[ 4] ^ t[4], 27); + st[ 4] = rol64(st[24] ^ t[4], 14); + st[24] = rol64(st[21] ^ t[1], 2); + st[21] = rol64(st[ 8] ^ t[3], 55); + st[ 8] = rol64(st[16] ^ t[1], 45); + st[16] = rol64(st[ 5] ^ t[0], 36); + st[ 5] = rol64(st[ 3] ^ t[3], 28); + st[ 3] = rol64(st[18] ^ t[3], 21); + st[18] = rol64(st[17] ^ t[2], 15); + st[17] = rol64(st[11] ^ t[1], 10); + st[11] = rol64(st[ 7] ^ t[2], 6); + st[ 7] = rol64(st[10] ^ t[0], 3); + st[10] = rol64( tt ^ t[1], 1); + + /* Chi */ + bc[ 0] = ~st[ 1] & st[ 2]; + bc[ 1] = ~st[ 2] & st[ 3]; + bc[ 2] = ~st[ 3] & st[ 4]; + bc[ 3] = ~st[ 4] & st[ 0]; + bc[ 4] = ~st[ 0] & st[ 1]; + st[ 0] ^= bc[ 0]; + st[ 1] ^= bc[ 1]; + st[ 2] ^= bc[ 2]; + st[ 3] ^= bc[ 3]; + st[ 4] ^= bc[ 4]; + + bc[ 0] = ~st[ 6] & st[ 7]; + bc[ 1] = ~st[ 7] & st[ 8]; + bc[ 2] = ~st[ 8] & st[ 9]; + bc[ 3] = ~st[ 9] & st[ 5]; + bc[ 4] = ~st[ 5] & st[ 6]; + st[ 5] ^= bc[ 0]; + st[ 6] ^= bc[ 1]; + st[ 7] ^= bc[ 2]; + st[ 8] ^= bc[ 3]; + st[ 9] ^= bc[ 4]; + + bc[ 0] = ~st[11] & st[12]; + bc[ 1] = ~st[12] & st[13]; + bc[ 2] = ~st[13] & st[14]; + bc[ 3] = ~st[14] & st[10]; + bc[ 4] = ~st[10] & st[11]; + st[10] ^= bc[ 0]; + st[11] ^= bc[ 1]; + st[12] ^= bc[ 2]; + st[13] ^= bc[ 3]; + st[14] ^= bc[ 4]; + + bc[ 0] = ~st[16] & st[17]; + bc[ 1] = ~st[17] & st[18]; + bc[ 2] = ~st[18] & st[19]; + bc[ 3] = ~st[19] & st[15]; + bc[ 4] = ~st[15] & st[16]; + st[15] ^= bc[ 0]; + st[16] ^= bc[ 1]; + st[17] ^= bc[ 2]; + st[18] ^= bc[ 3]; + st[19] ^= bc[ 4]; + + bc[ 0] = ~st[21] & st[22]; + bc[ 1] = ~st[22] & st[23]; + bc[ 2] = ~st[23] & st[24]; + bc[ 3] = ~st[24] & st[20]; + bc[ 4] = ~st[20] & st[21]; + st[20] ^= bc[ 0]; + st[21] ^= bc[ 1]; + st[22] ^= bc[ 2]; + st[23] ^= bc[ 3]; + st[24] ^= bc[ 4]; + + /* Iota */ + st[0] ^= sha3_keccakf_rndc[round]; +} + +/* Generic implementation of the Keccak-f[1600] permutation */ +static void sha3_keccakf_generic(struct sha3_state *state) +{ + /* + * Temporarily convert the state words from little-endian to native- + * endian so that they can be operated on. Note that on little-endian + * machines this conversion is a no-op and is optimized out. + */ + + for (int i = 0; i < ARRAY_SIZE(state->words); i++) + state->native_words[i] = le64_to_cpu(state->words[i]); + + for (int round = 0; round < SHA3_KECCAK_ROUNDS; round++) + sha3_keccakf_one_round_generic(state->native_words, round); + + for (int i = 0; i < ARRAY_SIZE(state->words); i++) + state->words[i] = cpu_to_le64(state->native_words[i]); +} + +/* + * Generic implementation of absorbing the given nonzero number of full blocks + * into the sponge function Keccak[r=8*block_size, c=1600-8*block_size]. + */ +static void __maybe_unused +sha3_absorb_blocks_generic(struct sha3_state *state, const u8 *data, + size_t nblocks, size_t block_size) +{ + do { + for (size_t i = 0; i < block_size; i += 8) + state->words[i / 8] ^= get_unaligned((__le64 *)&data[i]); + sha3_keccakf_generic(state); + data += block_size; + } while (--nblocks); +} + +#ifdef CONFIG_CRYPTO_LIB_SHA3_ARCH +#include "sha3.h" /* $(SRCARCH)/sha3.h */ +#else +#define sha3_keccakf sha3_keccakf_generic +#define sha3_absorb_blocks sha3_absorb_blocks_generic +#endif + +void __sha3_update(struct __sha3_ctx *ctx, const u8 *in, size_t in_len) +{ + const size_t block_size = ctx->block_size; + size_t absorb_offset = ctx->absorb_offset; + + /* Warn if squeezing has already begun. */ + WARN_ON_ONCE(absorb_offset >= block_size); + + if (absorb_offset && absorb_offset + in_len >= block_size) { + crypto_xor(&ctx->state.bytes[absorb_offset], in, + block_size - absorb_offset); + in += block_size - absorb_offset; + in_len -= block_size - absorb_offset; + sha3_keccakf(&ctx->state); + absorb_offset = 0; + } + + if (in_len >= block_size) { + size_t nblocks = in_len / block_size; + + sha3_absorb_blocks(&ctx->state, in, nblocks, block_size); + in += nblocks * block_size; + in_len -= nblocks * block_size; + } + + if (in_len) { + crypto_xor(&ctx->state.bytes[absorb_offset], in, in_len); + absorb_offset += in_len; + } + ctx->absorb_offset = absorb_offset; +} +EXPORT_SYMBOL_GPL(__sha3_update); + +void sha3_final(struct sha3_ctx *sha3_ctx, u8 *out) +{ + struct __sha3_ctx *ctx = &sha3_ctx->ctx; + + ctx->state.bytes[ctx->absorb_offset] ^= 0x06; + ctx->state.bytes[ctx->block_size - 1] ^= 0x80; + sha3_keccakf(&ctx->state); + memcpy(out, ctx->state.bytes, ctx->digest_size); + sha3_zeroize_ctx(sha3_ctx); +} +EXPORT_SYMBOL_GPL(sha3_final); + +void shake_squeeze(struct shake_ctx *shake_ctx, u8 *out, size_t out_len) +{ + struct __sha3_ctx *ctx = &shake_ctx->ctx; + const size_t block_size = ctx->block_size; + size_t squeeze_offset = ctx->squeeze_offset; + + if (ctx->absorb_offset < block_size) { + /* First squeeze: */ + + /* Add the domain separation suffix and padding. */ + ctx->state.bytes[ctx->absorb_offset] ^= 0x1f; + ctx->state.bytes[block_size - 1] ^= 0x80; + + /* Indicate that squeezing has begun. */ + ctx->absorb_offset = block_size; + + /* + * Indicate that no output is pending yet, i.e. sha3_keccakf() + * will need to be called before the first copy. + */ + squeeze_offset = block_size; + } + while (out_len) { + if (squeeze_offset == block_size) { + sha3_keccakf(&ctx->state); + squeeze_offset = 0; + } + size_t copy = min(out_len, block_size - squeeze_offset); + + memcpy(out, &ctx->state.bytes[squeeze_offset], copy); + out += copy; + out_len -= copy; + squeeze_offset += copy; + } + ctx->squeeze_offset = squeeze_offset; +} +EXPORT_SYMBOL_GPL(shake_squeeze); + +#ifndef sha3_224_arch +static inline bool sha3_224_arch(const u8 *in, size_t in_len, + u8 out[SHA3_224_DIGEST_SIZE]) +{ + return false; +} +#endif +#ifndef sha3_256_arch +static inline bool sha3_256_arch(const u8 *in, size_t in_len, + u8 out[SHA3_256_DIGEST_SIZE]) +{ + return false; +} +#endif +#ifndef sha3_384_arch +static inline bool sha3_384_arch(const u8 *in, size_t in_len, + u8 out[SHA3_384_DIGEST_SIZE]) +{ + return false; +} +#endif +#ifndef sha3_512_arch +static inline bool sha3_512_arch(const u8 *in, size_t in_len, + u8 out[SHA3_512_DIGEST_SIZE]) +{ + return false; +} +#endif + +void sha3_224(const u8 *in, size_t in_len, u8 out[SHA3_224_DIGEST_SIZE]) +{ + struct sha3_ctx ctx; + + if (sha3_224_arch(in, in_len, out)) + return; + sha3_224_init(&ctx); + sha3_update(&ctx, in, in_len); + sha3_final(&ctx, out); +} +EXPORT_SYMBOL_GPL(sha3_224); + +void sha3_256(const u8 *in, size_t in_len, u8 out[SHA3_256_DIGEST_SIZE]) +{ + struct sha3_ctx ctx; + + if (sha3_256_arch(in, in_len, out)) + return; + sha3_256_init(&ctx); + sha3_update(&ctx, in, in_len); + sha3_final(&ctx, out); +} +EXPORT_SYMBOL_GPL(sha3_256); + +void sha3_384(const u8 *in, size_t in_len, u8 out[SHA3_384_DIGEST_SIZE]) +{ + struct sha3_ctx ctx; + + if (sha3_384_arch(in, in_len, out)) + return; + sha3_384_init(&ctx); + sha3_update(&ctx, in, in_len); + sha3_final(&ctx, out); +} +EXPORT_SYMBOL_GPL(sha3_384); + +void sha3_512(const u8 *in, size_t in_len, u8 out[SHA3_512_DIGEST_SIZE]) +{ + struct sha3_ctx ctx; + + if (sha3_512_arch(in, in_len, out)) + return; + sha3_512_init(&ctx); + sha3_update(&ctx, in, in_len); + sha3_final(&ctx, out); +} +EXPORT_SYMBOL_GPL(sha3_512); + +void shake128(const u8 *in, size_t in_len, u8 *out, size_t out_len) +{ + struct shake_ctx ctx; + + shake128_init(&ctx); + shake_update(&ctx, in, in_len); + shake_squeeze(&ctx, out, out_len); + shake_zeroize_ctx(&ctx); +} +EXPORT_SYMBOL_GPL(shake128); + +void shake256(const u8 *in, size_t in_len, u8 *out, size_t out_len) +{ + struct shake_ctx ctx; + + shake256_init(&ctx); + shake_update(&ctx, in, in_len); + shake_squeeze(&ctx, out, out_len); + shake_zeroize_ctx(&ctx); +} +EXPORT_SYMBOL_GPL(shake256); + +#if defined(sha3_mod_init_arch) || defined(CONFIG_CRYPTO_FIPS) +static int __init sha3_mod_init(void) +{ +#ifdef sha3_mod_init_arch + sha3_mod_init_arch(); +#endif + if (fips_enabled) { + /* + * FIPS cryptographic algorithm self-test. As per the FIPS + * Implementation Guidance, testing any SHA-3 algorithm + * satisfies the test requirement for all of them. + */ + u8 hash[SHA3_256_DIGEST_SIZE]; + + sha3_256(fips_test_data, sizeof(fips_test_data), hash); + if (memcmp(fips_test_sha3_256_value, hash, sizeof(hash)) != 0) + panic("sha3: FIPS self-test failed\n"); + } + return 0; +} +subsys_initcall(sha3_mod_init); + +static void __exit sha3_mod_exit(void) +{ +} +module_exit(sha3_mod_exit); +#endif + +MODULE_DESCRIPTION("SHA-3 library functions"); +MODULE_LICENSE("GPL"); |
