diff options
Diffstat (limited to 'rust/kernel/str.rs')
-rw-r--r-- | rust/kernel/str.rs | 162 |
1 files changed, 150 insertions, 12 deletions
diff --git a/rust/kernel/str.rs b/rust/kernel/str.rs index 6c892550c0ba..5c74e5f77601 100644 --- a/rust/kernel/str.rs +++ b/rust/kernel/str.rs @@ -2,11 +2,16 @@ //! String representations. -use crate::alloc::{flags::*, AllocError, KVec}; -use crate::fmt::{self, Write}; -use core::ops::{self, Deref, DerefMut, Index}; - -use crate::prelude::*; +use crate::{ + alloc::{flags::*, AllocError, KVec}, + error::{to_result, Result}, + fmt::{self, Write}, + prelude::*, +}; +use core::{ + marker::PhantomData, + ops::{self, Deref, DerefMut, Index}, +}; /// Byte string without UTF-8 validity guarantee. #[repr(transparent)] @@ -732,7 +737,7 @@ mod tests { /// /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` /// is less than `end`. -pub(crate) struct RawFormatter { +pub struct RawFormatter { // Use `usize` to use `saturating_*` functions. beg: usize, pos: usize, @@ -790,7 +795,7 @@ impl RawFormatter { } /// Returns the number of bytes written to the formatter. - pub(crate) fn bytes_written(&self) -> usize { + pub fn bytes_written(&self) -> usize { self.pos - self.beg } } @@ -824,9 +829,9 @@ impl fmt::Write for RawFormatter { /// Allows formatting of [`fmt::Arguments`] into a raw buffer. /// /// Fails if callers attempt to write more than will fit in the buffer. -pub(crate) struct Formatter(RawFormatter); +pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>); -impl Formatter { +impl Formatter<'_> { /// Creates a new instance of [`Formatter`] with the given buffer. /// /// # Safety @@ -835,11 +840,18 @@ impl Formatter { /// for the lifetime of the returned [`Formatter`]. pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { // SAFETY: The safety requirements of this function satisfy those of the callee. - Self(unsafe { RawFormatter::from_buffer(buf, len) }) + Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData) + } + + /// Create a new [`Self`] instance. + pub fn new(buffer: &mut [u8]) -> Self { + // SAFETY: `buffer` is valid for writes for the entire length for + // the lifetime of `Self`. + unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) } } } -impl Deref for Formatter { +impl Deref for Formatter<'_> { type Target = RawFormatter; fn deref(&self) -> &Self::Target { @@ -847,7 +859,7 @@ impl Deref for Formatter { } } -impl fmt::Write for Formatter { +impl fmt::Write for Formatter<'_> { fn write_str(&mut self, s: &str) -> fmt::Result { self.0.write_str(s)?; @@ -860,6 +872,132 @@ impl fmt::Write for Formatter { } } +/// A mutable reference to a byte buffer where a string can be written into. +/// +/// The buffer will be automatically null terminated after the last written character. +/// +/// # Invariants +/// +/// * The first byte of `buffer` is always zero. +/// * The length of `buffer` is at least 1. +pub(crate) struct NullTerminatedFormatter<'a> { + buffer: &'a mut [u8], +} + +impl<'a> NullTerminatedFormatter<'a> { + /// Create a new [`Self`] instance. + pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> { + *(buffer.first_mut()?) = 0; + + // INVARIANT: + // - We wrote zero to the first byte above. + // - If buffer was not at least length 1, `buffer.first_mut()` would return None. + Some(Self { buffer }) + } +} + +impl Write for NullTerminatedFormatter<'_> { + fn write_str(&mut self, s: &str) -> fmt::Result { + let bytes = s.as_bytes(); + let len = bytes.len(); + + // We want space for a zero. By type invariant, buffer length is always at least 1, so no + // underflow. + if len > self.buffer.len() - 1 { + return Err(fmt::Error); + } + + let buffer = core::mem::take(&mut self.buffer); + // We break the zero start invariant for a short while. + buffer[..len].copy_from_slice(bytes); + // INVARIANT: We checked above that buffer will have size at least 1 after this assignment. + self.buffer = &mut buffer[len..]; + + // INVARIANT: We write zero to the first byte of the buffer. + self.buffer[0] = 0; + + Ok(()) + } +} + +/// # Safety +/// +/// - `string` must point to a null terminated string that is valid for read. +unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> { + let mut result: bool = false; + + // SAFETY: + // - By function safety requirement, `string` is a valid null-terminated string. + // - `result` is a valid `bool` that we own. + to_result(unsafe { bindings::kstrtobool(string, &mut result) })?; + Ok(result) +} + +/// Convert common user inputs into boolean values using the kernel's `kstrtobool` function. +/// +/// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or +/// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`. +/// +/// # Examples +/// +/// ``` +/// # use kernel::{c_str, str::kstrtobool}; +/// +/// // Lowercase +/// assert_eq!(kstrtobool(c_str!("true")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("tr")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("t")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("twrong")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("false")), Ok(false)); +/// assert_eq!(kstrtobool(c_str!("f")), Ok(false)); +/// assert_eq!(kstrtobool(c_str!("yes")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("no")), Ok(false)); +/// assert_eq!(kstrtobool(c_str!("on")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("off")), Ok(false)); +/// +/// // Camel case +/// assert_eq!(kstrtobool(c_str!("True")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("False")), Ok(false)); +/// assert_eq!(kstrtobool(c_str!("Yes")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("No")), Ok(false)); +/// assert_eq!(kstrtobool(c_str!("On")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("Off")), Ok(false)); +/// +/// // All caps +/// assert_eq!(kstrtobool(c_str!("TRUE")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("FALSE")), Ok(false)); +/// assert_eq!(kstrtobool(c_str!("YES")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("NO")), Ok(false)); +/// assert_eq!(kstrtobool(c_str!("ON")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("OFF")), Ok(false)); +/// +/// // Numeric +/// assert_eq!(kstrtobool(c_str!("1")), Ok(true)); +/// assert_eq!(kstrtobool(c_str!("0")), Ok(false)); +/// +/// // Invalid input +/// assert_eq!(kstrtobool(c_str!("invalid")), Err(EINVAL)); +/// assert_eq!(kstrtobool(c_str!("2")), Err(EINVAL)); +/// ``` +pub fn kstrtobool(string: &CStr) -> Result<bool> { + // SAFETY: + // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be + // null terminated. + // - `string` is live and thus the string is valid for read. + unsafe { kstrtobool_raw(string.as_char_ptr()) } +} + +/// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`]. +/// +/// Only considers at most the first two bytes of `bytes`. +pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> { + // `ktostrbool` only considers the first two bytes of the input. + let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0]; + // SAFETY: `stack_string` is null terminated and it is live on the stack so + // it is valid for read. + unsafe { kstrtobool_raw(stack_string.as_ptr()) } +} + /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. /// /// Used for interoperability with kernel APIs that take C strings. |