summaryrefslogtreecommitdiff
path: root/rust/kernel/sync/atomic.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/sync/atomic.rs')
-rw-r--r--rust/kernel/sync/atomic.rs551
1 files changed, 551 insertions, 0 deletions
diff --git a/rust/kernel/sync/atomic.rs b/rust/kernel/sync/atomic.rs
new file mode 100644
index 000000000000..016a6bcaf080
--- /dev/null
+++ b/rust/kernel/sync/atomic.rs
@@ -0,0 +1,551 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Atomic primitives.
+//!
+//! These primitives have the same semantics as their C counterparts: and the precise definitions of
+//! semantics can be found at [`LKMM`]. Note that Linux Kernel Memory (Consistency) Model is the
+//! only model for Rust code in kernel, and Rust's own atomics should be avoided.
+//!
+//! # Data races
+//!
+//! [`LKMM`] atomics have different rules regarding data races:
+//!
+//! - A normal write from C side is treated as an atomic write if
+//! CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=y.
+//! - Mixed-size atomic accesses don't cause data races.
+//!
+//! [`LKMM`]: srctree/tools/memory-model/
+
+mod internal;
+pub mod ordering;
+mod predefine;
+
+pub use internal::AtomicImpl;
+pub use ordering::{Acquire, Full, Relaxed, Release};
+
+use crate::build_error;
+use internal::{AtomicArithmeticOps, AtomicBasicOps, AtomicExchangeOps, AtomicRepr};
+use ordering::OrderingType;
+
+/// A memory location which can be safely modified from multiple execution contexts.
+///
+/// This has the same size, alignment and bit validity as the underlying type `T`. And it disables
+/// niche optimization for the same reason as [`UnsafeCell`].
+///
+/// The atomic operations are implemented in a way that is fully compatible with the [Linux Kernel
+/// Memory (Consistency) Model][LKMM], hence they should be modeled as the corresponding
+/// [`LKMM`][LKMM] atomic primitives. With the help of [`Atomic::from_ptr()`] and
+/// [`Atomic::as_ptr()`], this provides a way to interact with [C-side atomic operations]
+/// (including those without the `atomic` prefix, e.g. `READ_ONCE()`, `WRITE_ONCE()`,
+/// `smp_load_acquire()` and `smp_store_release()`).
+///
+/// # Invariants
+///
+/// `self.0` is a valid `T`.
+///
+/// [`UnsafeCell`]: core::cell::UnsafeCell
+/// [LKMM]: srctree/tools/memory-model/
+/// [C-side atomic operations]: srctree/Documentation/atomic_t.txt
+#[repr(transparent)]
+pub struct Atomic<T: AtomicType>(AtomicRepr<T::Repr>);
+
+// SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic.
+unsafe impl<T: AtomicType> Sync for Atomic<T> {}
+
+/// Types that support basic atomic operations.
+///
+/// # Round-trip transmutability
+///
+/// `T` is round-trip transmutable to `U` if and only if both of these properties hold:
+///
+/// - Any valid bit pattern for `T` is also a valid bit pattern for `U`.
+/// - Transmuting (e.g. using [`transmute()`]) a value of type `T` to `U` and then to `T` again
+/// yields a value that is in all aspects equivalent to the original value.
+///
+/// # Safety
+///
+/// - [`Self`] must have the same size and alignment as [`Self::Repr`].
+/// - [`Self`] must be [round-trip transmutable] to [`Self::Repr`].
+///
+/// Note that this is more relaxed than requiring the bi-directional transmutability (i.e.
+/// [`transmute()`] is always sound between `U` and `T`) because of the support for atomic
+/// variables over unit-only enums, see [Examples].
+///
+/// # Limitations
+///
+/// Because C primitives are used to implement the atomic operations, and a C function requires a
+/// valid object of a type to operate on (i.e. no `MaybeUninit<_>`), hence at the Rust <-> C
+/// surface, only types with all the bits initialized can be passed. As a result, types like `(u8,
+/// u16)` (padding bytes are uninitialized) are currently not supported.
+///
+/// # Examples
+///
+/// A unit-only enum that implements [`AtomicType`]:
+///
+/// ```
+/// use kernel::sync::atomic::{AtomicType, Atomic, Relaxed};
+///
+/// #[derive(Clone, Copy, PartialEq, Eq)]
+/// #[repr(i32)]
+/// enum State {
+/// Uninit = 0,
+/// Working = 1,
+/// Done = 2,
+/// };
+///
+/// // SAFETY: `State` and `i32` has the same size and alignment, and it's round-trip
+/// // transmutable to `i32`.
+/// unsafe impl AtomicType for State {
+/// type Repr = i32;
+/// }
+///
+/// let s = Atomic::new(State::Uninit);
+///
+/// assert_eq!(State::Uninit, s.load(Relaxed));
+/// ```
+/// [`transmute()`]: core::mem::transmute
+/// [round-trip transmutable]: AtomicType#round-trip-transmutability
+/// [Examples]: AtomicType#examples
+pub unsafe trait AtomicType: Sized + Send + Copy {
+ /// The backing atomic implementation type.
+ type Repr: AtomicImpl;
+}
+
+/// Types that support atomic add operations.
+///
+/// # Safety
+///
+// TODO: Properly defines `wrapping_add` in the following comment.
+/// `wrapping_add` any value of type `Self::Repr::Delta` obtained by [`Self::rhs_into_delta()`] to
+/// any value of type `Self::Repr` obtained through transmuting a value of type `Self` to must
+/// yield a value with a bit pattern also valid for `Self`.
+pub unsafe trait AtomicAdd<Rhs = Self>: AtomicType {
+ /// Converts `Rhs` into the `Delta` type of the atomic implementation.
+ fn rhs_into_delta(rhs: Rhs) -> <Self::Repr as AtomicImpl>::Delta;
+}
+
+#[inline(always)]
+const fn into_repr<T: AtomicType>(v: T) -> T::Repr {
+ // SAFETY: Per the safety requirement of `AtomicType`, `T` is round-trip transmutable to
+ // `T::Repr`, therefore the transmute operation is sound.
+ unsafe { core::mem::transmute_copy(&v) }
+}
+
+/// # Safety
+///
+/// `r` must be a valid bit pattern of `T`.
+#[inline(always)]
+const unsafe fn from_repr<T: AtomicType>(r: T::Repr) -> T {
+ // SAFETY: Per the safety requirement of the function, the transmute operation is sound.
+ unsafe { core::mem::transmute_copy(&r) }
+}
+
+impl<T: AtomicType> Atomic<T> {
+ /// Creates a new atomic `T`.
+ pub const fn new(v: T) -> Self {
+ // INVARIANT: Per the safety requirement of `AtomicType`, `into_repr(v)` is a valid `T`.
+ Self(AtomicRepr::new(into_repr(v)))
+ }
+
+ /// Creates a reference to an atomic `T` from a pointer of `T`.
+ ///
+ /// This usually is used when communicating with C side or manipulating a C struct, see
+ /// examples below.
+ ///
+ /// # Safety
+ ///
+ /// - `ptr` is aligned to `align_of::<T>()`.
+ /// - `ptr` is valid for reads and writes for `'a`.
+ /// - For the duration of `'a`, other accesses to `*ptr` must not cause data races (defined
+ /// by [`LKMM`]) against atomic operations on the returned reference. Note that if all other
+ /// accesses are atomic, then this safety requirement is trivially fulfilled.
+ ///
+ /// [`LKMM`]: srctree/tools/memory-model
+ ///
+ /// # Examples
+ ///
+ /// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can
+ /// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or
+ /// `WRITE_ONCE()`/`smp_store_release()` in C side:
+ ///
+ /// ```
+ /// # use kernel::types::Opaque;
+ /// use kernel::sync::atomic::{Atomic, Relaxed, Release};
+ ///
+ /// // Assume there is a C struct `foo`.
+ /// mod cbindings {
+ /// #[repr(C)]
+ /// pub(crate) struct foo {
+ /// pub(crate) a: i32,
+ /// pub(crate) b: i32
+ /// }
+ /// }
+ ///
+ /// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2 });
+ ///
+ /// // struct foo *foo_ptr = ..;
+ /// let foo_ptr = tmp.get();
+ ///
+ /// // SAFETY: `foo_ptr` is valid, and `.a` is in bounds.
+ /// let foo_a_ptr = unsafe { &raw mut (*foo_ptr).a };
+ ///
+ /// // a = READ_ONCE(foo_ptr->a);
+ /// //
+ /// // SAFETY: `foo_a_ptr` is valid for read, and all other accesses on it is atomic, so no
+ /// // data race.
+ /// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed);
+ /// # assert_eq!(a, 1);
+ ///
+ /// // smp_store_release(&foo_ptr->a, 2);
+ /// //
+ /// // SAFETY: `foo_a_ptr` is valid for writes, and all other accesses on it is atomic, so
+ /// // no data race.
+ /// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release);
+ /// ```
+ pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self
+ where
+ T: Sync,
+ {
+ // CAST: `T` and `Atomic<T>` have the same size, alignment and bit validity.
+ // SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will
+ // live long enough. It's safe to return a `&Atomic<T>` because function safety requirement
+ // guarantees other accesses won't cause data races.
+ unsafe { &*ptr.cast::<Self>() }
+ }
+
+ /// Returns a pointer to the underlying atomic `T`.
+ ///
+ /// Note that use of the return pointer must not cause data races defined by [`LKMM`].
+ ///
+ /// # Guarantees
+ ///
+ /// The returned pointer is valid and properly aligned (i.e. aligned to [`align_of::<T>()`]).
+ ///
+ /// [`LKMM`]: srctree/tools/memory-model
+ /// [`align_of::<T>()`]: core::mem::align_of
+ pub const fn as_ptr(&self) -> *mut T {
+ // GUARANTEE: Per the function guarantee of `AtomicRepr::as_ptr()`, the `self.0.as_ptr()`
+ // must be a valid and properly aligned pointer for `T::Repr`, and per the safety guarantee
+ // of `AtomicType`, it's a valid and properly aligned pointer of `T`.
+ self.0.as_ptr().cast()
+ }
+
+ /// Returns a mutable reference to the underlying atomic `T`.
+ ///
+ /// This is safe because the mutable reference of the atomic `T` guarantees exclusive access.
+ pub fn get_mut(&mut self) -> &mut T {
+ // CAST: `T` and `T::Repr` has the same size and alignment per the safety requirement of
+ // `AtomicType`, and per the type invariants `self.0` is a valid `T`, therefore the casting
+ // result is a valid pointer of `T`.
+ // SAFETY: The pointer is valid per the CAST comment above, and the mutable reference
+ // guarantees exclusive access.
+ unsafe { &mut *self.0.as_ptr().cast() }
+ }
+}
+
+impl<T: AtomicType> Atomic<T>
+where
+ T::Repr: AtomicBasicOps,
+{
+ /// Loads the value from the atomic `T`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Relaxed};
+ ///
+ /// let x = Atomic::new(42i32);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// let x = Atomic::new(42i64);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ /// ```
+ #[doc(alias("atomic_read", "atomic64_read"))]
+ #[inline(always)]
+ pub fn load<Ordering: ordering::AcquireOrRelaxed>(&self, _: Ordering) -> T {
+ let v = {
+ match Ordering::TYPE {
+ OrderingType::Relaxed => T::Repr::atomic_read(&self.0),
+ OrderingType::Acquire => T::Repr::atomic_read_acquire(&self.0),
+ _ => build_error!("Wrong ordering"),
+ }
+ };
+
+ // SAFETY: `v` comes from reading `self.0`, which is a valid `T` per the type invariants.
+ unsafe { from_repr(v) }
+ }
+
+ /// Stores a value to the atomic `T`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Relaxed};
+ ///
+ /// let x = Atomic::new(42i32);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// x.store(43, Relaxed);
+ ///
+ /// assert_eq!(43, x.load(Relaxed));
+ /// ```
+ #[doc(alias("atomic_set", "atomic64_set"))]
+ #[inline(always)]
+ pub fn store<Ordering: ordering::ReleaseOrRelaxed>(&self, v: T, _: Ordering) {
+ let v = into_repr(v);
+
+ // INVARIANT: `v` is a valid `T`, and is stored to `self.0` by `atomic_set*()`.
+ match Ordering::TYPE {
+ OrderingType::Relaxed => T::Repr::atomic_set(&self.0, v),
+ OrderingType::Release => T::Repr::atomic_set_release(&self.0, v),
+ _ => build_error!("Wrong ordering"),
+ }
+ }
+}
+
+impl<T: AtomicType> Atomic<T>
+where
+ T::Repr: AtomicExchangeOps,
+{
+ /// Atomic exchange.
+ ///
+ /// Atomically updates `*self` to `v` and returns the old value of `*self`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Acquire, Relaxed};
+ ///
+ /// let x = Atomic::new(42);
+ ///
+ /// assert_eq!(42, x.xchg(52, Acquire));
+ /// assert_eq!(52, x.load(Relaxed));
+ /// ```
+ #[doc(alias("atomic_xchg", "atomic64_xchg", "swap"))]
+ #[inline(always)]
+ pub fn xchg<Ordering: ordering::Ordering>(&self, v: T, _: Ordering) -> T {
+ let v = into_repr(v);
+
+ // INVARIANT: `self.0` is a valid `T` after `atomic_xchg*()` because `v` is transmutable to
+ // `T`.
+ let ret = {
+ match Ordering::TYPE {
+ OrderingType::Full => T::Repr::atomic_xchg(&self.0, v),
+ OrderingType::Acquire => T::Repr::atomic_xchg_acquire(&self.0, v),
+ OrderingType::Release => T::Repr::atomic_xchg_release(&self.0, v),
+ OrderingType::Relaxed => T::Repr::atomic_xchg_relaxed(&self.0, v),
+ }
+ };
+
+ // SAFETY: `ret` comes from reading `*self`, which is a valid `T` per type invariants.
+ unsafe { from_repr(ret) }
+ }
+
+ /// Atomic compare and exchange.
+ ///
+ /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
+ /// modified.
+ ///
+ /// Compare: The comparison is done via the byte level comparison between `*self` and `old`.
+ ///
+ /// Ordering: When succeeds, provides the corresponding ordering as the `Ordering` type
+ /// parameter indicates, and a failed one doesn't provide any ordering, the load part of a
+ /// failed cmpxchg is a [`Relaxed`] load.
+ ///
+ /// Returns `Ok(value)` if cmpxchg succeeds, and `value` is guaranteed to be equal to `old`,
+ /// otherwise returns `Err(value)`, and `value` is the current value of `*self`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Full, Relaxed};
+ ///
+ /// let x = Atomic::new(42);
+ ///
+ /// // Checks whether cmpxchg succeeded.
+ /// let success = x.cmpxchg(52, 64, Relaxed).is_ok();
+ /// # assert!(!success);
+ ///
+ /// // Checks whether cmpxchg failed.
+ /// let failure = x.cmpxchg(52, 64, Relaxed).is_err();
+ /// # assert!(failure);
+ ///
+ /// // Uses the old value if failed, probably re-try cmpxchg.
+ /// match x.cmpxchg(52, 64, Relaxed) {
+ /// Ok(_) => { },
+ /// Err(old) => {
+ /// // do something with `old`.
+ /// # assert_eq!(old, 42);
+ /// }
+ /// }
+ ///
+ /// // Uses the latest value regardlessly, same as atomic_cmpxchg() in C.
+ /// let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
+ /// # assert_eq!(42, latest);
+ /// assert_eq!(64, x.load(Relaxed));
+ /// ```
+ ///
+ /// [`Relaxed`]: ordering::Relaxed
+ #[doc(alias(
+ "atomic_cmpxchg",
+ "atomic64_cmpxchg",
+ "atomic_try_cmpxchg",
+ "atomic64_try_cmpxchg",
+ "compare_exchange"
+ ))]
+ #[inline(always)]
+ pub fn cmpxchg<Ordering: ordering::Ordering>(
+ &self,
+ mut old: T,
+ new: T,
+ o: Ordering,
+ ) -> Result<T, T> {
+ // Note on code generation:
+ //
+ // try_cmpxchg() is used to implement cmpxchg(), and if the helper functions are inlined,
+ // the compiler is able to figure out that branch is not needed if the users don't care
+ // about whether the operation succeeds or not. One exception is on x86, due to commit
+ // 44fe84459faf ("locking/atomic: Fix atomic_try_cmpxchg() semantics"), the
+ // atomic_try_cmpxchg() on x86 has a branch even if the caller doesn't care about the
+ // success of cmpxchg and only wants to use the old value. For example, for code like:
+ //
+ // let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
+ //
+ // It will still generate code:
+ //
+ // movl $0x40, %ecx
+ // movl $0x34, %eax
+ // lock
+ // cmpxchgl %ecx, 0x4(%rsp)
+ // jne 1f
+ // 2:
+ // ...
+ // 1: movl %eax, %ecx
+ // jmp 2b
+ //
+ // This might be "fixed" by introducing a try_cmpxchg_exclusive() that knows the "*old"
+ // location in the C function is always safe to write.
+ if self.try_cmpxchg(&mut old, new, o) {
+ Ok(old)
+ } else {
+ Err(old)
+ }
+ }
+
+ /// Atomic compare and exchange and returns whether the operation succeeds.
+ ///
+ /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
+ /// modified, `*old` is updated to the current value of `*self`.
+ ///
+ /// "Compare" and "Ordering" part are the same as [`Atomic::cmpxchg()`].
+ ///
+ /// Returns `true` means the cmpxchg succeeds otherwise returns `false`.
+ #[inline(always)]
+ fn try_cmpxchg<Ordering: ordering::Ordering>(&self, old: &mut T, new: T, _: Ordering) -> bool {
+ let mut tmp = into_repr(*old);
+ let new = into_repr(new);
+
+ // INVARIANT: `self.0` is a valid `T` after `atomic_try_cmpxchg*()` because `new` is
+ // transmutable to `T`.
+ let ret = {
+ match Ordering::TYPE {
+ OrderingType::Full => T::Repr::atomic_try_cmpxchg(&self.0, &mut tmp, new),
+ OrderingType::Acquire => {
+ T::Repr::atomic_try_cmpxchg_acquire(&self.0, &mut tmp, new)
+ }
+ OrderingType::Release => {
+ T::Repr::atomic_try_cmpxchg_release(&self.0, &mut tmp, new)
+ }
+ OrderingType::Relaxed => {
+ T::Repr::atomic_try_cmpxchg_relaxed(&self.0, &mut tmp, new)
+ }
+ }
+ };
+
+ // SAFETY: `tmp` comes from reading `*self`, which is a valid `T` per type invariants.
+ *old = unsafe { from_repr(tmp) };
+
+ ret
+ }
+}
+
+impl<T: AtomicType> Atomic<T>
+where
+ T::Repr: AtomicArithmeticOps,
+{
+ /// Atomic add.
+ ///
+ /// Atomically updates `*self` to `(*self).wrapping_add(v)`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Relaxed};
+ ///
+ /// let x = Atomic::new(42);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// x.add(12, Relaxed);
+ ///
+ /// assert_eq!(54, x.load(Relaxed));
+ /// ```
+ #[inline(always)]
+ pub fn add<Rhs>(&self, v: Rhs, _: ordering::Relaxed)
+ where
+ T: AtomicAdd<Rhs>,
+ {
+ let v = T::rhs_into_delta(v);
+
+ // INVARIANT: `self.0` is a valid `T` after `atomic_add()` due to safety requirement of
+ // `AtomicAdd`.
+ T::Repr::atomic_add(&self.0, v);
+ }
+
+ /// Atomic fetch and add.
+ ///
+ /// Atomically updates `*self` to `(*self).wrapping_add(v)`, and returns the value of `*self`
+ /// before the update.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Acquire, Full, Relaxed};
+ ///
+ /// let x = Atomic::new(42);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// assert_eq!(54, { x.fetch_add(12, Acquire); x.load(Relaxed) });
+ ///
+ /// let x = Atomic::new(42);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// assert_eq!(54, { x.fetch_add(12, Full); x.load(Relaxed) } );
+ /// ```
+ #[inline(always)]
+ pub fn fetch_add<Rhs, Ordering: ordering::Ordering>(&self, v: Rhs, _: Ordering) -> T
+ where
+ T: AtomicAdd<Rhs>,
+ {
+ let v = T::rhs_into_delta(v);
+
+ // INVARIANT: `self.0` is a valid `T` after `atomic_fetch_add*()` due to safety requirement
+ // of `AtomicAdd`.
+ let ret = {
+ match Ordering::TYPE {
+ OrderingType::Full => T::Repr::atomic_fetch_add(&self.0, v),
+ OrderingType::Acquire => T::Repr::atomic_fetch_add_acquire(&self.0, v),
+ OrderingType::Release => T::Repr::atomic_fetch_add_release(&self.0, v),
+ OrderingType::Relaxed => T::Repr::atomic_fetch_add_relaxed(&self.0, v),
+ }
+ };
+
+ // SAFETY: `ret` comes from reading `self.0`, which is a valid `T` per type invariants.
+ unsafe { from_repr(ret) }
+ }
+}