summaryrefslogtreecommitdiff
path: root/rust/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel')
-rw-r--r--rust/kernel/acpi.rs7
-rw-r--r--rust/kernel/alloc.rs15
-rw-r--r--rust/kernel/alloc/allocator.rs38
-rw-r--r--rust/kernel/alloc/allocator_test.rs113
-rw-r--r--rust/kernel/alloc/kbox.rs92
-rw-r--r--rust/kernel/alloc/kvec.rs24
-rw-r--r--rust/kernel/alloc/kvec/errors.rs2
-rw-r--r--rust/kernel/alloc/layout.rs2
-rw-r--r--rust/kernel/auxiliary.rs4
-rw-r--r--rust/kernel/block/mq.rs2
-rw-r--r--rust/kernel/block/mq/gen_disk.rs4
-rw-r--r--rust/kernel/block/mq/operations.rs7
-rw-r--r--rust/kernel/block/mq/raw_writer.rs3
-rw-r--r--rust/kernel/block/mq/request.rs73
-rw-r--r--rust/kernel/configfs.rs4
-rw-r--r--rust/kernel/cpu.rs1
-rw-r--r--rust/kernel/cpufreq.rs6
-rw-r--r--rust/kernel/cred.rs6
-rw-r--r--rust/kernel/device.rs215
-rw-r--r--rust/kernel/device/property.rs23
-rw-r--r--rust/kernel/devres.rs27
-rw-r--r--rust/kernel/dma.rs2
-rw-r--r--rust/kernel/driver.rs89
-rw-r--r--rust/kernel/drm/device.rs38
-rw-r--r--rust/kernel/drm/driver.rs2
-rw-r--r--rust/kernel/drm/file.rs2
-rw-r--r--rust/kernel/drm/gem/mod.rs2
-rw-r--r--rust/kernel/drm/ioctl.rs2
-rw-r--r--rust/kernel/error.rs66
-rw-r--r--rust/kernel/faux.rs2
-rw-r--r--rust/kernel/firmware.rs2
-rw-r--r--rust/kernel/fs/file.rs15
-rw-r--r--rust/kernel/kunit.rs14
-rw-r--r--rust/kernel/lib.rs20
-rw-r--r--rust/kernel/list.rs120
-rw-r--r--rust/kernel/miscdevice.rs2
-rw-r--r--rust/kernel/mm/virt.rs1
-rw-r--r--rust/kernel/net/phy.rs2
-rw-r--r--rust/kernel/of.rs2
-rw-r--r--rust/kernel/pid_namespace.rs5
-rw-r--r--rust/kernel/prelude.rs5
-rw-r--r--rust/kernel/ptr.rs228
-rw-r--r--rust/kernel/seq_file.rs6
-rw-r--r--rust/kernel/sync.rs4
-rw-r--r--rust/kernel/sync/arc.rs63
-rw-r--r--rust/kernel/sync/aref.rs17
-rw-r--r--rust/kernel/sync/atomic.rs551
-rw-r--r--rust/kernel/sync/atomic/internal.rs265
-rw-r--r--rust/kernel/sync/atomic/ordering.rs104
-rw-r--r--rust/kernel/sync/atomic/predefine.rs169
-rw-r--r--rust/kernel/sync/barrier.rs61
-rw-r--r--rust/kernel/sync/refcount.rs113
-rw-r--r--rust/kernel/task.rs7
-rw-r--r--rust/kernel/time.rs163
-rw-r--r--rust/kernel/time/hrtimer.rs152
-rw-r--r--rust/kernel/time/hrtimer/arc.rs9
-rw-r--r--rust/kernel/time/hrtimer/pin.rs9
-rw-r--r--rust/kernel/time/hrtimer/pin_mut.rs12
-rw-r--r--rust/kernel/time/hrtimer/tbox.rs9
59 files changed, 2621 insertions, 382 deletions
diff --git a/rust/kernel/acpi.rs b/rust/kernel/acpi.rs
index 7ae317368b00..37e1161c1298 100644
--- a/rust/kernel/acpi.rs
+++ b/rust/kernel/acpi.rs
@@ -37,11 +37,8 @@ impl DeviceId {
/// Create a new device id from an ACPI 'id' string.
#[inline(always)]
pub const fn new(id: &'static CStr) -> Self {
- build_assert!(
- id.len_with_nul() <= Self::ACPI_ID_LEN,
- "ID exceeds 16 bytes"
- );
- let src = id.as_bytes_with_nul();
+ let src = id.to_bytes_with_nul();
+ build_assert!(src.len() <= Self::ACPI_ID_LEN, "ID exceeds 16 bytes");
// Replace with `bindings::acpi_device_id::default()` once stabilized for `const`.
// SAFETY: FFI type is valid to be zero-initialized.
let mut acpi: bindings::acpi_device_id = unsafe { core::mem::zeroed() };
diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
index a2c49e5494d3..9c154209423c 100644
--- a/rust/kernel/alloc.rs
+++ b/rust/kernel/alloc.rs
@@ -2,18 +2,11 @@
//! Implementation of the kernel's memory allocation infrastructure.
-#[cfg(not(any(test, testlib)))]
pub mod allocator;
pub mod kbox;
pub mod kvec;
pub mod layout;
-#[cfg(any(test, testlib))]
-pub mod allocator_test;
-
-#[cfg(any(test, testlib))]
-pub use self::allocator_test as allocator;
-
pub use self::kbox::Box;
pub use self::kbox::KBox;
pub use self::kbox::KVBox;
@@ -137,6 +130,14 @@ pub mod flags {
/// - Implementers must ensure that all trait functions abide by the guarantees documented in the
/// `# Guarantees` sections.
pub unsafe trait Allocator {
+ /// The minimum alignment satisfied by all allocations from this allocator.
+ ///
+ /// # Guarantees
+ ///
+ /// Any pointer allocated by this allocator is guaranteed to be aligned to `MIN_ALIGN` even if
+ /// the requested layout has a smaller alignment.
+ const MIN_ALIGN: usize;
+
/// Allocate memory based on `layout` and `flags`.
///
/// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout
diff --git a/rust/kernel/alloc/allocator.rs b/rust/kernel/alloc/allocator.rs
index aa2dfa9dca4c..869d9fd69527 100644
--- a/rust/kernel/alloc/allocator.rs
+++ b/rust/kernel/alloc/allocator.rs
@@ -17,6 +17,8 @@ use crate::alloc::{AllocError, Allocator};
use crate::bindings;
use crate::pr_warn;
+const ARCH_KMALLOC_MINALIGN: usize = bindings::ARCH_KMALLOC_MINALIGN;
+
/// The contiguous kernel allocator.
///
/// `Kmalloc` is typically used for physically contiguous allocations up to page size, but also
@@ -43,17 +45,6 @@ pub struct Vmalloc;
/// For more details see [self].
pub struct KVmalloc;
-/// Returns a proper size to alloc a new object aligned to `new_layout`'s alignment.
-fn aligned_size(new_layout: Layout) -> usize {
- // Customized layouts from `Layout::from_size_align()` can have size < align, so pad first.
- let layout = new_layout.pad_to_align();
-
- // Note that `layout.size()` (after padding) is guaranteed to be a multiple of `layout.align()`
- // which together with the slab guarantees means the `krealloc` will return a properly aligned
- // object (see comments in `kmalloc()` for more information).
- layout.size()
-}
-
/// # Invariants
///
/// One of the following: `krealloc`, `vrealloc`, `kvrealloc`.
@@ -88,7 +79,7 @@ impl ReallocFunc {
old_layout: Layout,
flags: Flags,
) -> Result<NonNull<[u8]>, AllocError> {
- let size = aligned_size(layout);
+ let size = layout.size();
let ptr = match ptr {
Some(ptr) => {
if old_layout.size() == 0 {
@@ -123,11 +114,24 @@ impl ReallocFunc {
}
}
+impl Kmalloc {
+ /// Returns a [`Layout`] that makes [`Kmalloc`] fulfill the requested size and alignment of
+ /// `layout`.
+ pub fn aligned_layout(layout: Layout) -> Layout {
+ // Note that `layout.size()` (after padding) is guaranteed to be a multiple of
+ // `layout.align()` which together with the slab guarantees means that `Kmalloc` will return
+ // a properly aligned object (see comments in `kmalloc()` for more information).
+ layout.pad_to_align()
+ }
+}
+
// SAFETY: `realloc` delegates to `ReallocFunc::call`, which guarantees that
// - memory remains valid until it is explicitly freed,
// - passing a pointer to a valid memory allocation is OK,
// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
unsafe impl Allocator for Kmalloc {
+ const MIN_ALIGN: usize = ARCH_KMALLOC_MINALIGN;
+
#[inline]
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
@@ -135,6 +139,8 @@ unsafe impl Allocator for Kmalloc {
old_layout: Layout,
flags: Flags,
) -> Result<NonNull<[u8]>, AllocError> {
+ let layout = Kmalloc::aligned_layout(layout);
+
// SAFETY: `ReallocFunc::call` has the same safety requirements as `Allocator::realloc`.
unsafe { ReallocFunc::KREALLOC.call(ptr, layout, old_layout, flags) }
}
@@ -145,6 +151,8 @@ unsafe impl Allocator for Kmalloc {
// - passing a pointer to a valid memory allocation is OK,
// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
unsafe impl Allocator for Vmalloc {
+ const MIN_ALIGN: usize = kernel::page::PAGE_SIZE;
+
#[inline]
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
@@ -169,6 +177,8 @@ unsafe impl Allocator for Vmalloc {
// - passing a pointer to a valid memory allocation is OK,
// - `realloc` satisfies the guarantees, since `ReallocFunc::call` has the same.
unsafe impl Allocator for KVmalloc {
+ const MIN_ALIGN: usize = ARCH_KMALLOC_MINALIGN;
+
#[inline]
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
@@ -176,6 +186,10 @@ unsafe impl Allocator for KVmalloc {
old_layout: Layout,
flags: Flags,
) -> Result<NonNull<[u8]>, AllocError> {
+ // `KVmalloc` may use the `Kmalloc` backend, hence we have to enforce a `Kmalloc`
+ // compatible layout.
+ let layout = Kmalloc::aligned_layout(layout);
+
// TODO: Support alignments larger than PAGE_SIZE.
if layout.align() > bindings::PAGE_SIZE {
pr_warn!("KVmalloc does not support alignments larger than PAGE_SIZE yet.\n");
diff --git a/rust/kernel/alloc/allocator_test.rs b/rust/kernel/alloc/allocator_test.rs
deleted file mode 100644
index a3074480bd8d..000000000000
--- a/rust/kernel/alloc/allocator_test.rs
+++ /dev/null
@@ -1,113 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-
-//! So far the kernel's `Box` and `Vec` types can't be used by userspace test cases, since all users
-//! of those types (e.g. `CString`) use kernel allocators for instantiation.
-//!
-//! In order to allow userspace test cases to make use of such types as well, implement the
-//! `Cmalloc` allocator within the `allocator_test` module and type alias all kernel allocators to
-//! `Cmalloc`. The `Cmalloc` allocator uses libc's `realloc()` function as allocator backend.
-
-#![allow(missing_docs)]
-
-use super::{flags::*, AllocError, Allocator, Flags};
-use core::alloc::Layout;
-use core::cmp;
-use core::ptr;
-use core::ptr::NonNull;
-
-/// The userspace allocator based on libc.
-pub struct Cmalloc;
-
-pub type Kmalloc = Cmalloc;
-pub type Vmalloc = Kmalloc;
-pub type KVmalloc = Kmalloc;
-
-extern "C" {
- #[link_name = "aligned_alloc"]
- fn libc_aligned_alloc(align: usize, size: usize) -> *mut crate::ffi::c_void;
-
- #[link_name = "free"]
- fn libc_free(ptr: *mut crate::ffi::c_void);
-}
-
-// SAFETY:
-// - memory remains valid until it is explicitly freed,
-// - passing a pointer to a valid memory allocation created by this `Allocator` is always OK,
-// - `realloc` provides the guarantees as provided in the `# Guarantees` section.
-unsafe impl Allocator for Cmalloc {
- unsafe fn realloc(
- ptr: Option<NonNull<u8>>,
- layout: Layout,
- old_layout: Layout,
- flags: Flags,
- ) -> Result<NonNull<[u8]>, AllocError> {
- let src = match ptr {
- Some(src) => {
- if old_layout.size() == 0 {
- ptr::null_mut()
- } else {
- src.as_ptr()
- }
- }
- None => ptr::null_mut(),
- };
-
- if layout.size() == 0 {
- // SAFETY: `src` is either NULL or was previously allocated with this `Allocator`
- unsafe { libc_free(src.cast()) };
-
- return Ok(NonNull::slice_from_raw_parts(
- crate::alloc::dangling_from_layout(layout),
- 0,
- ));
- }
-
- // ISO C (ISO/IEC 9899:2011) defines `aligned_alloc`:
- //
- // > The value of alignment shall be a valid alignment supported by the implementation
- // [...].
- //
- // As an example of the "supported by the implementation" requirement, POSIX.1-2001 (IEEE
- // 1003.1-2001) defines `posix_memalign`:
- //
- // > The value of alignment shall be a power of two multiple of sizeof (void *).
- //
- // and POSIX-based implementations of `aligned_alloc` inherit this requirement. At the time
- // of writing, this is known to be the case on macOS (but not in glibc).
- //
- // Satisfy the stricter requirement to avoid spurious test failures on some platforms.
- let min_align = core::mem::size_of::<*const crate::ffi::c_void>();
- let layout = layout.align_to(min_align).map_err(|_| AllocError)?;
- let layout = layout.pad_to_align();
-
- // SAFETY: Returns either NULL or a pointer to a memory allocation that satisfies or
- // exceeds the given size and alignment requirements.
- let dst = unsafe { libc_aligned_alloc(layout.align(), layout.size()) }.cast::<u8>();
- let dst = NonNull::new(dst).ok_or(AllocError)?;
-
- if flags.contains(__GFP_ZERO) {
- // SAFETY: The preceding calls to `libc_aligned_alloc` and `NonNull::new`
- // guarantee that `dst` points to memory of at least `layout.size()` bytes.
- unsafe { dst.as_ptr().write_bytes(0, layout.size()) };
- }
-
- if !src.is_null() {
- // SAFETY:
- // - `src` has previously been allocated with this `Allocator`; `dst` has just been
- // newly allocated, hence the memory regions do not overlap.
- // - both` src` and `dst` are properly aligned and valid for reads and writes
- unsafe {
- ptr::copy_nonoverlapping(
- src,
- dst.as_ptr(),
- cmp::min(layout.size(), old_layout.size()),
- )
- };
- }
-
- // SAFETY: `src` is either NULL or was previously allocated with this `Allocator`
- unsafe { libc_free(src.cast()) };
-
- Ok(NonNull::slice_from_raw_parts(dst, layout.size()))
- }
-}
diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
index 856d05aa60f1..27c4b5a9b61d 100644
--- a/rust/kernel/alloc/kbox.rs
+++ b/rust/kernel/alloc/kbox.rs
@@ -7,7 +7,6 @@ use super::allocator::{KVmalloc, Kmalloc, Vmalloc};
use super::{AllocError, Allocator, Flags};
use core::alloc::Layout;
use core::borrow::{Borrow, BorrowMut};
-use core::fmt;
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
use core::mem::MaybeUninit;
@@ -17,6 +16,7 @@ use core::ptr::NonNull;
use core::result::Result;
use crate::ffi::c_void;
+use crate::fmt;
use crate::init::InPlaceInit;
use crate::types::ForeignOwnable;
use pin_init::{InPlaceWrite, Init, PinInit, ZeroableOption};
@@ -290,6 +290,83 @@ where
Ok(Self::new(x, flags)?.into())
}
+ /// Construct a pinned slice of elements `Pin<Box<[T], A>>`.
+ ///
+ /// This is a convenient means for creation of e.g. slices of structrures containing spinlocks
+ /// or mutexes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::{new_spinlock, SpinLock};
+ ///
+ /// struct Inner {
+ /// a: u32,
+ /// b: u32,
+ /// }
+ ///
+ /// #[pin_data]
+ /// struct Example {
+ /// c: u32,
+ /// #[pin]
+ /// d: SpinLock<Inner>,
+ /// }
+ ///
+ /// impl Example {
+ /// fn new() -> impl PinInit<Self, Error> {
+ /// try_pin_init!(Self {
+ /// c: 10,
+ /// d <- new_spinlock!(Inner { a: 20, b: 30 }),
+ /// })
+ /// }
+ /// }
+ ///
+ /// // Allocate a boxed slice of 10 `Example`s.
+ /// let s = KBox::pin_slice(
+ /// | _i | Example::new(),
+ /// 10,
+ /// GFP_KERNEL
+ /// )?;
+ ///
+ /// assert_eq!(s[5].c, 10);
+ /// assert_eq!(s[3].d.lock().a, 20);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn pin_slice<Func, Item, E>(
+ mut init: Func,
+ len: usize,
+ flags: Flags,
+ ) -> Result<Pin<Box<[T], A>>, E>
+ where
+ Func: FnMut(usize) -> Item,
+ Item: PinInit<T, E>,
+ E: From<AllocError>,
+ {
+ let mut buffer = super::Vec::<T, A>::with_capacity(len, flags)?;
+ for i in 0..len {
+ let ptr = buffer.spare_capacity_mut().as_mut_ptr().cast();
+ // SAFETY:
+ // - `ptr` is a valid pointer to uninitialized memory.
+ // - `ptr` is not used if an error is returned.
+ // - `ptr` won't be moved until it is dropped, i.e. it is pinned.
+ unsafe { init(i).__pinned_init(ptr)? };
+
+ // SAFETY:
+ // - `i + 1 <= len`, hence we don't exceed the capacity, due to the call to
+ // `with_capacity()` above.
+ // - The new value at index buffer.len() + 1 is the only element being added here, and
+ // it has been initialized above by `init(i).__pinned_init(ptr)`.
+ unsafe { buffer.inc_len(1) };
+ }
+
+ let (ptr, _, _) = buffer.into_raw_parts();
+ let slice = core::ptr::slice_from_raw_parts_mut(ptr, len);
+
+ // SAFETY: `slice` points to an allocation allocated with `A` (`buffer`) and holds a valid
+ // `[T]`.
+ Ok(Pin::from(unsafe { Box::from_raw(slice) }))
+ }
+
/// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement
/// [`Unpin`], then `x` will be pinned in memory and can't be moved.
pub fn into_pin(this: Self) -> Pin<Self> {
@@ -401,12 +478,17 @@ where
}
// SAFETY: The pointer returned by `into_foreign` comes from a well aligned
-// pointer to `T`.
+// pointer to `T` allocated by `A`.
unsafe impl<T: 'static, A> ForeignOwnable for Box<T, A>
where
A: Allocator,
{
- const FOREIGN_ALIGN: usize = core::mem::align_of::<T>();
+ const FOREIGN_ALIGN: usize = if core::mem::align_of::<T>() < A::MIN_ALIGN {
+ A::MIN_ALIGN
+ } else {
+ core::mem::align_of::<T>()
+ };
+
type Borrowed<'a> = &'a T;
type BorrowedMut<'a> = &'a mut T;
@@ -435,12 +517,12 @@ where
}
// SAFETY: The pointer returned by `into_foreign` comes from a well aligned
-// pointer to `T`.
+// pointer to `T` allocated by `A`.
unsafe impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>>
where
A: Allocator,
{
- const FOREIGN_ALIGN: usize = core::mem::align_of::<T>();
+ const FOREIGN_ALIGN: usize = <Box<T, A> as ForeignOwnable>::FOREIGN_ALIGN;
type Borrowed<'a> = Pin<&'a T>;
type BorrowedMut<'a> = Pin<&'a mut T>;
diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
index 3c72e0bdddb8..dfc101e03f35 100644
--- a/rust/kernel/alloc/kvec.rs
+++ b/rust/kernel/alloc/kvec.rs
@@ -7,9 +7,9 @@ use super::{
layout::ArrayLayout,
AllocError, Allocator, Box, Flags,
};
+use crate::fmt;
use core::{
borrow::{Borrow, BorrowMut},
- fmt,
marker::PhantomData,
mem::{ManuallyDrop, MaybeUninit},
ops::Deref,
@@ -175,7 +175,7 @@ where
/// Returns the number of elements that can be stored within the vector without allocating
/// additional memory.
- pub fn capacity(&self) -> usize {
+ pub const fn capacity(&self) -> usize {
if const { Self::is_zst() } {
usize::MAX
} else {
@@ -185,7 +185,7 @@ where
/// Returns the number of elements stored within the vector.
#[inline]
- pub fn len(&self) -> usize {
+ pub const fn len(&self) -> usize {
self.len
}
@@ -196,7 +196,7 @@ where
/// - `additional` must be less than or equal to `self.capacity - self.len`.
/// - All elements within the interval [`self.len`,`self.len + additional`) must be initialized.
#[inline]
- pub unsafe fn inc_len(&mut self, additional: usize) {
+ pub const unsafe fn inc_len(&mut self, additional: usize) {
// Guaranteed by the type invariant to never underflow.
debug_assert!(additional <= self.capacity() - self.len());
// INVARIANT: By the safety requirements of this method this represents the exact number of
@@ -224,6 +224,16 @@ where
}
/// Returns a slice of the entire vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = KVec::new();
+ /// v.push(1, GFP_KERNEL)?;
+ /// v.push(2, GFP_KERNEL)?;
+ /// assert_eq!(v.as_slice(), &[1, 2]);
+ /// # Ok::<(), Error>(())
+ /// ```
#[inline]
pub fn as_slice(&self) -> &[T] {
self
@@ -245,7 +255,7 @@ where
/// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
/// pointer.
#[inline]
- pub fn as_ptr(&self) -> *const T {
+ pub const fn as_ptr(&self) -> *const T {
self.ptr.as_ptr()
}
@@ -261,7 +271,7 @@ where
/// assert!(!v.is_empty());
/// ```
#[inline]
- pub fn is_empty(&self) -> bool {
+ pub const fn is_empty(&self) -> bool {
self.len() == 0
}
@@ -1294,7 +1304,7 @@ impl<'vec, T> Drop for DrainAll<'vec, T> {
}
}
-#[macros::kunit_tests(rust_kvec_kunit)]
+#[macros::kunit_tests(rust_kvec)]
mod tests {
use super::*;
use crate::prelude::*;
diff --git a/rust/kernel/alloc/kvec/errors.rs b/rust/kernel/alloc/kvec/errors.rs
index 348b8d27e102..21a920a4b09b 100644
--- a/rust/kernel/alloc/kvec/errors.rs
+++ b/rust/kernel/alloc/kvec/errors.rs
@@ -2,7 +2,7 @@
//! Errors for the [`Vec`] type.
-use core::fmt::{self, Debug, Formatter};
+use kernel::fmt::{self, Debug, Formatter};
use kernel::prelude::*;
/// Error type for [`Vec::push_within_capacity`].
diff --git a/rust/kernel/alloc/layout.rs b/rust/kernel/alloc/layout.rs
index 93ed514f7cc7..52cbf61c4539 100644
--- a/rust/kernel/alloc/layout.rs
+++ b/rust/kernel/alloc/layout.rs
@@ -80,7 +80,7 @@ impl<T> ArrayLayout<T> {
/// # Safety
///
/// `len` must be a value, for which `len * size_of::<T>() <= isize::MAX` is true.
- pub unsafe fn new_unchecked(len: usize) -> Self {
+ pub const unsafe fn new_unchecked(len: usize) -> Self {
// INVARIANT: By the safety requirements of this function
// `len * size_of::<T>() <= isize::MAX`.
Self {
diff --git a/rust/kernel/auxiliary.rs b/rust/kernel/auxiliary.rs
index 4749fb6bffef..58be09871397 100644
--- a/rust/kernel/auxiliary.rs
+++ b/rust/kernel/auxiliary.rs
@@ -105,8 +105,8 @@ pub struct DeviceId(bindings::auxiliary_device_id);
impl DeviceId {
/// Create a new [`DeviceId`] from name.
pub const fn new(modname: &'static CStr, name: &'static CStr) -> Self {
- let name = name.as_bytes_with_nul();
- let modname = modname.as_bytes_with_nul();
+ let name = name.to_bytes_with_nul();
+ let modname = modname.to_bytes_with_nul();
// TODO: Replace with `bindings::auxiliary_device_id::default()` once stabilized for
// `const`.
diff --git a/rust/kernel/block/mq.rs b/rust/kernel/block/mq.rs
index 831445d37181..61ea35bba7d5 100644
--- a/rust/kernel/block/mq.rs
+++ b/rust/kernel/block/mq.rs
@@ -82,7 +82,7 @@
//! Arc::pin_init(TagSet::new(1, 256, 1), flags::GFP_KERNEL)?;
//! let mut disk = gen_disk::GenDiskBuilder::new()
//! .capacity_sectors(4096)
-//! .build(format_args!("myblk"), tagset)?;
+//! .build(fmt!("myblk"), tagset)?;
//!
//! # Ok::<(), kernel::error::Error>(())
//! ```
diff --git a/rust/kernel/block/mq/gen_disk.rs b/rust/kernel/block/mq/gen_disk.rs
index cd54cd64ea88..be92d0e5f031 100644
--- a/rust/kernel/block/mq/gen_disk.rs
+++ b/rust/kernel/block/mq/gen_disk.rs
@@ -3,12 +3,12 @@
//! Generic disk abstraction.
//!
//! C header: [`include/linux/blkdev.h`](srctree/include/linux/blkdev.h)
-//! C header: [`include/linux/blk_mq.h`](srctree/include/linux/blk_mq.h)
+//! C header: [`include/linux/blk-mq.h`](srctree/include/linux/blk-mq.h)
use crate::block::mq::{raw_writer::RawWriter, Operations, TagSet};
+use crate::fmt::{self, Write};
use crate::{bindings, error::from_err_ptr, error::Result, sync::Arc};
use crate::{error, static_lock_class};
-use core::fmt::{self, Write};
/// A builder for [`GenDisk`].
///
diff --git a/rust/kernel/block/mq/operations.rs b/rust/kernel/block/mq/operations.rs
index c2b98f507bcb..c0f95a9419c4 100644
--- a/rust/kernel/block/mq/operations.rs
+++ b/rust/kernel/block/mq/operations.rs
@@ -10,9 +10,10 @@ use crate::{
block::mq::Request,
error::{from_result, Result},
prelude::*,
+ sync::Refcount,
types::ARef,
};
-use core::{marker::PhantomData, sync::atomic::AtomicU64, sync::atomic::Ordering};
+use core::marker::PhantomData;
/// Implement this trait to interface blk-mq as block devices.
///
@@ -78,7 +79,7 @@ impl<T: Operations> OperationsVTable<T> {
let request = unsafe { &*(*bd).rq.cast::<Request<T>>() };
// One refcount for the ARef, one for being in flight
- request.wrapper_ref().refcount().store(2, Ordering::Relaxed);
+ request.wrapper_ref().refcount().set(2);
// SAFETY:
// - We own a refcount that we took above. We pass that to `ARef`.
@@ -187,7 +188,7 @@ impl<T: Operations> OperationsVTable<T> {
// SAFETY: The refcount field is allocated but not initialized, so
// it is valid for writes.
- unsafe { RequestDataWrapper::refcount_ptr(pdu.as_ptr()).write(AtomicU64::new(0)) };
+ unsafe { RequestDataWrapper::refcount_ptr(pdu.as_ptr()).write(Refcount::new(0)) };
Ok(0)
})
diff --git a/rust/kernel/block/mq/raw_writer.rs b/rust/kernel/block/mq/raw_writer.rs
index 7e2159e4f6a6..d311e24e2595 100644
--- a/rust/kernel/block/mq/raw_writer.rs
+++ b/rust/kernel/block/mq/raw_writer.rs
@@ -1,8 +1,7 @@
// SPDX-License-Identifier: GPL-2.0
-use core::fmt::{self, Write};
-
use crate::error::Result;
+use crate::fmt::{self, Write};
use crate::prelude::EINVAL;
/// A mutable reference to a byte buffer where a string can be written into.
diff --git a/rust/kernel/block/mq/request.rs b/rust/kernel/block/mq/request.rs
index fefd394f064a..f62a376dc313 100644
--- a/rust/kernel/block/mq/request.rs
+++ b/rust/kernel/block/mq/request.rs
@@ -8,13 +8,10 @@ use crate::{
bindings,
block::mq::Operations,
error::Result,
+ sync::{atomic::Relaxed, Refcount},
types::{ARef, AlwaysRefCounted, Opaque},
};
-use core::{
- marker::PhantomData,
- ptr::NonNull,
- sync::atomic::{AtomicU64, Ordering},
-};
+use core::{marker::PhantomData, ptr::NonNull};
/// A wrapper around a blk-mq [`struct request`]. This represents an IO request.
///
@@ -37,6 +34,9 @@ use core::{
/// We need to track 3 and 4 to ensure that it is safe to end the request and hand
/// back ownership to the block layer.
///
+/// Note that the driver can still obtain new `ARef` even if there is no `ARef`s in existence by
+/// using `tag_to_rq`, hence the need to distinguish B and C.
+///
/// The states are tracked through the private `refcount` field of
/// `RequestDataWrapper`. This structure lives in the private data area of the C
/// [`struct request`].
@@ -98,13 +98,16 @@ impl<T: Operations> Request<T> {
///
/// [`struct request`]: srctree/include/linux/blk-mq.h
fn try_set_end(this: ARef<Self>) -> Result<*mut bindings::request, ARef<Self>> {
- // We can race with `TagSet::tag_to_rq`
- if let Err(_old) = this.wrapper_ref().refcount().compare_exchange(
- 2,
- 0,
- Ordering::Relaxed,
- Ordering::Relaxed,
- ) {
+ // To hand back the ownership, we need the current refcount to be 2.
+ // Since we can race with `TagSet::tag_to_rq`, this needs to atomically reduce
+ // refcount to 0. `Refcount` does not provide a way to do this, so use the underlying
+ // atomics directly.
+ if let Err(_old) = this
+ .wrapper_ref()
+ .refcount()
+ .as_atomic()
+ .cmpxchg(2, 0, Relaxed)
+ {
return Err(this);
}
@@ -173,13 +176,13 @@ pub(crate) struct RequestDataWrapper {
/// - 0: The request is owned by C block layer.
/// - 1: The request is owned by Rust abstractions but there are no [`ARef`] references to it.
/// - 2+: There are [`ARef`] references to the request.
- refcount: AtomicU64,
+ refcount: Refcount,
}
impl RequestDataWrapper {
/// Return a reference to the refcount of the request that is embedding
/// `self`.
- pub(crate) fn refcount(&self) -> &AtomicU64 {
+ pub(crate) fn refcount(&self) -> &Refcount {
&self.refcount
}
@@ -189,7 +192,7 @@ impl RequestDataWrapper {
/// # Safety
///
/// - `this` must point to a live allocation of at least the size of `Self`.
- pub(crate) unsafe fn refcount_ptr(this: *mut Self) -> *mut AtomicU64 {
+ pub(crate) unsafe fn refcount_ptr(this: *mut Self) -> *mut Refcount {
// SAFETY: Because of the safety requirements of this function, the
// field projection is safe.
unsafe { &raw mut (*this).refcount }
@@ -205,47 +208,13 @@ unsafe impl<T: Operations> Send for Request<T> {}
// mutate `self` are internally synchronized`
unsafe impl<T: Operations> Sync for Request<T> {}
-/// Store the result of `op(target.load())` in target, returning new value of
-/// target.
-fn atomic_relaxed_op_return(target: &AtomicU64, op: impl Fn(u64) -> u64) -> u64 {
- let old = target.fetch_update(Ordering::Relaxed, Ordering::Relaxed, |x| Some(op(x)));
-
- // SAFETY: Because the operation passed to `fetch_update` above always
- // return `Some`, `old` will always be `Ok`.
- let old = unsafe { old.unwrap_unchecked() };
-
- op(old)
-}
-
-/// Store the result of `op(target.load)` in `target` if `target.load() !=
-/// pred`, returning [`true`] if the target was updated.
-fn atomic_relaxed_op_unless(target: &AtomicU64, op: impl Fn(u64) -> u64, pred: u64) -> bool {
- target
- .fetch_update(Ordering::Relaxed, Ordering::Relaxed, |x| {
- if x == pred {
- None
- } else {
- Some(op(x))
- }
- })
- .is_ok()
-}
-
// SAFETY: All instances of `Request<T>` are reference counted. This
// implementation of `AlwaysRefCounted` ensure that increments to the ref count
// keeps the object alive in memory at least until a matching reference count
// decrement is executed.
unsafe impl<T: Operations> AlwaysRefCounted for Request<T> {
fn inc_ref(&self) {
- let refcount = &self.wrapper_ref().refcount();
-
- #[cfg_attr(not(CONFIG_DEBUG_MISC), allow(unused_variables))]
- let updated = atomic_relaxed_op_unless(refcount, |x| x + 1, 0);
-
- #[cfg(CONFIG_DEBUG_MISC)]
- if !updated {
- panic!("Request refcount zero on clone")
- }
+ self.wrapper_ref().refcount().inc();
}
unsafe fn dec_ref(obj: core::ptr::NonNull<Self>) {
@@ -257,10 +226,10 @@ unsafe impl<T: Operations> AlwaysRefCounted for Request<T> {
let refcount = unsafe { &*RequestDataWrapper::refcount_ptr(wrapper_ptr) };
#[cfg_attr(not(CONFIG_DEBUG_MISC), allow(unused_variables))]
- let new_refcount = atomic_relaxed_op_return(refcount, |x| x - 1);
+ let is_zero = refcount.dec_and_test();
#[cfg(CONFIG_DEBUG_MISC)]
- if new_refcount == 0 {
+ if is_zero {
panic!("Request reached refcount zero in Rust abstractions");
}
}
diff --git a/rust/kernel/configfs.rs b/rust/kernel/configfs.rs
index 2736b798cdc6..9fb5ef825e41 100644
--- a/rust/kernel/configfs.rs
+++ b/rust/kernel/configfs.rs
@@ -263,7 +263,7 @@ impl<Data> Group<Data> {
try_pin_init!(Self {
group <- pin_init::init_zeroed().chain(|v: &mut Opaque<bindings::config_group>| {
let place = v.get();
- let name = name.as_bytes_with_nul().as_ptr();
+ let name = name.to_bytes_with_nul().as_ptr();
// SAFETY: It is safe to initialize a group once it has been zeroed.
unsafe {
bindings::config_group_init_type_name(place, name.cast(), item_type.as_ptr())
@@ -613,7 +613,7 @@ where
pub const fn new(name: &'static CStr) -> Self {
Self {
attribute: Opaque::new(bindings::configfs_attribute {
- ca_name: name.as_char_ptr(),
+ ca_name: crate::str::as_char_ptr_in_const_context(name),
ca_owner: core::ptr::null_mut(),
ca_mode: 0o660,
show: Some(Self::show),
diff --git a/rust/kernel/cpu.rs b/rust/kernel/cpu.rs
index 5de730c8d817..cb6c0338ef5a 100644
--- a/rust/kernel/cpu.rs
+++ b/rust/kernel/cpu.rs
@@ -109,6 +109,7 @@ impl CpuId {
/// unexpectedly due to preemption or CPU migration. It should only be
/// used when the context ensures that the task remains on the same CPU
/// or the users could use a stale (yet valid) CPU ID.
+ #[inline]
pub fn current() -> Self {
// SAFETY: raw_smp_processor_id() always returns a valid CPU ID.
unsafe { Self::from_u32_unchecked(bindings::raw_smp_processor_id()) }
diff --git a/rust/kernel/cpufreq.rs b/rust/kernel/cpufreq.rs
index afc15e72a7c3..86c02e81729e 100644
--- a/rust/kernel/cpufreq.rs
+++ b/rust/kernel/cpufreq.rs
@@ -27,7 +27,6 @@ use crate::clk::Clk;
use core::{
cell::UnsafeCell,
marker::PhantomData,
- mem::MaybeUninit,
ops::{Deref, DerefMut},
pin::Pin,
ptr,
@@ -1013,12 +1012,11 @@ impl<T: Driver> Registration<T> {
} else {
None
},
- // SAFETY: All zeros is a valid value for `bindings::cpufreq_driver`.
- ..unsafe { MaybeUninit::zeroed().assume_init() }
+ ..pin_init::zeroed()
};
const fn copy_name(name: &'static CStr) -> [c_char; CPUFREQ_NAME_LEN] {
- let src = name.as_bytes_with_nul();
+ let src = name.to_bytes_with_nul();
let mut dst = [0; CPUFREQ_NAME_LEN];
build_assert!(src.len() <= CPUFREQ_NAME_LEN);
diff --git a/rust/kernel/cred.rs b/rust/kernel/cred.rs
index 2599f01e8b28..4a2229542fb7 100644
--- a/rust/kernel/cred.rs
+++ b/rust/kernel/cred.rs
@@ -8,11 +8,7 @@
//!
//! Reference: <https://www.kernel.org/doc/html/latest/security/credentials.html>
-use crate::{
- bindings,
- task::Kuid,
- types::{AlwaysRefCounted, Opaque},
-};
+use crate::{bindings, sync::aref::AlwaysRefCounted, task::Kuid, types::Opaque};
/// Wraps the kernel's `struct cred`.
///
diff --git a/rust/kernel/device.rs b/rust/kernel/device.rs
index b8613289de8e..9cefa0810e0b 100644
--- a/rust/kernel/device.rs
+++ b/rust/kernel/device.rs
@@ -5,33 +5,142 @@
//! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
use crate::{
- bindings,
+ bindings, fmt,
types::{ARef, ForeignOwnable, Opaque},
};
-use core::{fmt, marker::PhantomData, ptr};
+use core::{marker::PhantomData, ptr};
#[cfg(CONFIG_PRINTK)]
use crate::c_str;
pub mod property;
-/// A reference-counted device.
+/// The core representation of a device in the kernel's driver model.
///
-/// This structure represents the Rust abstraction for a C `struct device`. This implementation
-/// abstracts the usage of an already existing C `struct device` within Rust code that we get
-/// passed from the C side.
+/// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
+/// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
+/// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
///
-/// An instance of this abstraction can be obtained temporarily or permanent.
+/// # Device Types
///
-/// A temporary one is bound to the lifetime of the C `struct device` pointer used for creation.
-/// A permanent instance is always reference-counted and hence not restricted by any lifetime
-/// boundaries.
+/// A [`Device`] can represent either a bus device or a class device.
///
-/// For subsystems it is recommended to create a permanent instance to wrap into a subsystem
-/// specific device structure (e.g. `pci::Device`). This is useful for passing it to drivers in
-/// `T::probe()`, such that a driver can store the `ARef<Device>` (equivalent to storing a
-/// `struct device` pointer in a C driver) for arbitrary purposes, e.g. allocating DMA coherent
-/// memory.
+/// ## Bus Devices
+///
+/// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
+/// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
+/// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
+/// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
+///
+/// ## Class Devices
+///
+/// A class device is a [`Device`] that is associated with a logical category of functionality
+/// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
+/// cards, and input devices. Class devices are grouped under a common class and exposed to
+/// userspace via entries in `/sys/class/<class-name>/`.
+///
+/// # Device Context
+///
+/// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
+/// a [`Device`].
+///
+/// As the name indicates, this type state represents the context of the scope the [`Device`]
+/// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
+/// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
+///
+/// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
+///
+/// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
+/// itself has no additional requirements.
+///
+/// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
+/// type for the corresponding scope the [`Device`] reference is created in.
+///
+/// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
+/// [bus devices](#bus-devices) only.
+///
+/// # Implementing Bus Devices
+///
+/// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or
+/// [`platform::Device`].
+///
+/// A bus specific device should be defined as follows.
+///
+/// ```ignore
+/// #[repr(transparent)]
+/// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
+/// Opaque<bindings::bus_device_type>,
+/// PhantomData<Ctx>,
+/// );
+/// ```
+///
+/// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
+/// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
+/// [`DeviceContext`], since all other device context types are only valid within a certain scope.
+///
+/// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
+/// implementations should call the [`impl_device_context_deref`] macro as shown below.
+///
+/// ```ignore
+/// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
+/// // generic argument.
+/// kernel::impl_device_context_deref!(unsafe { Device });
+/// ```
+///
+/// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
+/// the following macro call.
+///
+/// ```ignore
+/// kernel::impl_device_context_into_aref!(Device);
+/// ```
+///
+/// Bus devices should also implement the following [`AsRef`] implementation, such that users can
+/// easily derive a generic [`Device`] reference.
+///
+/// ```ignore
+/// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
+/// fn as_ref(&self) -> &device::Device<Ctx> {
+/// ...
+/// }
+/// }
+/// ```
+///
+/// # Implementing Class Devices
+///
+/// Class device implementations require less infrastructure and depend slightly more on the
+/// specific subsystem.
+///
+/// An example implementation for a class device could look like this.
+///
+/// ```ignore
+/// #[repr(C)]
+/// pub struct Device<T: class::Driver> {
+/// dev: Opaque<bindings::class_device_type>,
+/// data: T::Data,
+/// }
+/// ```
+///
+/// This class device uses the sub-classing pattern to embed the driver's private data within the
+/// allocation of the class device. For this to be possible the class device is generic over the
+/// class specific `Driver` trait implementation.
+///
+/// Just like any device, class devices are reference counted and should hence implement
+/// [`AlwaysRefCounted`] for `Device`.
+///
+/// Class devices should also implement the following [`AsRef`] implementation, such that users can
+/// easily derive a generic [`Device`] reference.
+///
+/// ```ignore
+/// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
+/// fn as_ref(&self) -> &device::Device {
+/// ...
+/// }
+/// }
+/// ```
+///
+/// An example for a class device implementation is
+#[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
+#[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
///
/// # Invariants
///
@@ -42,6 +151,11 @@ pub mod property;
///
/// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
/// dropped from any thread.
+///
+/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
+/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
+/// [`pci::Device`]: kernel::pci::Device
+/// [`platform::Device`]: kernel::platform::Device
#[repr(transparent)]
pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
@@ -311,28 +425,75 @@ unsafe impl Send for Device {}
// synchronization in `struct device`.
unsafe impl Sync for Device {}
-/// Marker trait for the context of a bus specific device.
+/// Marker trait for the context or scope of a bus specific device.
+///
+/// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
+/// [`Device`].
+///
+/// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
///
-/// Some functions of a bus specific device should only be called from a certain context, i.e. bus
-/// callbacks, such as `probe()`.
+/// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
+/// defines which [`DeviceContext`] type can be derived from another. For instance, any
+/// [`Device<Core>`] can dereference to a [`Device<Bound>`].
///
-/// This is the marker trait for structures representing the context of a bus specific device.
+/// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
+///
+/// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
+///
+/// Bus devices can automatically implement the dereference hierarchy by using
+/// [`impl_device_context_deref`].
+///
+/// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
+/// from the specific scope the [`Device`] reference is valid in.
+///
+/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
pub trait DeviceContext: private::Sealed {}
-/// The [`Normal`] context is the context of a bus specific device when it is not an argument of
-/// any bus callback.
+/// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
+///
+/// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
+/// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
+/// [`AlwaysRefCounted`] for.
+///
+/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
pub struct Normal;
-/// The [`Core`] context is the context of a bus specific device when it is supplied as argument of
-/// any of the bus callbacks, such as `probe()`.
+/// The [`Core`] context is the context of a bus specific device when it appears as argument of
+/// any bus specific callback, such as `probe()`.
+///
+/// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
+/// callback it appears in. It is intended to be used for synchronization purposes. Bus device
+/// implementations can implement methods for [`Device<Core>`], such that they can only be called
+/// from bus callbacks.
pub struct Core;
-/// Semantically the same as [`Core`] but reserved for internal usage of the corresponding bus
+/// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
/// abstraction.
+///
+/// The internal core context is intended to be used in exactly the same way as the [`Core`]
+/// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
+/// abstraction.
+///
+/// This context mainly exists to share generic [`Device`] infrastructure that should only be called
+/// from bus callbacks with bus abstractions, but without making them accessible for drivers.
pub struct CoreInternal;
-/// The [`Bound`] context is the context of a bus specific device reference when it is guaranteed to
-/// be bound for the duration of its lifetime.
+/// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
+/// be bound to a driver.
+///
+/// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
+/// reference, the [`Device`] is guaranteed to be bound to a driver.
+///
+/// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
+/// which can be proven with the [`Bound`] device context.
+///
+/// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
+/// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
+/// from optimizations for accessing device resources, see also [`Devres::access`].
+///
+/// [`Devres`]: kernel::devres::Devres
+/// [`Devres::access`]: kernel::devres::Devres::access
+/// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
pub struct Bound;
mod private {
@@ -435,7 +596,7 @@ macro_rules! impl_device_context_into_aref {
macro_rules! dev_printk {
($method:ident, $dev:expr, $($f:tt)*) => {
{
- ($dev).$method(::core::format_args!($($f)*));
+ ($dev).$method($crate::prelude::fmt!($($f)*));
}
}
}
diff --git a/rust/kernel/device/property.rs b/rust/kernel/device/property.rs
index 49ee12a906db..3a332a8c53a9 100644
--- a/rust/kernel/device/property.rs
+++ b/rust/kernel/device/property.rs
@@ -11,6 +11,7 @@ use crate::{
alloc::KVec,
bindings,
error::{to_result, Result},
+ fmt,
prelude::*,
str::{CStr, CString},
types::{ARef, Opaque},
@@ -68,16 +69,16 @@ impl FwNode {
unsafe { bindings::is_of_node(self.as_raw()) }
}
- /// Returns an object that implements [`Display`](core::fmt::Display) for
+ /// Returns an object that implements [`Display`](fmt::Display) for
/// printing the name of a node.
///
/// This is an alternative to the default `Display` implementation, which
/// prints the full path.
- pub fn display_name(&self) -> impl core::fmt::Display + '_ {
+ pub fn display_name(&self) -> impl fmt::Display + '_ {
struct FwNodeDisplayName<'a>(&'a FwNode);
- impl core::fmt::Display for FwNodeDisplayName<'_> {
- fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
+ impl fmt::Display for FwNodeDisplayName<'_> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// SAFETY: `self` is valid by its type invariant.
let name = unsafe { bindings::fwnode_get_name(self.0.as_raw()) };
if name.is_null() {
@@ -87,7 +88,7 @@ impl FwNode {
// - `fwnode_get_name` returns null or a valid C string.
// - `name` was checked to be non-null.
let name = unsafe { CStr::from_char_ptr(name) };
- write!(f, "{name}")
+ fmt::Display::fmt(name, f)
}
}
@@ -351,8 +352,8 @@ impl FwNodeReferenceArgs {
}
}
-impl core::fmt::Debug for FwNodeReferenceArgs {
- fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
+impl fmt::Debug for FwNodeReferenceArgs {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.as_slice())
}
}
@@ -377,8 +378,8 @@ enum Node<'a> {
Owned(ARef<FwNode>),
}
-impl core::fmt::Display for FwNode {
- fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
+impl fmt::Display for FwNode {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// The logic here is the same as the one in lib/vsprintf.c
// (fwnode_full_name_string).
@@ -413,9 +414,9 @@ impl core::fmt::Display for FwNode {
// SAFETY: `fwnode_get_name_prefix` returns null or a
// valid C string.
let prefix = unsafe { CStr::from_char_ptr(prefix) };
- write!(f, "{prefix}")?;
+ fmt::Display::fmt(prefix, f)?;
}
- write!(f, "{}", fwnode.display_name())?;
+ fmt::Display::fmt(&fwnode.display_name(), f)?;
}
Ok(())
diff --git a/rust/kernel/devres.rs b/rust/kernel/devres.rs
index da18091143a6..d04e3fcebafb 100644
--- a/rust/kernel/devres.rs
+++ b/rust/kernel/devres.rs
@@ -115,10 +115,11 @@ pub struct Devres<T: Send> {
/// Contains all the fields shared with [`Self::callback`].
// TODO: Replace with `UnsafePinned`, once available.
//
- // Subsequently, the `drop_in_place()` in `Devres::drop` and the explicit `Send` and `Sync'
- // impls can be removed.
+ // Subsequently, the `drop_in_place()` in `Devres::drop` and `Devres::new` as well as the
+ // explicit `Send` and `Sync' impls can be removed.
#[pin]
inner: Opaque<Inner<T>>,
+ _add_action: (),
}
impl<T: Send> Devres<T> {
@@ -140,7 +141,15 @@ impl<T: Send> Devres<T> {
dev: dev.into(),
callback,
// INVARIANT: `inner` is properly initialized.
- inner <- {
+ inner <- Opaque::pin_init(try_pin_init!(Inner {
+ devm <- Completion::new(),
+ revoke <- Completion::new(),
+ data <- Revocable::new(data),
+ })),
+ // TODO: Replace with "initializer code blocks" [1] once available.
+ //
+ // [1] https://github.com/Rust-for-Linux/pin-init/pull/69
+ _add_action: {
// SAFETY: `this` is a valid pointer to uninitialized memory.
let inner = unsafe { &raw mut (*this.as_ptr()).inner };
@@ -152,13 +161,13 @@ impl<T: Send> Devres<T> {
// live at least as long as the returned `impl PinInit<Self, Error>`.
to_result(unsafe {
bindings::devm_add_action(dev.as_raw(), Some(callback), inner.cast())
- })?;
+ }).inspect_err(|_| {
+ let inner = Opaque::cast_into(inner);
- Opaque::pin_init(try_pin_init!(Inner {
- devm <- Completion::new(),
- revoke <- Completion::new(),
- data <- Revocable::new(data),
- }))
+ // SAFETY: `inner` is a valid pointer to an `Inner<T>` and valid for both reads
+ // and writes.
+ unsafe { core::ptr::drop_in_place(inner) };
+ })?;
},
})
}
diff --git a/rust/kernel/dma.rs b/rust/kernel/dma.rs
index 2bc8ab51ec28..68fe67624424 100644
--- a/rust/kernel/dma.rs
+++ b/rust/kernel/dma.rs
@@ -9,8 +9,8 @@ use crate::{
device::{Bound, Core},
error::{to_result, Result},
prelude::*,
+ sync::aref::ARef,
transmute::{AsBytes, FromBytes},
- types::ARef,
};
/// Trait to be implemented by DMA capable bus devices.
diff --git a/rust/kernel/driver.rs b/rust/kernel/driver.rs
index a8f2675ba7a7..279e3af20682 100644
--- a/rust/kernel/driver.rs
+++ b/rust/kernel/driver.rs
@@ -2,8 +2,93 @@
//! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.).
//!
-//! Each bus / subsystem is expected to implement [`RegistrationOps`], which allows drivers to
-//! register using the [`Registration`] class.
+//! This documentation describes how to implement a bus specific driver API and how to align it with
+//! the design of (bus specific) devices.
+//!
+//! Note: Readers are expected to know the content of the documentation of [`Device`] and
+//! [`DeviceContext`].
+//!
+//! # Driver Trait
+//!
+//! The main driver interface is defined by a bus specific driver trait. For instance:
+//!
+//! ```ignore
+//! pub trait Driver: Send {
+//! /// The type holding information about each device ID supported by the driver.
+//! type IdInfo: 'static;
+//!
+//! /// The table of OF device ids supported by the driver.
+//! const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None;
+//!
+//! /// The table of ACPI device ids supported by the driver.
+//! const ACPI_ID_TABLE: Option<acpi::IdTable<Self::IdInfo>> = None;
+//!
+//! /// Driver probe.
+//! fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> Result<Pin<KBox<Self>>>;
+//!
+//! /// Driver unbind (optional).
+//! fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) {
+//! let _ = (dev, this);
+//! }
+//! }
+//! ```
+//!
+//! For specific examples see [`auxiliary::Driver`], [`pci::Driver`] and [`platform::Driver`].
+//!
+//! The `probe()` callback should return a `Result<Pin<KBox<Self>>>`, i.e. the driver's private
+//! data. The bus abstraction should store the pointer in the corresponding bus device. The generic
+//! [`Device`] infrastructure provides common helpers for this purpose on its
+//! [`Device<CoreInternal>`] implementation.
+//!
+//! All driver callbacks should provide a reference to the driver's private data. Once the driver
+//! is unbound from the device, the bus abstraction should take back the ownership of the driver's
+//! private data from the corresponding [`Device`] and [`drop`] it.
+//!
+//! All driver callbacks should provide a [`Device<Core>`] reference (see also [`device::Core`]).
+//!
+//! # Adapter
+//!
+//! The adapter implementation of a bus represents the abstraction layer between the C bus
+//! callbacks and the Rust bus callbacks. It therefore has to be generic over an implementation of
+//! the [driver trait](#driver-trait).
+//!
+//! ```ignore
+//! pub struct Adapter<T: Driver>;
+//! ```
+//!
+//! There's a common [`Adapter`] trait that can be implemented to inherit common driver
+//! infrastructure, such as finding the ID info from an [`of::IdTable`] or [`acpi::IdTable`].
+//!
+//! # Driver Registration
+//!
+//! In order to register C driver types (such as `struct platform_driver`) the [adapter](#adapter)
+//! should implement the [`RegistrationOps`] trait.
+//!
+//! This trait implementation can be used to create the actual registration with the common
+//! [`Registration`] type.
+//!
+//! Typically, bus abstractions want to provide a bus specific `module_bus_driver!` macro, which
+//! creates a kernel module with exactly one [`Registration`] for the bus specific adapter.
+//!
+//! The generic driver infrastructure provides a helper for this with the [`module_driver`] macro.
+//!
+//! # Device IDs
+//!
+//! Besides the common device ID types, such as [`of::DeviceId`] and [`acpi::DeviceId`], most buses
+//! may need to implement their own device ID types.
+//!
+//! For this purpose the generic infrastructure in [`device_id`] should be used.
+//!
+//! [`auxiliary::Driver`]: kernel::auxiliary::Driver
+//! [`Core`]: device::Core
+//! [`Device`]: device::Device
+//! [`Device<Core>`]: device::Device<device::Core>
+//! [`Device<CoreInternal>`]: device::Device<device::CoreInternal>
+//! [`DeviceContext`]: device::DeviceContext
+//! [`device_id`]: kernel::device_id
+//! [`module_driver`]: kernel::module_driver
+//! [`pci::Driver`]: kernel::pci::Driver
+//! [`platform::Driver`]: kernel::platform::Driver
use crate::error::{Error, Result};
use crate::{acpi, device, of, str::CStr, try_pin_init, types::Opaque, ThisModule};
diff --git a/rust/kernel/drm/device.rs b/rust/kernel/drm/device.rs
index 3bb7c83966cf..0956ba0f64de 100644
--- a/rust/kernel/drm/device.rs
+++ b/rust/kernel/drm/device.rs
@@ -2,9 +2,10 @@
//! DRM device.
//!
-//! C header: [`include/linux/drm/drm_device.h`](srctree/include/linux/drm/drm_device.h)
+//! C header: [`include/drm/drm_device.h`](srctree/include/drm/drm_device.h)
use crate::{
+ alloc::allocator::Kmalloc,
bindings, device, drm,
drm::driver::AllocImpl,
error::from_err_ptr,
@@ -12,7 +13,7 @@ use crate::{
prelude::*,
types::{ARef, AlwaysRefCounted, Opaque},
};
-use core::{mem, ops::Deref, ptr, ptr::NonNull};
+use core::{alloc::Layout, mem, ops::Deref, ptr, ptr::NonNull};
#[cfg(CONFIG_DRM_LEGACY)]
macro_rules! drm_legacy_fields {
@@ -53,10 +54,8 @@ macro_rules! drm_legacy_fields {
///
/// `self.dev` is a valid instance of a `struct device`.
#[repr(C)]
-#[pin_data]
pub struct Device<T: drm::Driver> {
dev: Opaque<bindings::drm_device>,
- #[pin]
data: T::Data,
}
@@ -83,8 +82,8 @@ impl<T: drm::Driver> Device<T> {
major: T::INFO.major,
minor: T::INFO.minor,
patchlevel: T::INFO.patchlevel,
- name: T::INFO.name.as_char_ptr().cast_mut(),
- desc: T::INFO.desc.as_char_ptr().cast_mut(),
+ name: crate::str::as_char_ptr_in_const_context(T::INFO.name).cast_mut(),
+ desc: crate::str::as_char_ptr_in_const_context(T::INFO.desc).cast_mut(),
driver_features: drm::driver::FEAT_GEM,
ioctls: T::IOCTLS.as_ptr(),
@@ -96,6 +95,10 @@ impl<T: drm::Driver> Device<T> {
/// Create a new `drm::Device` for a `drm::Driver`.
pub fn new(dev: &device::Device, data: impl PinInit<T::Data, Error>) -> Result<ARef<Self>> {
+ // `__drm_dev_alloc` uses `kmalloc()` to allocate memory, hence ensure a `kmalloc()`
+ // compatible `Layout`.
+ let layout = Kmalloc::aligned_layout(Layout::new::<Self>());
+
// SAFETY:
// - `VTABLE`, as a `const` is pinned to the read-only section of the compilation,
// - `dev` is valid by its type invarants,
@@ -103,7 +106,7 @@ impl<T: drm::Driver> Device<T> {
bindings::__drm_dev_alloc(
dev.as_raw(),
&Self::VTABLE,
- mem::size_of::<Self>(),
+ layout.size(),
mem::offset_of!(Self, dev),
)
}
@@ -117,9 +120,13 @@ impl<T: drm::Driver> Device<T> {
// - `raw_data` is a valid pointer to uninitialized memory.
// - `raw_data` will not move until it is dropped.
unsafe { data.__pinned_init(raw_data) }.inspect_err(|_| {
- // SAFETY: `__drm_dev_alloc()` was successful, hence `raw_drm` must be valid and the
+ // SAFETY: `raw_drm` is a valid pointer to `Self`, given that `__drm_dev_alloc` was
+ // successful.
+ let drm_dev = unsafe { Self::into_drm_device(raw_drm) };
+
+ // SAFETY: `__drm_dev_alloc()` was successful, hence `drm_dev` must be valid and the
// refcount must be non-zero.
- unsafe { bindings::drm_dev_put(ptr::addr_of_mut!((*raw_drm.as_ptr()).dev).cast()) };
+ unsafe { bindings::drm_dev_put(drm_dev) };
})?;
// SAFETY: The reference count is one, and now we take ownership of that reference as a
@@ -140,6 +147,14 @@ impl<T: drm::Driver> Device<T> {
unsafe { crate::container_of!(Opaque::cast_from(ptr), Self, dev) }.cast_mut()
}
+ /// # Safety
+ ///
+ /// `ptr` must be a valid pointer to `Self`.
+ unsafe fn into_drm_device(ptr: NonNull<Self>) -> *mut bindings::drm_device {
+ // SAFETY: By the safety requirements of this function, `ptr` is a valid pointer to `Self`.
+ unsafe { &raw mut (*ptr.as_ptr()).dev }.cast()
+ }
+
/// Not intended to be called externally, except via declare_drm_ioctls!()
///
/// # Safety
@@ -189,8 +204,11 @@ unsafe impl<T: drm::Driver> AlwaysRefCounted for Device<T> {
}
unsafe fn dec_ref(obj: NonNull<Self>) {
+ // SAFETY: `obj` is a valid pointer to `Self`.
+ let drm_dev = unsafe { Self::into_drm_device(obj) };
+
// SAFETY: The safety requirements guarantee that the refcount is non-zero.
- unsafe { bindings::drm_dev_put(obj.cast().as_ptr()) };
+ unsafe { bindings::drm_dev_put(drm_dev) };
}
}
diff --git a/rust/kernel/drm/driver.rs b/rust/kernel/drm/driver.rs
index fe7e8d06961a..d2dad77274c4 100644
--- a/rust/kernel/drm/driver.rs
+++ b/rust/kernel/drm/driver.rs
@@ -2,7 +2,7 @@
//! DRM driver core.
//!
-//! C header: [`include/linux/drm/drm_drv.h`](srctree/include/linux/drm/drm_drv.h)
+//! C header: [`include/drm/drm_drv.h`](srctree/include/drm/drm_drv.h)
use crate::{
bindings, device, devres, drm,
diff --git a/rust/kernel/drm/file.rs b/rust/kernel/drm/file.rs
index e8789c9110d6..8c46f8d51951 100644
--- a/rust/kernel/drm/file.rs
+++ b/rust/kernel/drm/file.rs
@@ -2,7 +2,7 @@
//! DRM File objects.
//!
-//! C header: [`include/linux/drm/drm_file.h`](srctree/include/linux/drm/drm_file.h)
+//! C header: [`include/drm/drm_file.h`](srctree/include/drm/drm_file.h)
use crate::{bindings, drm, error::Result, prelude::*, types::Opaque};
use core::marker::PhantomData;
diff --git a/rust/kernel/drm/gem/mod.rs b/rust/kernel/drm/gem/mod.rs
index b71821cfb5ea..b9f3248876ba 100644
--- a/rust/kernel/drm/gem/mod.rs
+++ b/rust/kernel/drm/gem/mod.rs
@@ -2,7 +2,7 @@
//! DRM GEM API
//!
-//! C header: [`include/linux/drm/drm_gem.h`](srctree/include/linux/drm/drm_gem.h)
+//! C header: [`include/drm/drm_gem.h`](srctree/include/drm/drm_gem.h)
use crate::{
alloc::flags::*,
diff --git a/rust/kernel/drm/ioctl.rs b/rust/kernel/drm/ioctl.rs
index fdec01c37168..8431cdcd3ae0 100644
--- a/rust/kernel/drm/ioctl.rs
+++ b/rust/kernel/drm/ioctl.rs
@@ -2,7 +2,7 @@
//! DRM IOCTL definitions.
//!
-//! C header: [`include/linux/drm/drm_ioctl.h`](srctree/include/linux/drm/drm_ioctl.h)
+//! C header: [`include/drm/drm_ioctl.h`](srctree/include/drm/drm_ioctl.h)
use crate::ioctl;
diff --git a/rust/kernel/error.rs b/rust/kernel/error.rs
index a41de293dcd1..1c0e0e241daa 100644
--- a/rust/kernel/error.rs
+++ b/rust/kernel/error.rs
@@ -2,7 +2,9 @@
//! Kernel errors.
//!
-//! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h)
+//! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h)\
+//! C header: [`include/uapi/asm-generic/errno.h`](srctree/include/uapi/asm-generic/errno.h)\
+//! C header: [`include/linux/errno.h`](srctree/include/linux/errno.h)
use crate::{
alloc::{layout::LayoutError, AllocError},
@@ -101,8 +103,23 @@ pub struct Error(NonZeroI32);
impl Error {
/// Creates an [`Error`] from a kernel error code.
///
- /// It is a bug to pass an out-of-range `errno`. `EINVAL` would
- /// be returned in such a case.
+ /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`).
+ ///
+ /// It is a bug to pass an out-of-range `errno`. [`code::EINVAL`] is returned in such a case.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// assert_eq!(Error::from_errno(-1), EPERM);
+ /// assert_eq!(Error::from_errno(-2), ENOENT);
+ /// ```
+ ///
+ /// The following calls are considered a bug:
+ ///
+ /// ```
+ /// assert_eq!(Error::from_errno(0), EINVAL);
+ /// assert_eq!(Error::from_errno(-1000000), EINVAL);
+ /// ```
pub fn from_errno(errno: crate::ffi::c_int) -> Error {
if let Some(error) = Self::try_from_errno(errno) {
error
@@ -158,7 +175,7 @@ impl Error {
}
/// Returns a string representing the error, if one exists.
- #[cfg(not(any(test, testlib)))]
+ #[cfg(not(testlib))]
pub fn name(&self) -> Option<&'static CStr> {
// SAFETY: Just an FFI call, there are no extra safety requirements.
let ptr = unsafe { bindings::errname(-self.0.get()) };
@@ -175,7 +192,7 @@ impl Error {
/// When `testlib` is configured, this always returns `None` to avoid the dependency on a
/// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still
/// run in userspace.
- #[cfg(any(test, testlib))]
+ #[cfg(testlib)]
pub fn name(&self) -> Option<&'static CStr> {
None
}
@@ -375,8 +392,43 @@ impl From<core::convert::Infallible> for Error {
/// [Rust documentation]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html
pub type Result<T = (), E = Error> = core::result::Result<T, E>;
-/// Converts an integer as returned by a C kernel function to an error if it's negative, and
-/// `Ok(())` otherwise.
+/// Converts an integer as returned by a C kernel function to a [`Result`].
+///
+/// If the integer is negative, an [`Err`] with an [`Error`] as given by [`Error::from_errno`] is
+/// returned. This means the integer must be `>= -MAX_ERRNO`.
+///
+/// Otherwise, it returns [`Ok`].
+///
+/// It is a bug to pass an out-of-range negative integer. `Err(EINVAL)` is returned in such a case.
+///
+/// # Examples
+///
+/// This function may be used to easily perform early returns with the [`?`] operator when working
+/// with C APIs within Rust abstractions:
+///
+/// ```
+/// # use kernel::error::to_result;
+/// # mod bindings {
+/// # #![expect(clippy::missing_safety_doc)]
+/// # use kernel::prelude::*;
+/// # pub(super) unsafe fn f1() -> c_int { 0 }
+/// # pub(super) unsafe fn f2() -> c_int { EINVAL.to_errno() }
+/// # }
+/// fn f() -> Result {
+/// // SAFETY: ...
+/// to_result(unsafe { bindings::f1() })?;
+///
+/// // SAFETY: ...
+/// to_result(unsafe { bindings::f2() })?;
+///
+/// // ...
+///
+/// Ok(())
+/// }
+/// # assert_eq!(f(), Err(EINVAL));
+/// ```
+///
+/// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator
pub fn to_result(err: crate::ffi::c_int) -> Result {
if err < 0 {
Err(Error::from_errno(err))
diff --git a/rust/kernel/faux.rs b/rust/kernel/faux.rs
index 7a906099993f..7fe2dd197e37 100644
--- a/rust/kernel/faux.rs
+++ b/rust/kernel/faux.rs
@@ -4,7 +4,7 @@
//!
//! This module provides bindings for working with faux devices in kernel modules.
//!
-//! C header: [`include/linux/device/faux.h`]
+//! C header: [`include/linux/device/faux.h`](srctree/include/linux/device/faux.h)
use crate::{bindings, device, error::code::*, prelude::*};
use core::ptr::{addr_of_mut, null, null_mut, NonNull};
diff --git a/rust/kernel/firmware.rs b/rust/kernel/firmware.rs
index 1abab5b2f052..94e6bb88b903 100644
--- a/rust/kernel/firmware.rs
+++ b/rust/kernel/firmware.rs
@@ -291,7 +291,7 @@ impl<const N: usize> ModInfoBuilder<N> {
let module_name = this.module_name;
if !this.module_name.is_empty() {
- this = this.push_internal(module_name.as_bytes_with_nul());
+ this = this.push_internal(module_name.to_bytes_with_nul());
if N != 0 {
// Re-use the space taken by the NULL terminator and swap it with the '.' separator.
diff --git a/rust/kernel/fs/file.rs b/rust/kernel/fs/file.rs
index 35fd5db35c46..cf06e73a6da0 100644
--- a/rust/kernel/fs/file.rs
+++ b/rust/kernel/fs/file.rs
@@ -10,8 +10,10 @@
use crate::{
bindings,
cred::Credential,
- error::{code::*, Error, Result},
- types::{ARef, AlwaysRefCounted, NotThreadSafe, Opaque},
+ error::{code::*, to_result, Error, Result},
+ fmt,
+ sync::aref::{ARef, AlwaysRefCounted},
+ types::{NotThreadSafe, Opaque},
};
use core::ptr;
@@ -398,9 +400,8 @@ impl FileDescriptorReservation {
pub fn get_unused_fd_flags(flags: u32) -> Result<Self> {
// SAFETY: FFI call, there are no safety requirements on `flags`.
let fd: i32 = unsafe { bindings::get_unused_fd_flags(flags) };
- if fd < 0 {
- return Err(Error::from_errno(fd));
- }
+ to_result(fd)?;
+
Ok(Self {
fd: fd as u32,
_not_send: NotThreadSafe,
@@ -460,8 +461,8 @@ impl From<BadFdError> for Error {
}
}
-impl core::fmt::Debug for BadFdError {
- fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
+impl fmt::Debug for BadFdError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("EBADF")
}
}
diff --git a/rust/kernel/kunit.rs b/rust/kernel/kunit.rs
index 41efd87595d6..3a43886cc14e 100644
--- a/rust/kernel/kunit.rs
+++ b/rust/kernel/kunit.rs
@@ -6,8 +6,8 @@
//!
//! Reference: <https://docs.kernel.org/dev-tools/kunit/index.html>
+use crate::fmt;
use crate::prelude::*;
-use core::fmt;
#[cfg(CONFIG_PRINTK)]
use crate::c_str;
@@ -74,14 +74,14 @@ macro_rules! kunit_assert {
// mistake (it is hidden to prevent that).
//
// This mimics KUnit's failed assertion format.
- $crate::kunit::err(format_args!(
+ $crate::kunit::err($crate::prelude::fmt!(
" # {}: ASSERTION FAILED at {FILE}:{LINE}\n",
$name
));
- $crate::kunit::err(format_args!(
+ $crate::kunit::err($crate::prelude::fmt!(
" Expected {CONDITION} to be true, but is false\n"
));
- $crate::kunit::err(format_args!(
+ $crate::kunit::err($crate::prelude::fmt!(
" Failure not reported to KUnit since this is a non-KUnit task\n"
));
break 'out;
@@ -102,12 +102,12 @@ macro_rules! kunit_assert {
unsafe impl Sync for UnaryAssert {}
static LOCATION: Location = Location($crate::bindings::kunit_loc {
- file: FILE.as_char_ptr(),
+ file: $crate::str::as_char_ptr_in_const_context(FILE),
line: LINE,
});
static ASSERTION: UnaryAssert = UnaryAssert($crate::bindings::kunit_unary_assert {
assert: $crate::bindings::kunit_assert {},
- condition: CONDITION.as_char_ptr(),
+ condition: $crate::str::as_char_ptr_in_const_context(CONDITION),
expected_true: true,
});
@@ -202,7 +202,7 @@ pub const fn kunit_case(
) -> kernel::bindings::kunit_case {
kernel::bindings::kunit_case {
run_case: Some(run_case),
- name: name.as_char_ptr(),
+ name: kernel::str::as_char_ptr_in_const_context(name),
attr: kernel::bindings::kunit_attributes {
speed: kernel::bindings::kunit_speed_KUNIT_SPEED_NORMAL,
},
diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
index ed53169e795c..f910a5ab80ba 100644
--- a/rust/kernel/lib.rs
+++ b/rust/kernel/lib.rs
@@ -17,6 +17,7 @@
// the unstable features in use.
//
// Stable since Rust 1.79.0.
+#![feature(generic_nonzero)]
#![feature(inline_const)]
//
// Stable since Rust 1.81.0.
@@ -28,6 +29,7 @@
// Stable since Rust 1.83.0.
#![feature(const_maybe_uninit_as_mut_ptr)]
#![feature(const_mut_refs)]
+#![feature(const_option)]
#![feature(const_ptr_write)]
#![feature(const_refs_to_cell)]
//
@@ -110,6 +112,7 @@ pub mod pid_namespace;
pub mod platform;
pub mod prelude;
pub mod print;
+pub mod ptr;
pub mod rbtree;
pub mod regulator;
pub mod revocable;
@@ -206,7 +209,7 @@ impl ThisModule {
}
}
-#[cfg(not(any(testlib, test)))]
+#[cfg(not(testlib))]
#[panic_handler]
fn panic(info: &core::panic::PanicInfo<'_>) -> ! {
pr_emerg!("{}\n", info);
@@ -296,7 +299,7 @@ macro_rules! asm {
/// Gets the C string file name of a [`Location`].
///
-/// If `file_with_nul()` is not available, returns a string that warns about it.
+/// If `Location::file_as_c_str()` is not available, returns a string that warns about it.
///
/// [`Location`]: core::panic::Location
///
@@ -310,8 +313,8 @@ macro_rules! asm {
/// let caller = core::panic::Location::caller();
///
/// // Output:
-/// // - A path like "rust/kernel/example.rs" if file_with_nul() is available.
-/// // - "<Location::file_with_nul() not supported>" otherwise.
+/// // - A path like "rust/kernel/example.rs" if `file_as_c_str()` is available.
+/// // - "<Location::file_as_c_str() not supported>" otherwise.
/// let caller_file = file_from_location(caller);
///
/// // Prints out the message with caller's file name.
@@ -326,7 +329,12 @@ macro_rules! asm {
/// ```
#[inline]
pub fn file_from_location<'a>(loc: &'a core::panic::Location<'a>) -> &'a core::ffi::CStr {
- #[cfg(CONFIG_RUSTC_HAS_FILE_WITH_NUL)]
+ #[cfg(CONFIG_RUSTC_HAS_FILE_AS_C_STR)]
+ {
+ loc.file_as_c_str()
+ }
+
+ #[cfg(all(CONFIG_RUSTC_HAS_FILE_WITH_NUL, not(CONFIG_RUSTC_HAS_FILE_AS_C_STR)))]
{
loc.file_with_nul()
}
@@ -334,6 +342,6 @@ pub fn file_from_location<'a>(loc: &'a core::panic::Location<'a>) -> &'a core::f
#[cfg(not(CONFIG_RUSTC_HAS_FILE_WITH_NUL))]
{
let _ = loc;
- c"<Location::file_with_nul() not supported>"
+ c"<Location::file_as_c_str() not supported>"
}
}
diff --git a/rust/kernel/list.rs b/rust/kernel/list.rs
index 44e5219cfcbc..7355bbac16a7 100644
--- a/rust/kernel/list.rs
+++ b/rust/kernel/list.rs
@@ -38,6 +38,8 @@ pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
///
/// # Examples
///
+/// Use [`ListLinks`] as the type of the intrusive field.
+///
/// ```
/// use kernel::list::*;
///
@@ -140,6 +142,124 @@ pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
/// }
/// # Result::<(), Error>::Ok(())
/// ```
+///
+/// Use [`ListLinksSelfPtr`] as the type of the intrusive field. This allows a list of trait object
+/// type.
+///
+/// ```
+/// use kernel::list::*;
+///
+/// trait Foo {
+/// fn foo(&self) -> (&'static str, i32);
+/// }
+///
+/// #[pin_data]
+/// struct DTWrap<T: ?Sized> {
+/// #[pin]
+/// links: ListLinksSelfPtr<DTWrap<dyn Foo>>,
+/// value: T,
+/// }
+///
+/// impl<T> DTWrap<T> {
+/// fn new(value: T) -> Result<ListArc<Self>> {
+/// ListArc::pin_init(try_pin_init!(Self {
+/// value,
+/// links <- ListLinksSelfPtr::new(),
+/// }), GFP_KERNEL)
+/// }
+/// }
+///
+/// impl_list_arc_safe! {
+/// impl{T: ?Sized} ListArcSafe<0> for DTWrap<T> { untracked; }
+/// }
+/// impl_list_item! {
+/// impl ListItem<0> for DTWrap<dyn Foo> { using ListLinksSelfPtr { self.links }; }
+/// }
+///
+/// // Create a new empty list.
+/// let mut list = List::<DTWrap<dyn Foo>>::new();
+/// {
+/// assert!(list.is_empty());
+/// }
+///
+/// struct A(i32);
+/// // `A` returns the inner value for `foo`.
+/// impl Foo for A { fn foo(&self) -> (&'static str, i32) { ("a", self.0) } }
+///
+/// struct B;
+/// // `B` always returns 42.
+/// impl Foo for B { fn foo(&self) -> (&'static str, i32) { ("b", 42) } }
+///
+/// // Insert 3 element using `push_back()`.
+/// list.push_back(DTWrap::new(A(15))?);
+/// list.push_back(DTWrap::new(A(32))?);
+/// list.push_back(DTWrap::new(B)?);
+///
+/// // Iterate over the list to verify the nodes were inserted correctly.
+/// // [A(15), A(32), B]
+/// {
+/// let mut iter = list.iter();
+/// assert_eq!(iter.next().ok_or(EINVAL)?.value.foo(), ("a", 15));
+/// assert_eq!(iter.next().ok_or(EINVAL)?.value.foo(), ("a", 32));
+/// assert_eq!(iter.next().ok_or(EINVAL)?.value.foo(), ("b", 42));
+/// assert!(iter.next().is_none());
+///
+/// // Verify the length of the list.
+/// assert_eq!(list.iter().count(), 3);
+/// }
+///
+/// // Pop the items from the list using `pop_back()` and verify the content.
+/// {
+/// assert_eq!(list.pop_back().ok_or(EINVAL)?.value.foo(), ("b", 42));
+/// assert_eq!(list.pop_back().ok_or(EINVAL)?.value.foo(), ("a", 32));
+/// assert_eq!(list.pop_back().ok_or(EINVAL)?.value.foo(), ("a", 15));
+/// }
+///
+/// // Insert 3 elements using `push_front()`.
+/// list.push_front(DTWrap::new(A(15))?);
+/// list.push_front(DTWrap::new(A(32))?);
+/// list.push_front(DTWrap::new(B)?);
+///
+/// // Iterate over the list to verify the nodes were inserted correctly.
+/// // [B, A(32), A(15)]
+/// {
+/// let mut iter = list.iter();
+/// assert_eq!(iter.next().ok_or(EINVAL)?.value.foo(), ("b", 42));
+/// assert_eq!(iter.next().ok_or(EINVAL)?.value.foo(), ("a", 32));
+/// assert_eq!(iter.next().ok_or(EINVAL)?.value.foo(), ("a", 15));
+/// assert!(iter.next().is_none());
+///
+/// // Verify the length of the list.
+/// assert_eq!(list.iter().count(), 3);
+/// }
+///
+/// // Pop the items from the list using `pop_front()` and verify the content.
+/// {
+/// assert_eq!(list.pop_back().ok_or(EINVAL)?.value.foo(), ("a", 15));
+/// assert_eq!(list.pop_back().ok_or(EINVAL)?.value.foo(), ("a", 32));
+/// }
+///
+/// // Push `list2` to `list` through `push_all_back()`.
+/// // list: [B]
+/// // list2: [B, A(25)]
+/// {
+/// let mut list2 = List::<DTWrap<dyn Foo>>::new();
+/// list2.push_back(DTWrap::new(B)?);
+/// list2.push_back(DTWrap::new(A(25))?);
+///
+/// list.push_all_back(&mut list2);
+///
+/// // list: [B, B, A(25)]
+/// // list2: []
+/// let mut iter = list.iter();
+/// assert_eq!(iter.next().ok_or(EINVAL)?.value.foo(), ("b", 42));
+/// assert_eq!(iter.next().ok_or(EINVAL)?.value.foo(), ("b", 42));
+/// assert_eq!(iter.next().ok_or(EINVAL)?.value.foo(), ("a", 25));
+/// assert!(iter.next().is_none());
+/// assert!(list2.is_empty());
+/// }
+/// # Result::<(), Error>::Ok(())
+/// ```
pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
first: *mut ListLinksFields,
_ty: PhantomData<ListArc<T, ID>>,
diff --git a/rust/kernel/miscdevice.rs b/rust/kernel/miscdevice.rs
index 6373fe183b27..d3aa7d25afad 100644
--- a/rust/kernel/miscdevice.rs
+++ b/rust/kernel/miscdevice.rs
@@ -34,7 +34,7 @@ impl MiscDeviceOptions {
// SAFETY: All zeros is valid for this C type.
let mut result: bindings::miscdevice = unsafe { MaybeUninit::zeroed().assume_init() };
result.minor = bindings::MISC_DYNAMIC_MINOR as ffi::c_int;
- result.name = self.name.as_char_ptr();
+ result.name = crate::str::as_char_ptr_in_const_context(self.name);
result.fops = MiscdeviceVTable::<T>::build();
result
}
diff --git a/rust/kernel/mm/virt.rs b/rust/kernel/mm/virt.rs
index 6086ca981b06..a1bfa4e19293 100644
--- a/rust/kernel/mm/virt.rs
+++ b/rust/kernel/mm/virt.rs
@@ -209,6 +209,7 @@ impl VmaMixedMap {
///
/// For the duration of 'a, the referenced vma must be undergoing initialization in an
/// `f_ops->mmap()` hook.
+#[repr(transparent)]
pub struct VmaNew {
vma: VmaRef,
}
diff --git a/rust/kernel/net/phy.rs b/rust/kernel/net/phy.rs
index 7de5cc7a0eee..be1027b7961b 100644
--- a/rust/kernel/net/phy.rs
+++ b/rust/kernel/net/phy.rs
@@ -497,7 +497,7 @@ unsafe impl Sync for DriverVTable {}
pub const fn create_phy_driver<T: Driver>() -> DriverVTable {
// INVARIANT: All the fields of `struct phy_driver` are initialized properly.
DriverVTable(Opaque::new(bindings::phy_driver {
- name: T::NAME.as_char_ptr().cast_mut(),
+ name: crate::str::as_char_ptr_in_const_context(T::NAME).cast_mut(),
flags: T::FLAGS,
phy_id: T::PHY_DEVICE_ID.id(),
phy_id_mask: T::PHY_DEVICE_ID.mask_as_int(),
diff --git a/rust/kernel/of.rs b/rust/kernel/of.rs
index b76b35265df2..58b20c367f99 100644
--- a/rust/kernel/of.rs
+++ b/rust/kernel/of.rs
@@ -34,7 +34,7 @@ unsafe impl RawDeviceIdIndex for DeviceId {
impl DeviceId {
/// Create a new device id from an OF 'compatible' string.
pub const fn new(compatible: &'static CStr) -> Self {
- let src = compatible.as_bytes_with_nul();
+ let src = compatible.to_bytes_with_nul();
// Replace with `bindings::of_device_id::default()` once stabilized for `const`.
// SAFETY: FFI type is valid to be zero-initialized.
let mut of: bindings::of_device_id = unsafe { core::mem::zeroed() };
diff --git a/rust/kernel/pid_namespace.rs b/rust/kernel/pid_namespace.rs
index 0e93808e4639..979a9718f153 100644
--- a/rust/kernel/pid_namespace.rs
+++ b/rust/kernel/pid_namespace.rs
@@ -7,10 +7,7 @@
//! C header: [`include/linux/pid_namespace.h`](srctree/include/linux/pid_namespace.h) and
//! [`include/linux/pid.h`](srctree/include/linux/pid.h)
-use crate::{
- bindings,
- types::{AlwaysRefCounted, Opaque},
-};
+use crate::{bindings, sync::aref::AlwaysRefCounted, types::Opaque};
use core::ptr;
/// Wraps the kernel's `struct pid_namespace`. Thread safe.
diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
index 25fe97aafd02..198d09a31449 100644
--- a/rust/kernel/prelude.rs
+++ b/rust/kernel/prelude.rs
@@ -12,7 +12,10 @@
//! ```
#[doc(no_inline)]
-pub use core::pin::Pin;
+pub use core::{
+ mem::{align_of, align_of_val, size_of, size_of_val},
+ pin::Pin,
+};
pub use ::ffi::{
c_char, c_int, c_long, c_longlong, c_schar, c_short, c_uchar, c_uint, c_ulong, c_ulonglong,
diff --git a/rust/kernel/ptr.rs b/rust/kernel/ptr.rs
new file mode 100644
index 000000000000..2e5e2a090480
--- /dev/null
+++ b/rust/kernel/ptr.rs
@@ -0,0 +1,228 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Types and functions to work with pointers and addresses.
+
+use core::fmt::Debug;
+use core::mem::align_of;
+use core::num::NonZero;
+
+use crate::build_assert;
+
+/// Type representing an alignment, which is always a power of two.
+///
+/// It is used to validate that a given value is a valid alignment, and to perform masking and
+/// alignment operations.
+///
+/// This is a temporary substitute for the [`Alignment`] nightly type from the standard library,
+/// and to be eventually replaced by it.
+///
+/// [`Alignment`]: https://github.com/rust-lang/rust/issues/102070
+///
+/// # Invariants
+///
+/// An alignment is always a power of two.
+#[repr(transparent)]
+#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct Alignment(NonZero<usize>);
+
+impl Alignment {
+ /// Validates that `ALIGN` is a power of two at build-time, and returns an [`Alignment`] of the
+ /// same value.
+ ///
+ /// A build error is triggered if `ALIGN` is not a power of two.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::ptr::Alignment;
+ ///
+ /// let v = Alignment::new::<16>();
+ /// assert_eq!(v.as_usize(), 16);
+ /// ```
+ #[inline(always)]
+ pub const fn new<const ALIGN: usize>() -> Self {
+ build_assert!(
+ ALIGN.is_power_of_two(),
+ "Provided alignment is not a power of two."
+ );
+
+ // INVARIANT: `align` is a power of two.
+ // SAFETY: `align` is a power of two, and thus non-zero.
+ Self(unsafe { NonZero::new_unchecked(ALIGN) })
+ }
+
+ /// Validates that `align` is a power of two at runtime, and returns an
+ /// [`Alignment`] of the same value.
+ ///
+ /// Returns [`None`] if `align` is not a power of two.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::ptr::Alignment;
+ ///
+ /// assert_eq!(Alignment::new_checked(16), Some(Alignment::new::<16>()));
+ /// assert_eq!(Alignment::new_checked(15), None);
+ /// assert_eq!(Alignment::new_checked(1), Some(Alignment::new::<1>()));
+ /// assert_eq!(Alignment::new_checked(0), None);
+ /// ```
+ #[inline(always)]
+ pub const fn new_checked(align: usize) -> Option<Self> {
+ if align.is_power_of_two() {
+ // INVARIANT: `align` is a power of two.
+ // SAFETY: `align` is a power of two, and thus non-zero.
+ Some(Self(unsafe { NonZero::new_unchecked(align) }))
+ } else {
+ None
+ }
+ }
+
+ /// Returns the alignment of `T`.
+ ///
+ /// This is equivalent to [`align_of`], but with the return value provided as an [`Alignment`].
+ #[inline(always)]
+ pub const fn of<T>() -> Self {
+ #![allow(clippy::incompatible_msrv)]
+ // This cannot panic since alignments are always powers of two.
+ //
+ // We unfortunately cannot use `new` as it would require the `generic_const_exprs` feature.
+ const { Alignment::new_checked(align_of::<T>()).unwrap() }
+ }
+
+ /// Returns this alignment as a [`usize`].
+ ///
+ /// It is guaranteed to be a power of two.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::ptr::Alignment;
+ ///
+ /// assert_eq!(Alignment::new::<16>().as_usize(), 16);
+ /// ```
+ #[inline(always)]
+ pub const fn as_usize(self) -> usize {
+ self.as_nonzero().get()
+ }
+
+ /// Returns this alignment as a [`NonZero`].
+ ///
+ /// It is guaranteed to be a power of two.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::ptr::Alignment;
+ ///
+ /// assert_eq!(Alignment::new::<16>().as_nonzero().get(), 16);
+ /// ```
+ #[inline(always)]
+ pub const fn as_nonzero(self) -> NonZero<usize> {
+ // Allow the compiler to know that the value is indeed a power of two. This can help
+ // optimize some operations down the line, like e.g. replacing divisions by bit shifts.
+ if !self.0.is_power_of_two() {
+ // SAFETY: Per the invariants, `self.0` is always a power of two so this block will
+ // never be reached.
+ unsafe { core::hint::unreachable_unchecked() }
+ }
+ self.0
+ }
+
+ /// Returns the base-2 logarithm of the alignment.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::ptr::Alignment;
+ ///
+ /// assert_eq!(Alignment::of::<u8>().log2(), 0);
+ /// assert_eq!(Alignment::new::<16>().log2(), 4);
+ /// ```
+ #[inline(always)]
+ pub const fn log2(self) -> u32 {
+ self.0.ilog2()
+ }
+
+ /// Returns the mask for this alignment.
+ ///
+ /// This is equivalent to `!(self.as_usize() - 1)`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::ptr::Alignment;
+ ///
+ /// assert_eq!(Alignment::new::<0x10>().mask(), !0xf);
+ /// ```
+ #[inline(always)]
+ pub const fn mask(self) -> usize {
+ // No underflow can occur as the alignment is guaranteed to be a power of two, and thus is
+ // non-zero.
+ !(self.as_usize() - 1)
+ }
+}
+
+/// Trait for items that can be aligned against an [`Alignment`].
+pub trait Alignable: Sized {
+ /// Aligns `self` down to `alignment`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::ptr::{Alignable, Alignment};
+ ///
+ /// assert_eq!(0x2f_usize.align_down(Alignment::new::<0x10>()), 0x20);
+ /// assert_eq!(0x30usize.align_down(Alignment::new::<0x10>()), 0x30);
+ /// assert_eq!(0xf0u8.align_down(Alignment::new::<0x1000>()), 0x0);
+ /// ```
+ fn align_down(self, alignment: Alignment) -> Self;
+
+ /// Aligns `self` up to `alignment`, returning `None` if aligning would result in an overflow.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::ptr::{Alignable, Alignment};
+ ///
+ /// assert_eq!(0x4fusize.align_up(Alignment::new::<0x10>()), Some(0x50));
+ /// assert_eq!(0x40usize.align_up(Alignment::new::<0x10>()), Some(0x40));
+ /// assert_eq!(0x0usize.align_up(Alignment::new::<0x10>()), Some(0x0));
+ /// assert_eq!(u8::MAX.align_up(Alignment::new::<0x10>()), None);
+ /// assert_eq!(0x10u8.align_up(Alignment::new::<0x100>()), None);
+ /// assert_eq!(0x0u8.align_up(Alignment::new::<0x100>()), Some(0x0));
+ /// ```
+ fn align_up(self, alignment: Alignment) -> Option<Self>;
+}
+
+/// Implement [`Alignable`] for unsigned integer types.
+macro_rules! impl_alignable_uint {
+ ($($t:ty),*) => {
+ $(
+ impl Alignable for $t {
+ #[inline(always)]
+ fn align_down(self, alignment: Alignment) -> Self {
+ // The operands of `&` need to be of the same type so convert the alignment to
+ // `Self`. This means we need to compute the mask ourselves.
+ ::core::num::NonZero::<Self>::try_from(alignment.as_nonzero())
+ .map(|align| self & !(align.get() - 1))
+ // An alignment larger than `Self` always aligns down to `0`.
+ .unwrap_or(0)
+ }
+
+ #[inline(always)]
+ fn align_up(self, alignment: Alignment) -> Option<Self> {
+ let aligned_down = self.align_down(alignment);
+ if self == aligned_down {
+ Some(aligned_down)
+ } else {
+ Self::try_from(alignment.as_usize())
+ .ok()
+ .and_then(|align| aligned_down.checked_add(align))
+ }
+ }
+ }
+ )*
+ };
+}
+
+impl_alignable_uint!(u8, u16, u32, u64, usize);
diff --git a/rust/kernel/seq_file.rs b/rust/kernel/seq_file.rs
index 8f199b1a3bb1..59fbfc2473f8 100644
--- a/rust/kernel/seq_file.rs
+++ b/rust/kernel/seq_file.rs
@@ -4,7 +4,7 @@
//!
//! C header: [`include/linux/seq_file.h`](srctree/include/linux/seq_file.h)
-use crate::{bindings, c_str, types::NotThreadSafe, types::Opaque};
+use crate::{bindings, c_str, fmt, types::NotThreadSafe, types::Opaque};
/// A utility for generating the contents of a seq file.
#[repr(transparent)]
@@ -31,7 +31,7 @@ impl SeqFile {
/// Used by the [`seq_print`] macro.
#[inline]
- pub fn call_printf(&self, args: core::fmt::Arguments<'_>) {
+ pub fn call_printf(&self, args: fmt::Arguments<'_>) {
// SAFETY: Passing a void pointer to `Arguments` is valid for `%pA`.
unsafe {
bindings::seq_printf(
@@ -47,7 +47,7 @@ impl SeqFile {
#[macro_export]
macro_rules! seq_print {
($m:expr, $($arg:tt)+) => (
- $m.call_printf(format_args!($($arg)+))
+ $m.call_printf($crate::prelude::fmt!($($arg)+))
);
}
pub use seq_print;
diff --git a/rust/kernel/sync.rs b/rust/kernel/sync.rs
index 00f9b558a3ad..cf5b638a097d 100644
--- a/rust/kernel/sync.rs
+++ b/rust/kernel/sync.rs
@@ -11,12 +11,15 @@ use pin_init;
mod arc;
pub mod aref;
+pub mod atomic;
+pub mod barrier;
pub mod completion;
mod condvar;
pub mod lock;
mod locked_by;
pub mod poll;
pub mod rcu;
+mod refcount;
pub use arc::{Arc, ArcBorrow, UniqueArc};
pub use completion::Completion;
@@ -25,6 +28,7 @@ pub use lock::global::{global_lock, GlobalGuard, GlobalLock, GlobalLockBackend,
pub use lock::mutex::{new_mutex, Mutex, MutexGuard};
pub use lock::spinlock::{new_spinlock, SpinLock, SpinLockGuard};
pub use locked_by::LockedBy;
+pub use refcount::Refcount;
/// Represents a lockdep class. It's a wrapper around C's `lock_class_key`.
#[repr(transparent)]
diff --git a/rust/kernel/sync/arc.rs b/rust/kernel/sync/arc.rs
index 63a66761d0c7..289f77abf415 100644
--- a/rust/kernel/sync/arc.rs
+++ b/rust/kernel/sync/arc.rs
@@ -8,7 +8,7 @@
//! threads.
//!
//! It is different from the standard library's [`Arc`] in a few ways:
-//! 1. It is backed by the kernel's `refcount_t` type.
+//! 1. It is backed by the kernel's [`Refcount`] type.
//! 2. It does not support weak references, which allows it to be half the size.
//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
@@ -18,16 +18,16 @@
use crate::{
alloc::{AllocError, Flags, KBox},
- bindings,
ffi::c_void,
+ fmt,
init::InPlaceInit,
+ sync::Refcount,
try_init,
- types::{ForeignOwnable, Opaque},
+ types::ForeignOwnable,
};
use core::{
alloc::Layout,
borrow::{Borrow, BorrowMut},
- fmt,
marker::PhantomData,
mem::{ManuallyDrop, MaybeUninit},
ops::{Deref, DerefMut},
@@ -145,7 +145,7 @@ pub struct Arc<T: ?Sized> {
#[pin_data]
#[repr(C)]
struct ArcInner<T: ?Sized> {
- refcount: Opaque<bindings::refcount_t>,
+ refcount: Refcount,
data: T,
}
@@ -157,7 +157,7 @@ impl<T: ?Sized> ArcInner<T> {
/// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
/// not yet have been destroyed.
unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
- let refcount_layout = Layout::new::<bindings::refcount_t>();
+ let refcount_layout = Layout::new::<Refcount>();
// SAFETY: The caller guarantees that the pointer is valid.
let val_layout = Layout::for_value(unsafe { &*ptr });
// SAFETY: We're computing the layout of a real struct that existed when compiling this
@@ -229,8 +229,7 @@ impl<T> Arc<T> {
pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
// INVARIANT: The refcount is initialised to a non-zero value.
let value = ArcInner {
- // SAFETY: There are no safety requirements for this FFI call.
- refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
+ refcount: Refcount::new(1),
data: contents,
};
@@ -321,7 +320,7 @@ impl<T: ?Sized> Arc<T> {
/// use kernel::sync::{Arc, UniqueArc};
///
/// let arc = Arc::new(42, GFP_KERNEL)?;
- /// let unique_arc = arc.into_unique_or_drop();
+ /// let unique_arc = Arc::into_unique_or_drop(arc);
///
/// // The above conversion should succeed since refcount of `arc` is 1.
/// assert!(unique_arc.is_some());
@@ -337,35 +336,30 @@ impl<T: ?Sized> Arc<T> {
/// let arc = Arc::new(42, GFP_KERNEL)?;
/// let another = arc.clone();
///
- /// let unique_arc = arc.into_unique_or_drop();
+ /// let unique_arc = Arc::into_unique_or_drop(arc);
///
/// // The above conversion should fail since refcount of `arc` is >1.
/// assert!(unique_arc.is_none());
///
/// # Ok::<(), Error>(())
/// ```
- pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
+ pub fn into_unique_or_drop(this: Self) -> Option<Pin<UniqueArc<T>>> {
// We will manually manage the refcount in this method, so we disable the destructor.
- let me = ManuallyDrop::new(self);
+ let this = ManuallyDrop::new(this);
// SAFETY: We own a refcount, so the pointer is still valid.
- let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
+ let refcount = unsafe { &this.ptr.as_ref().refcount };
// If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
// return without further touching the `Arc`. If the refcount reaches zero, then there are
// no other arcs, and we can create a `UniqueArc`.
- //
- // SAFETY: We own a refcount, so the pointer is not dangling.
- let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
- if is_zero {
- // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
- // accesses to the refcount.
- unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
+ if refcount.dec_and_test() {
+ refcount.set(1);
// INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
// must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
// their values.
Some(Pin::from(UniqueArc {
- inner: ManuallyDrop::into_inner(me),
+ inner: ManuallyDrop::into_inner(this),
}))
} else {
None
@@ -373,10 +367,10 @@ impl<T: ?Sized> Arc<T> {
}
}
-// SAFETY: The pointer returned by `into_foreign` comes from a well aligned
-// pointer to `ArcInner<T>`.
+// SAFETY: The pointer returned by `into_foreign` was originally allocated as an
+// `KBox<ArcInner<T>>`, so that type is what determines the alignment.
unsafe impl<T: 'static> ForeignOwnable for Arc<T> {
- const FOREIGN_ALIGN: usize = core::mem::align_of::<ArcInner<T>>();
+ const FOREIGN_ALIGN: usize = <KBox<ArcInner<T>> as ForeignOwnable>::FOREIGN_ALIGN;
type Borrowed<'a> = ArcBorrow<'a, T>;
type BorrowedMut<'a> = Self::Borrowed<'a>;
@@ -456,14 +450,10 @@ impl<T: ?Sized> Borrow<T> for Arc<T> {
impl<T: ?Sized> Clone for Arc<T> {
fn clone(&self) -> Self {
- // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
- // safe to dereference it.
- let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
-
- // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
+ // INVARIANT: `Refcount` saturates the refcount, so it cannot overflow to zero.
// SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
// safe to increment the refcount.
- unsafe { bindings::refcount_inc(refcount) };
+ unsafe { self.ptr.as_ref() }.refcount.inc();
// SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
unsafe { Self::from_inner(self.ptr) }
@@ -472,16 +462,10 @@ impl<T: ?Sized> Clone for Arc<T> {
impl<T: ?Sized> Drop for Arc<T> {
fn drop(&mut self) {
- // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
- // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
- // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
- // freed/invalid memory as long as it is never dereferenced.
- let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
-
// INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
// this instance is being dropped, so the broken invariant is not observable.
- // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
- let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
+ // SAFETY: By the type invariant, there is necessarily a reference to the object.
+ let is_zero = unsafe { self.ptr.as_ref() }.refcount.dec_and_test();
if is_zero {
// The count reached zero, we must free the memory.
//
@@ -775,8 +759,7 @@ impl<T> UniqueArc<T> {
// INVARIANT: The refcount is initialised to a non-zero value.
let inner = KBox::try_init::<AllocError>(
try_init!(ArcInner {
- // SAFETY: There are no safety requirements for this FFI call.
- refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
+ refcount: Refcount::new(1),
data <- pin_init::uninit::<T, AllocError>(),
}? AllocError),
flags,
diff --git a/rust/kernel/sync/aref.rs b/rust/kernel/sync/aref.rs
index dbd77bb68617..0d24a0432015 100644
--- a/rust/kernel/sync/aref.rs
+++ b/rust/kernel/sync/aref.rs
@@ -1,6 +1,21 @@
// SPDX-License-Identifier: GPL-2.0
//! Internal reference counting support.
+//!
+//! Many C types already have their own reference counting mechanism (e.g. by storing a
+//! `refcount_t`). This module provides support for directly using their internal reference count
+//! from Rust; instead of making users have to use an additional Rust-reference count in the form of
+//! [`Arc`].
+//!
+//! The smart pointer [`ARef<T>`] acts similarly to [`Arc<T>`] in that it holds a refcount on the
+//! underlying object, but this refcount is internal to the object. It essentially is a Rust
+//! implementation of the `get_` and `put_` pattern used in C for reference counting.
+//!
+//! To make use of [`ARef<MyType>`], `MyType` needs to implement [`AlwaysRefCounted`]. It is a trait
+//! for accessing the internal reference count of an object of the `MyType` type.
+//!
+//! [`Arc`]: crate::sync::Arc
+//! [`Arc<T>`]: crate::sync::Arc
use core::{marker::PhantomData, mem::ManuallyDrop, ops::Deref, ptr::NonNull};
@@ -97,7 +112,7 @@ impl<T: AlwaysRefCounted> ARef<T> {
///
/// ```
/// use core::ptr::NonNull;
- /// use kernel::types::{ARef, AlwaysRefCounted};
+ /// use kernel::sync::aref::{ARef, AlwaysRefCounted};
///
/// struct Empty {}
///
diff --git a/rust/kernel/sync/atomic.rs b/rust/kernel/sync/atomic.rs
new file mode 100644
index 000000000000..016a6bcaf080
--- /dev/null
+++ b/rust/kernel/sync/atomic.rs
@@ -0,0 +1,551 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Atomic primitives.
+//!
+//! These primitives have the same semantics as their C counterparts: and the precise definitions of
+//! semantics can be found at [`LKMM`]. Note that Linux Kernel Memory (Consistency) Model is the
+//! only model for Rust code in kernel, and Rust's own atomics should be avoided.
+//!
+//! # Data races
+//!
+//! [`LKMM`] atomics have different rules regarding data races:
+//!
+//! - A normal write from C side is treated as an atomic write if
+//! CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=y.
+//! - Mixed-size atomic accesses don't cause data races.
+//!
+//! [`LKMM`]: srctree/tools/memory-model/
+
+mod internal;
+pub mod ordering;
+mod predefine;
+
+pub use internal::AtomicImpl;
+pub use ordering::{Acquire, Full, Relaxed, Release};
+
+use crate::build_error;
+use internal::{AtomicArithmeticOps, AtomicBasicOps, AtomicExchangeOps, AtomicRepr};
+use ordering::OrderingType;
+
+/// A memory location which can be safely modified from multiple execution contexts.
+///
+/// This has the same size, alignment and bit validity as the underlying type `T`. And it disables
+/// niche optimization for the same reason as [`UnsafeCell`].
+///
+/// The atomic operations are implemented in a way that is fully compatible with the [Linux Kernel
+/// Memory (Consistency) Model][LKMM], hence they should be modeled as the corresponding
+/// [`LKMM`][LKMM] atomic primitives. With the help of [`Atomic::from_ptr()`] and
+/// [`Atomic::as_ptr()`], this provides a way to interact with [C-side atomic operations]
+/// (including those without the `atomic` prefix, e.g. `READ_ONCE()`, `WRITE_ONCE()`,
+/// `smp_load_acquire()` and `smp_store_release()`).
+///
+/// # Invariants
+///
+/// `self.0` is a valid `T`.
+///
+/// [`UnsafeCell`]: core::cell::UnsafeCell
+/// [LKMM]: srctree/tools/memory-model/
+/// [C-side atomic operations]: srctree/Documentation/atomic_t.txt
+#[repr(transparent)]
+pub struct Atomic<T: AtomicType>(AtomicRepr<T::Repr>);
+
+// SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic.
+unsafe impl<T: AtomicType> Sync for Atomic<T> {}
+
+/// Types that support basic atomic operations.
+///
+/// # Round-trip transmutability
+///
+/// `T` is round-trip transmutable to `U` if and only if both of these properties hold:
+///
+/// - Any valid bit pattern for `T` is also a valid bit pattern for `U`.
+/// - Transmuting (e.g. using [`transmute()`]) a value of type `T` to `U` and then to `T` again
+/// yields a value that is in all aspects equivalent to the original value.
+///
+/// # Safety
+///
+/// - [`Self`] must have the same size and alignment as [`Self::Repr`].
+/// - [`Self`] must be [round-trip transmutable] to [`Self::Repr`].
+///
+/// Note that this is more relaxed than requiring the bi-directional transmutability (i.e.
+/// [`transmute()`] is always sound between `U` and `T`) because of the support for atomic
+/// variables over unit-only enums, see [Examples].
+///
+/// # Limitations
+///
+/// Because C primitives are used to implement the atomic operations, and a C function requires a
+/// valid object of a type to operate on (i.e. no `MaybeUninit<_>`), hence at the Rust <-> C
+/// surface, only types with all the bits initialized can be passed. As a result, types like `(u8,
+/// u16)` (padding bytes are uninitialized) are currently not supported.
+///
+/// # Examples
+///
+/// A unit-only enum that implements [`AtomicType`]:
+///
+/// ```
+/// use kernel::sync::atomic::{AtomicType, Atomic, Relaxed};
+///
+/// #[derive(Clone, Copy, PartialEq, Eq)]
+/// #[repr(i32)]
+/// enum State {
+/// Uninit = 0,
+/// Working = 1,
+/// Done = 2,
+/// };
+///
+/// // SAFETY: `State` and `i32` has the same size and alignment, and it's round-trip
+/// // transmutable to `i32`.
+/// unsafe impl AtomicType for State {
+/// type Repr = i32;
+/// }
+///
+/// let s = Atomic::new(State::Uninit);
+///
+/// assert_eq!(State::Uninit, s.load(Relaxed));
+/// ```
+/// [`transmute()`]: core::mem::transmute
+/// [round-trip transmutable]: AtomicType#round-trip-transmutability
+/// [Examples]: AtomicType#examples
+pub unsafe trait AtomicType: Sized + Send + Copy {
+ /// The backing atomic implementation type.
+ type Repr: AtomicImpl;
+}
+
+/// Types that support atomic add operations.
+///
+/// # Safety
+///
+// TODO: Properly defines `wrapping_add` in the following comment.
+/// `wrapping_add` any value of type `Self::Repr::Delta` obtained by [`Self::rhs_into_delta()`] to
+/// any value of type `Self::Repr` obtained through transmuting a value of type `Self` to must
+/// yield a value with a bit pattern also valid for `Self`.
+pub unsafe trait AtomicAdd<Rhs = Self>: AtomicType {
+ /// Converts `Rhs` into the `Delta` type of the atomic implementation.
+ fn rhs_into_delta(rhs: Rhs) -> <Self::Repr as AtomicImpl>::Delta;
+}
+
+#[inline(always)]
+const fn into_repr<T: AtomicType>(v: T) -> T::Repr {
+ // SAFETY: Per the safety requirement of `AtomicType`, `T` is round-trip transmutable to
+ // `T::Repr`, therefore the transmute operation is sound.
+ unsafe { core::mem::transmute_copy(&v) }
+}
+
+/// # Safety
+///
+/// `r` must be a valid bit pattern of `T`.
+#[inline(always)]
+const unsafe fn from_repr<T: AtomicType>(r: T::Repr) -> T {
+ // SAFETY: Per the safety requirement of the function, the transmute operation is sound.
+ unsafe { core::mem::transmute_copy(&r) }
+}
+
+impl<T: AtomicType> Atomic<T> {
+ /// Creates a new atomic `T`.
+ pub const fn new(v: T) -> Self {
+ // INVARIANT: Per the safety requirement of `AtomicType`, `into_repr(v)` is a valid `T`.
+ Self(AtomicRepr::new(into_repr(v)))
+ }
+
+ /// Creates a reference to an atomic `T` from a pointer of `T`.
+ ///
+ /// This usually is used when communicating with C side or manipulating a C struct, see
+ /// examples below.
+ ///
+ /// # Safety
+ ///
+ /// - `ptr` is aligned to `align_of::<T>()`.
+ /// - `ptr` is valid for reads and writes for `'a`.
+ /// - For the duration of `'a`, other accesses to `*ptr` must not cause data races (defined
+ /// by [`LKMM`]) against atomic operations on the returned reference. Note that if all other
+ /// accesses are atomic, then this safety requirement is trivially fulfilled.
+ ///
+ /// [`LKMM`]: srctree/tools/memory-model
+ ///
+ /// # Examples
+ ///
+ /// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can
+ /// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or
+ /// `WRITE_ONCE()`/`smp_store_release()` in C side:
+ ///
+ /// ```
+ /// # use kernel::types::Opaque;
+ /// use kernel::sync::atomic::{Atomic, Relaxed, Release};
+ ///
+ /// // Assume there is a C struct `foo`.
+ /// mod cbindings {
+ /// #[repr(C)]
+ /// pub(crate) struct foo {
+ /// pub(crate) a: i32,
+ /// pub(crate) b: i32
+ /// }
+ /// }
+ ///
+ /// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2 });
+ ///
+ /// // struct foo *foo_ptr = ..;
+ /// let foo_ptr = tmp.get();
+ ///
+ /// // SAFETY: `foo_ptr` is valid, and `.a` is in bounds.
+ /// let foo_a_ptr = unsafe { &raw mut (*foo_ptr).a };
+ ///
+ /// // a = READ_ONCE(foo_ptr->a);
+ /// //
+ /// // SAFETY: `foo_a_ptr` is valid for read, and all other accesses on it is atomic, so no
+ /// // data race.
+ /// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed);
+ /// # assert_eq!(a, 1);
+ ///
+ /// // smp_store_release(&foo_ptr->a, 2);
+ /// //
+ /// // SAFETY: `foo_a_ptr` is valid for writes, and all other accesses on it is atomic, so
+ /// // no data race.
+ /// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release);
+ /// ```
+ pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self
+ where
+ T: Sync,
+ {
+ // CAST: `T` and `Atomic<T>` have the same size, alignment and bit validity.
+ // SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will
+ // live long enough. It's safe to return a `&Atomic<T>` because function safety requirement
+ // guarantees other accesses won't cause data races.
+ unsafe { &*ptr.cast::<Self>() }
+ }
+
+ /// Returns a pointer to the underlying atomic `T`.
+ ///
+ /// Note that use of the return pointer must not cause data races defined by [`LKMM`].
+ ///
+ /// # Guarantees
+ ///
+ /// The returned pointer is valid and properly aligned (i.e. aligned to [`align_of::<T>()`]).
+ ///
+ /// [`LKMM`]: srctree/tools/memory-model
+ /// [`align_of::<T>()`]: core::mem::align_of
+ pub const fn as_ptr(&self) -> *mut T {
+ // GUARANTEE: Per the function guarantee of `AtomicRepr::as_ptr()`, the `self.0.as_ptr()`
+ // must be a valid and properly aligned pointer for `T::Repr`, and per the safety guarantee
+ // of `AtomicType`, it's a valid and properly aligned pointer of `T`.
+ self.0.as_ptr().cast()
+ }
+
+ /// Returns a mutable reference to the underlying atomic `T`.
+ ///
+ /// This is safe because the mutable reference of the atomic `T` guarantees exclusive access.
+ pub fn get_mut(&mut self) -> &mut T {
+ // CAST: `T` and `T::Repr` has the same size and alignment per the safety requirement of
+ // `AtomicType`, and per the type invariants `self.0` is a valid `T`, therefore the casting
+ // result is a valid pointer of `T`.
+ // SAFETY: The pointer is valid per the CAST comment above, and the mutable reference
+ // guarantees exclusive access.
+ unsafe { &mut *self.0.as_ptr().cast() }
+ }
+}
+
+impl<T: AtomicType> Atomic<T>
+where
+ T::Repr: AtomicBasicOps,
+{
+ /// Loads the value from the atomic `T`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Relaxed};
+ ///
+ /// let x = Atomic::new(42i32);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// let x = Atomic::new(42i64);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ /// ```
+ #[doc(alias("atomic_read", "atomic64_read"))]
+ #[inline(always)]
+ pub fn load<Ordering: ordering::AcquireOrRelaxed>(&self, _: Ordering) -> T {
+ let v = {
+ match Ordering::TYPE {
+ OrderingType::Relaxed => T::Repr::atomic_read(&self.0),
+ OrderingType::Acquire => T::Repr::atomic_read_acquire(&self.0),
+ _ => build_error!("Wrong ordering"),
+ }
+ };
+
+ // SAFETY: `v` comes from reading `self.0`, which is a valid `T` per the type invariants.
+ unsafe { from_repr(v) }
+ }
+
+ /// Stores a value to the atomic `T`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Relaxed};
+ ///
+ /// let x = Atomic::new(42i32);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// x.store(43, Relaxed);
+ ///
+ /// assert_eq!(43, x.load(Relaxed));
+ /// ```
+ #[doc(alias("atomic_set", "atomic64_set"))]
+ #[inline(always)]
+ pub fn store<Ordering: ordering::ReleaseOrRelaxed>(&self, v: T, _: Ordering) {
+ let v = into_repr(v);
+
+ // INVARIANT: `v` is a valid `T`, and is stored to `self.0` by `atomic_set*()`.
+ match Ordering::TYPE {
+ OrderingType::Relaxed => T::Repr::atomic_set(&self.0, v),
+ OrderingType::Release => T::Repr::atomic_set_release(&self.0, v),
+ _ => build_error!("Wrong ordering"),
+ }
+ }
+}
+
+impl<T: AtomicType> Atomic<T>
+where
+ T::Repr: AtomicExchangeOps,
+{
+ /// Atomic exchange.
+ ///
+ /// Atomically updates `*self` to `v` and returns the old value of `*self`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Acquire, Relaxed};
+ ///
+ /// let x = Atomic::new(42);
+ ///
+ /// assert_eq!(42, x.xchg(52, Acquire));
+ /// assert_eq!(52, x.load(Relaxed));
+ /// ```
+ #[doc(alias("atomic_xchg", "atomic64_xchg", "swap"))]
+ #[inline(always)]
+ pub fn xchg<Ordering: ordering::Ordering>(&self, v: T, _: Ordering) -> T {
+ let v = into_repr(v);
+
+ // INVARIANT: `self.0` is a valid `T` after `atomic_xchg*()` because `v` is transmutable to
+ // `T`.
+ let ret = {
+ match Ordering::TYPE {
+ OrderingType::Full => T::Repr::atomic_xchg(&self.0, v),
+ OrderingType::Acquire => T::Repr::atomic_xchg_acquire(&self.0, v),
+ OrderingType::Release => T::Repr::atomic_xchg_release(&self.0, v),
+ OrderingType::Relaxed => T::Repr::atomic_xchg_relaxed(&self.0, v),
+ }
+ };
+
+ // SAFETY: `ret` comes from reading `*self`, which is a valid `T` per type invariants.
+ unsafe { from_repr(ret) }
+ }
+
+ /// Atomic compare and exchange.
+ ///
+ /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
+ /// modified.
+ ///
+ /// Compare: The comparison is done via the byte level comparison between `*self` and `old`.
+ ///
+ /// Ordering: When succeeds, provides the corresponding ordering as the `Ordering` type
+ /// parameter indicates, and a failed one doesn't provide any ordering, the load part of a
+ /// failed cmpxchg is a [`Relaxed`] load.
+ ///
+ /// Returns `Ok(value)` if cmpxchg succeeds, and `value` is guaranteed to be equal to `old`,
+ /// otherwise returns `Err(value)`, and `value` is the current value of `*self`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Full, Relaxed};
+ ///
+ /// let x = Atomic::new(42);
+ ///
+ /// // Checks whether cmpxchg succeeded.
+ /// let success = x.cmpxchg(52, 64, Relaxed).is_ok();
+ /// # assert!(!success);
+ ///
+ /// // Checks whether cmpxchg failed.
+ /// let failure = x.cmpxchg(52, 64, Relaxed).is_err();
+ /// # assert!(failure);
+ ///
+ /// // Uses the old value if failed, probably re-try cmpxchg.
+ /// match x.cmpxchg(52, 64, Relaxed) {
+ /// Ok(_) => { },
+ /// Err(old) => {
+ /// // do something with `old`.
+ /// # assert_eq!(old, 42);
+ /// }
+ /// }
+ ///
+ /// // Uses the latest value regardlessly, same as atomic_cmpxchg() in C.
+ /// let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
+ /// # assert_eq!(42, latest);
+ /// assert_eq!(64, x.load(Relaxed));
+ /// ```
+ ///
+ /// [`Relaxed`]: ordering::Relaxed
+ #[doc(alias(
+ "atomic_cmpxchg",
+ "atomic64_cmpxchg",
+ "atomic_try_cmpxchg",
+ "atomic64_try_cmpxchg",
+ "compare_exchange"
+ ))]
+ #[inline(always)]
+ pub fn cmpxchg<Ordering: ordering::Ordering>(
+ &self,
+ mut old: T,
+ new: T,
+ o: Ordering,
+ ) -> Result<T, T> {
+ // Note on code generation:
+ //
+ // try_cmpxchg() is used to implement cmpxchg(), and if the helper functions are inlined,
+ // the compiler is able to figure out that branch is not needed if the users don't care
+ // about whether the operation succeeds or not. One exception is on x86, due to commit
+ // 44fe84459faf ("locking/atomic: Fix atomic_try_cmpxchg() semantics"), the
+ // atomic_try_cmpxchg() on x86 has a branch even if the caller doesn't care about the
+ // success of cmpxchg and only wants to use the old value. For example, for code like:
+ //
+ // let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old);
+ //
+ // It will still generate code:
+ //
+ // movl $0x40, %ecx
+ // movl $0x34, %eax
+ // lock
+ // cmpxchgl %ecx, 0x4(%rsp)
+ // jne 1f
+ // 2:
+ // ...
+ // 1: movl %eax, %ecx
+ // jmp 2b
+ //
+ // This might be "fixed" by introducing a try_cmpxchg_exclusive() that knows the "*old"
+ // location in the C function is always safe to write.
+ if self.try_cmpxchg(&mut old, new, o) {
+ Ok(old)
+ } else {
+ Err(old)
+ }
+ }
+
+ /// Atomic compare and exchange and returns whether the operation succeeds.
+ ///
+ /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not
+ /// modified, `*old` is updated to the current value of `*self`.
+ ///
+ /// "Compare" and "Ordering" part are the same as [`Atomic::cmpxchg()`].
+ ///
+ /// Returns `true` means the cmpxchg succeeds otherwise returns `false`.
+ #[inline(always)]
+ fn try_cmpxchg<Ordering: ordering::Ordering>(&self, old: &mut T, new: T, _: Ordering) -> bool {
+ let mut tmp = into_repr(*old);
+ let new = into_repr(new);
+
+ // INVARIANT: `self.0` is a valid `T` after `atomic_try_cmpxchg*()` because `new` is
+ // transmutable to `T`.
+ let ret = {
+ match Ordering::TYPE {
+ OrderingType::Full => T::Repr::atomic_try_cmpxchg(&self.0, &mut tmp, new),
+ OrderingType::Acquire => {
+ T::Repr::atomic_try_cmpxchg_acquire(&self.0, &mut tmp, new)
+ }
+ OrderingType::Release => {
+ T::Repr::atomic_try_cmpxchg_release(&self.0, &mut tmp, new)
+ }
+ OrderingType::Relaxed => {
+ T::Repr::atomic_try_cmpxchg_relaxed(&self.0, &mut tmp, new)
+ }
+ }
+ };
+
+ // SAFETY: `tmp` comes from reading `*self`, which is a valid `T` per type invariants.
+ *old = unsafe { from_repr(tmp) };
+
+ ret
+ }
+}
+
+impl<T: AtomicType> Atomic<T>
+where
+ T::Repr: AtomicArithmeticOps,
+{
+ /// Atomic add.
+ ///
+ /// Atomically updates `*self` to `(*self).wrapping_add(v)`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Relaxed};
+ ///
+ /// let x = Atomic::new(42);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// x.add(12, Relaxed);
+ ///
+ /// assert_eq!(54, x.load(Relaxed));
+ /// ```
+ #[inline(always)]
+ pub fn add<Rhs>(&self, v: Rhs, _: ordering::Relaxed)
+ where
+ T: AtomicAdd<Rhs>,
+ {
+ let v = T::rhs_into_delta(v);
+
+ // INVARIANT: `self.0` is a valid `T` after `atomic_add()` due to safety requirement of
+ // `AtomicAdd`.
+ T::Repr::atomic_add(&self.0, v);
+ }
+
+ /// Atomic fetch and add.
+ ///
+ /// Atomically updates `*self` to `(*self).wrapping_add(v)`, and returns the value of `*self`
+ /// before the update.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::sync::atomic::{Atomic, Acquire, Full, Relaxed};
+ ///
+ /// let x = Atomic::new(42);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// assert_eq!(54, { x.fetch_add(12, Acquire); x.load(Relaxed) });
+ ///
+ /// let x = Atomic::new(42);
+ ///
+ /// assert_eq!(42, x.load(Relaxed));
+ ///
+ /// assert_eq!(54, { x.fetch_add(12, Full); x.load(Relaxed) } );
+ /// ```
+ #[inline(always)]
+ pub fn fetch_add<Rhs, Ordering: ordering::Ordering>(&self, v: Rhs, _: Ordering) -> T
+ where
+ T: AtomicAdd<Rhs>,
+ {
+ let v = T::rhs_into_delta(v);
+
+ // INVARIANT: `self.0` is a valid `T` after `atomic_fetch_add*()` due to safety requirement
+ // of `AtomicAdd`.
+ let ret = {
+ match Ordering::TYPE {
+ OrderingType::Full => T::Repr::atomic_fetch_add(&self.0, v),
+ OrderingType::Acquire => T::Repr::atomic_fetch_add_acquire(&self.0, v),
+ OrderingType::Release => T::Repr::atomic_fetch_add_release(&self.0, v),
+ OrderingType::Relaxed => T::Repr::atomic_fetch_add_relaxed(&self.0, v),
+ }
+ };
+
+ // SAFETY: `ret` comes from reading `self.0`, which is a valid `T` per type invariants.
+ unsafe { from_repr(ret) }
+ }
+}
diff --git a/rust/kernel/sync/atomic/internal.rs b/rust/kernel/sync/atomic/internal.rs
new file mode 100644
index 000000000000..6fdd8e59f45b
--- /dev/null
+++ b/rust/kernel/sync/atomic/internal.rs
@@ -0,0 +1,265 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Atomic internal implementations.
+//!
+//! Provides 1:1 mapping to the C atomic operations.
+
+use crate::bindings;
+use crate::macros::paste;
+use core::cell::UnsafeCell;
+
+mod private {
+ /// Sealed trait marker to disable customized impls on atomic implementation traits.
+ pub trait Sealed {}
+}
+
+// `i32` and `i64` are only supported atomic implementations.
+impl private::Sealed for i32 {}
+impl private::Sealed for i64 {}
+
+/// A marker trait for types that implement atomic operations with C side primitives.
+///
+/// This trait is sealed, and only types that have directly mapping to the C side atomics should
+/// impl this:
+///
+/// - `i32` maps to `atomic_t`.
+/// - `i64` maps to `atomic64_t`.
+pub trait AtomicImpl: Sized + Send + Copy + private::Sealed {
+ /// The type of the delta in arithmetic or logical operations.
+ ///
+ /// For example, in `atomic_add(ptr, v)`, it's the type of `v`. Usually it's the same type of
+ /// [`Self`], but it may be different for the atomic pointer type.
+ type Delta;
+}
+
+// `atomic_t` implements atomic operations on `i32`.
+impl AtomicImpl for i32 {
+ type Delta = Self;
+}
+
+// `atomic64_t` implements atomic operations on `i64`.
+impl AtomicImpl for i64 {
+ type Delta = Self;
+}
+
+/// Atomic representation.
+#[repr(transparent)]
+pub struct AtomicRepr<T: AtomicImpl>(UnsafeCell<T>);
+
+impl<T: AtomicImpl> AtomicRepr<T> {
+ /// Creates a new atomic representation `T`.
+ pub const fn new(v: T) -> Self {
+ Self(UnsafeCell::new(v))
+ }
+
+ /// Returns a pointer to the underlying `T`.
+ ///
+ /// # Guarantees
+ ///
+ /// The returned pointer is valid and properly aligned (i.e. aligned to [`align_of::<T>()`]).
+ pub const fn as_ptr(&self) -> *mut T {
+ // GUARANTEE: `self.0` is an `UnsafeCell<T>`, therefore the pointer returned by `.get()`
+ // must be valid and properly aligned.
+ self.0.get()
+ }
+}
+
+// This macro generates the function signature with given argument list and return type.
+macro_rules! declare_atomic_method {
+ (
+ $(#[doc=$doc:expr])*
+ $func:ident($($arg:ident : $arg_type:ty),*) $(-> $ret:ty)?
+ ) => {
+ paste!(
+ $(#[doc = $doc])*
+ fn [< atomic_ $func >]($($arg: $arg_type,)*) $(-> $ret)?;
+ );
+ };
+ (
+ $(#[doc=$doc:expr])*
+ $func:ident [$variant:ident $($rest:ident)*]($($arg_sig:tt)*) $(-> $ret:ty)?
+ ) => {
+ paste!(
+ declare_atomic_method!(
+ $(#[doc = $doc])*
+ [< $func _ $variant >]($($arg_sig)*) $(-> $ret)?
+ );
+ );
+
+ declare_atomic_method!(
+ $(#[doc = $doc])*
+ $func [$($rest)*]($($arg_sig)*) $(-> $ret)?
+ );
+ };
+ (
+ $(#[doc=$doc:expr])*
+ $func:ident []($($arg_sig:tt)*) $(-> $ret:ty)?
+ ) => {
+ declare_atomic_method!(
+ $(#[doc = $doc])*
+ $func($($arg_sig)*) $(-> $ret)?
+ );
+ }
+}
+
+// This macro generates the function implementation with given argument list and return type, and it
+// will replace "call(...)" expression with "$ctype _ $func" to call the real C function.
+macro_rules! impl_atomic_method {
+ (
+ ($ctype:ident) $func:ident($($arg:ident: $arg_type:ty),*) $(-> $ret:ty)? {
+ $unsafe:tt { call($($c_arg:expr),*) }
+ }
+ ) => {
+ paste!(
+ #[inline(always)]
+ fn [< atomic_ $func >]($($arg: $arg_type,)*) $(-> $ret)? {
+ // TODO: Ideally we want to use the SAFETY comments written at the macro invocation
+ // (e.g. in `declare_and_impl_atomic_methods!()`, however, since SAFETY comments
+ // are just comments, and they are not passed to macros as tokens, therefore we
+ // cannot use them here. One potential improvement is that if we support using
+ // attributes as an alternative for SAFETY comments, then we can use that for macro
+ // generating code.
+ //
+ // SAFETY: specified on macro invocation.
+ $unsafe { bindings::[< $ctype _ $func >]($($c_arg,)*) }
+ }
+ );
+ };
+ (
+ ($ctype:ident) $func:ident[$variant:ident $($rest:ident)*]($($arg_sig:tt)*) $(-> $ret:ty)? {
+ $unsafe:tt { call($($arg:tt)*) }
+ }
+ ) => {
+ paste!(
+ impl_atomic_method!(
+ ($ctype) [< $func _ $variant >]($($arg_sig)*) $( -> $ret)? {
+ $unsafe { call($($arg)*) }
+ }
+ );
+ );
+ impl_atomic_method!(
+ ($ctype) $func [$($rest)*]($($arg_sig)*) $( -> $ret)? {
+ $unsafe { call($($arg)*) }
+ }
+ );
+ };
+ (
+ ($ctype:ident) $func:ident[]($($arg_sig:tt)*) $( -> $ret:ty)? {
+ $unsafe:tt { call($($arg:tt)*) }
+ }
+ ) => {
+ impl_atomic_method!(
+ ($ctype) $func($($arg_sig)*) $(-> $ret)? {
+ $unsafe { call($($arg)*) }
+ }
+ );
+ }
+}
+
+// Delcares $ops trait with methods and implements the trait for `i32` and `i64`.
+macro_rules! declare_and_impl_atomic_methods {
+ ($(#[$attr:meta])* $pub:vis trait $ops:ident {
+ $(
+ $(#[doc=$doc:expr])*
+ fn $func:ident [$($variant:ident),*]($($arg_sig:tt)*) $( -> $ret:ty)? {
+ $unsafe:tt { bindings::#call($($arg:tt)*) }
+ }
+ )*
+ }) => {
+ $(#[$attr])*
+ $pub trait $ops: AtomicImpl {
+ $(
+ declare_atomic_method!(
+ $(#[doc=$doc])*
+ $func[$($variant)*]($($arg_sig)*) $(-> $ret)?
+ );
+ )*
+ }
+
+ impl $ops for i32 {
+ $(
+ impl_atomic_method!(
+ (atomic) $func[$($variant)*]($($arg_sig)*) $(-> $ret)? {
+ $unsafe { call($($arg)*) }
+ }
+ );
+ )*
+ }
+
+ impl $ops for i64 {
+ $(
+ impl_atomic_method!(
+ (atomic64) $func[$($variant)*]($($arg_sig)*) $(-> $ret)? {
+ $unsafe { call($($arg)*) }
+ }
+ );
+ )*
+ }
+ }
+}
+
+declare_and_impl_atomic_methods!(
+ /// Basic atomic operations
+ pub trait AtomicBasicOps {
+ /// Atomic read (load).
+ fn read[acquire](a: &AtomicRepr<Self>) -> Self {
+ // SAFETY: `a.as_ptr()` is valid and properly aligned.
+ unsafe { bindings::#call(a.as_ptr().cast()) }
+ }
+
+ /// Atomic set (store).
+ fn set[release](a: &AtomicRepr<Self>, v: Self) {
+ // SAFETY: `a.as_ptr()` is valid and properly aligned.
+ unsafe { bindings::#call(a.as_ptr().cast(), v) }
+ }
+ }
+);
+
+declare_and_impl_atomic_methods!(
+ /// Exchange and compare-and-exchange atomic operations
+ pub trait AtomicExchangeOps {
+ /// Atomic exchange.
+ ///
+ /// Atomically updates `*a` to `v` and returns the old value.
+ fn xchg[acquire, release, relaxed](a: &AtomicRepr<Self>, v: Self) -> Self {
+ // SAFETY: `a.as_ptr()` is valid and properly aligned.
+ unsafe { bindings::#call(a.as_ptr().cast(), v) }
+ }
+
+ /// Atomic compare and exchange.
+ ///
+ /// If `*a` == `*old`, atomically updates `*a` to `new`. Otherwise, `*a` is not
+ /// modified, `*old` is updated to the current value of `*a`.
+ ///
+ /// Return `true` if the update of `*a` occurred, `false` otherwise.
+ fn try_cmpxchg[acquire, release, relaxed](
+ a: &AtomicRepr<Self>, old: &mut Self, new: Self
+ ) -> bool {
+ // SAFETY: `a.as_ptr()` is valid and properly aligned. `core::ptr::from_mut(old)`
+ // is valid and properly aligned.
+ unsafe { bindings::#call(a.as_ptr().cast(), core::ptr::from_mut(old), new) }
+ }
+ }
+);
+
+declare_and_impl_atomic_methods!(
+ /// Atomic arithmetic operations
+ pub trait AtomicArithmeticOps {
+ /// Atomic add (wrapping).
+ ///
+ /// Atomically updates `*a` to `(*a).wrapping_add(v)`.
+ fn add[](a: &AtomicRepr<Self>, v: Self::Delta) {
+ // SAFETY: `a.as_ptr()` is valid and properly aligned.
+ unsafe { bindings::#call(v, a.as_ptr().cast()) }
+ }
+
+ /// Atomic fetch and add (wrapping).
+ ///
+ /// Atomically updates `*a` to `(*a).wrapping_add(v)`, and returns the value of `*a`
+ /// before the update.
+ fn fetch_add[acquire, release, relaxed](a: &AtomicRepr<Self>, v: Self::Delta) -> Self {
+ // SAFETY: `a.as_ptr()` is valid and properly aligned.
+ unsafe { bindings::#call(v, a.as_ptr().cast()) }
+ }
+ }
+);
diff --git a/rust/kernel/sync/atomic/ordering.rs b/rust/kernel/sync/atomic/ordering.rs
new file mode 100644
index 000000000000..3f103aa8db99
--- /dev/null
+++ b/rust/kernel/sync/atomic/ordering.rs
@@ -0,0 +1,104 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Memory orderings.
+//!
+//! The semantics of these orderings follows the [`LKMM`] definitions and rules.
+//!
+//! - [`Acquire`] provides ordering between the load part of the annotated operation and all the
+//! following memory accesses, and if there is a store part, the store part has the [`Relaxed`]
+//! ordering.
+//! - [`Release`] provides ordering between all the preceding memory accesses and the store part of
+//! the annotated operation, and if there is a load part, the load part has the [`Relaxed`]
+//! ordering.
+//! - [`Full`] means "fully-ordered", that is:
+//! - It provides ordering between all the preceding memory accesses and the annotated operation.
+//! - It provides ordering between the annotated operation and all the following memory accesses.
+//! - It provides ordering between all the preceding memory accesses and all the following memory
+//! accesses.
+//! - All the orderings are the same strength as a full memory barrier (i.e. `smp_mb()`).
+//! - [`Relaxed`] provides no ordering except the dependency orderings. Dependency orderings are
+//! described in "DEPENDENCY RELATIONS" in [`LKMM`]'s [`explanation`].
+//!
+//! [`LKMM`]: srctree/tools/memory-model/
+//! [`explanation`]: srctree/tools/memory-model/Documentation/explanation.txt
+
+/// The annotation type for relaxed memory ordering, for the description of relaxed memory
+/// ordering, see [module-level documentation].
+///
+/// [module-level documentation]: crate::sync::atomic::ordering
+pub struct Relaxed;
+
+/// The annotation type for acquire memory ordering, for the description of acquire memory
+/// ordering, see [module-level documentation].
+///
+/// [module-level documentation]: crate::sync::atomic::ordering
+pub struct Acquire;
+
+/// The annotation type for release memory ordering, for the description of release memory
+/// ordering, see [module-level documentation].
+///
+/// [module-level documentation]: crate::sync::atomic::ordering
+pub struct Release;
+
+/// The annotation type for fully-ordered memory ordering, for the description fully-ordered memory
+/// ordering, see [module-level documentation].
+///
+/// [module-level documentation]: crate::sync::atomic::ordering
+pub struct Full;
+
+/// Describes the exact memory ordering.
+#[doc(hidden)]
+pub enum OrderingType {
+ /// Relaxed ordering.
+ Relaxed,
+ /// Acquire ordering.
+ Acquire,
+ /// Release ordering.
+ Release,
+ /// Fully-ordered.
+ Full,
+}
+
+mod internal {
+ /// Sealed trait, can be only implemented inside atomic mod.
+ pub trait Sealed {}
+
+ impl Sealed for super::Relaxed {}
+ impl Sealed for super::Acquire {}
+ impl Sealed for super::Release {}
+ impl Sealed for super::Full {}
+}
+
+/// The trait bound for annotating operations that support any ordering.
+pub trait Ordering: internal::Sealed {
+ /// Describes the exact memory ordering.
+ const TYPE: OrderingType;
+}
+
+impl Ordering for Relaxed {
+ const TYPE: OrderingType = OrderingType::Relaxed;
+}
+
+impl Ordering for Acquire {
+ const TYPE: OrderingType = OrderingType::Acquire;
+}
+
+impl Ordering for Release {
+ const TYPE: OrderingType = OrderingType::Release;
+}
+
+impl Ordering for Full {
+ const TYPE: OrderingType = OrderingType::Full;
+}
+
+/// The trait bound for operations that only support acquire or relaxed ordering.
+pub trait AcquireOrRelaxed: Ordering {}
+
+impl AcquireOrRelaxed for Acquire {}
+impl AcquireOrRelaxed for Relaxed {}
+
+/// The trait bound for operations that only support release or relaxed ordering.
+pub trait ReleaseOrRelaxed: Ordering {}
+
+impl ReleaseOrRelaxed for Release {}
+impl ReleaseOrRelaxed for Relaxed {}
diff --git a/rust/kernel/sync/atomic/predefine.rs b/rust/kernel/sync/atomic/predefine.rs
new file mode 100644
index 000000000000..45a17985cda4
--- /dev/null
+++ b/rust/kernel/sync/atomic/predefine.rs
@@ -0,0 +1,169 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Pre-defined atomic types
+
+use crate::static_assert;
+use core::mem::{align_of, size_of};
+
+// SAFETY: `i32` has the same size and alignment with itself, and is round-trip transmutable to
+// itself.
+unsafe impl super::AtomicType for i32 {
+ type Repr = i32;
+}
+
+// SAFETY: The wrapping add result of two `i32`s is a valid `i32`.
+unsafe impl super::AtomicAdd<i32> for i32 {
+ fn rhs_into_delta(rhs: i32) -> i32 {
+ rhs
+ }
+}
+
+// SAFETY: `i64` has the same size and alignment with itself, and is round-trip transmutable to
+// itself.
+unsafe impl super::AtomicType for i64 {
+ type Repr = i64;
+}
+
+// SAFETY: The wrapping add result of two `i64`s is a valid `i64`.
+unsafe impl super::AtomicAdd<i64> for i64 {
+ fn rhs_into_delta(rhs: i64) -> i64 {
+ rhs
+ }
+}
+
+// Defines an internal type that always maps to the integer type which has the same size alignment
+// as `isize` and `usize`, and `isize` and `usize` are always bi-directional transmutable to
+// `isize_atomic_repr`, which also always implements `AtomicImpl`.
+#[allow(non_camel_case_types)]
+#[cfg(not(CONFIG_64BIT))]
+type isize_atomic_repr = i32;
+#[allow(non_camel_case_types)]
+#[cfg(CONFIG_64BIT)]
+type isize_atomic_repr = i64;
+
+// Ensure size and alignment requirements are checked.
+static_assert!(size_of::<isize>() == size_of::<isize_atomic_repr>());
+static_assert!(align_of::<isize>() == align_of::<isize_atomic_repr>());
+static_assert!(size_of::<usize>() == size_of::<isize_atomic_repr>());
+static_assert!(align_of::<usize>() == align_of::<isize_atomic_repr>());
+
+// SAFETY: `isize` has the same size and alignment with `isize_atomic_repr`, and is round-trip
+// transmutable to `isize_atomic_repr`.
+unsafe impl super::AtomicType for isize {
+ type Repr = isize_atomic_repr;
+}
+
+// SAFETY: The wrapping add result of two `isize_atomic_repr`s is a valid `usize`.
+unsafe impl super::AtomicAdd<isize> for isize {
+ fn rhs_into_delta(rhs: isize) -> isize_atomic_repr {
+ rhs as isize_atomic_repr
+ }
+}
+
+// SAFETY: `u32` and `i32` has the same size and alignment, and `u32` is round-trip transmutable to
+// `i32`.
+unsafe impl super::AtomicType for u32 {
+ type Repr = i32;
+}
+
+// SAFETY: The wrapping add result of two `i32`s is a valid `u32`.
+unsafe impl super::AtomicAdd<u32> for u32 {
+ fn rhs_into_delta(rhs: u32) -> i32 {
+ rhs as i32
+ }
+}
+
+// SAFETY: `u64` and `i64` has the same size and alignment, and `u64` is round-trip transmutable to
+// `i64`.
+unsafe impl super::AtomicType for u64 {
+ type Repr = i64;
+}
+
+// SAFETY: The wrapping add result of two `i64`s is a valid `u64`.
+unsafe impl super::AtomicAdd<u64> for u64 {
+ fn rhs_into_delta(rhs: u64) -> i64 {
+ rhs as i64
+ }
+}
+
+// SAFETY: `usize` has the same size and alignment with `isize_atomic_repr`, and is round-trip
+// transmutable to `isize_atomic_repr`.
+unsafe impl super::AtomicType for usize {
+ type Repr = isize_atomic_repr;
+}
+
+// SAFETY: The wrapping add result of two `isize_atomic_repr`s is a valid `usize`.
+unsafe impl super::AtomicAdd<usize> for usize {
+ fn rhs_into_delta(rhs: usize) -> isize_atomic_repr {
+ rhs as isize_atomic_repr
+ }
+}
+
+use crate::macros::kunit_tests;
+
+#[kunit_tests(rust_atomics)]
+mod tests {
+ use super::super::*;
+
+ // Call $fn($val) with each $type of $val.
+ macro_rules! for_each_type {
+ ($val:literal in [$($type:ty),*] $fn:expr) => {
+ $({
+ let v: $type = $val;
+
+ $fn(v);
+ })*
+ }
+ }
+
+ #[test]
+ fn atomic_basic_tests() {
+ for_each_type!(42 in [i32, i64, u32, u64, isize, usize] |v| {
+ let x = Atomic::new(v);
+
+ assert_eq!(v, x.load(Relaxed));
+ });
+ }
+
+ #[test]
+ fn atomic_xchg_tests() {
+ for_each_type!(42 in [i32, i64, u32, u64, isize, usize] |v| {
+ let x = Atomic::new(v);
+
+ let old = v;
+ let new = v + 1;
+
+ assert_eq!(old, x.xchg(new, Full));
+ assert_eq!(new, x.load(Relaxed));
+ });
+ }
+
+ #[test]
+ fn atomic_cmpxchg_tests() {
+ for_each_type!(42 in [i32, i64, u32, u64, isize, usize] |v| {
+ let x = Atomic::new(v);
+
+ let old = v;
+ let new = v + 1;
+
+ assert_eq!(Err(old), x.cmpxchg(new, new, Full));
+ assert_eq!(old, x.load(Relaxed));
+ assert_eq!(Ok(old), x.cmpxchg(old, new, Relaxed));
+ assert_eq!(new, x.load(Relaxed));
+ });
+ }
+
+ #[test]
+ fn atomic_arithmetic_tests() {
+ for_each_type!(42 in [i32, i64, u32, u64, isize, usize] |v| {
+ let x = Atomic::new(v);
+
+ assert_eq!(v, x.fetch_add(12, Full));
+ assert_eq!(v + 12, x.load(Relaxed));
+
+ x.add(13, Relaxed);
+
+ assert_eq!(v + 25, x.load(Relaxed));
+ });
+ }
+}
diff --git a/rust/kernel/sync/barrier.rs b/rust/kernel/sync/barrier.rs
new file mode 100644
index 000000000000..8f2d435fcd94
--- /dev/null
+++ b/rust/kernel/sync/barrier.rs
@@ -0,0 +1,61 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Memory barriers.
+//!
+//! These primitives have the same semantics as their C counterparts: and the precise definitions
+//! of semantics can be found at [`LKMM`].
+//!
+//! [`LKMM`]: srctree/tools/memory-model/
+
+/// A compiler barrier.
+///
+/// A barrier that prevents compiler from reordering memory accesses across the barrier.
+#[inline(always)]
+pub(crate) fn barrier() {
+ // By default, Rust inline asms are treated as being able to access any memory or flags, hence
+ // it suffices as a compiler barrier.
+ //
+ // SAFETY: An empty asm block.
+ unsafe { core::arch::asm!("") };
+}
+
+/// A full memory barrier.
+///
+/// A barrier that prevents compiler and CPU from reordering memory accesses across the barrier.
+#[inline(always)]
+pub fn smp_mb() {
+ if cfg!(CONFIG_SMP) {
+ // SAFETY: `smp_mb()` is safe to call.
+ unsafe { bindings::smp_mb() };
+ } else {
+ barrier();
+ }
+}
+
+/// A write-write memory barrier.
+///
+/// A barrier that prevents compiler and CPU from reordering memory write accesses across the
+/// barrier.
+#[inline(always)]
+pub fn smp_wmb() {
+ if cfg!(CONFIG_SMP) {
+ // SAFETY: `smp_wmb()` is safe to call.
+ unsafe { bindings::smp_wmb() };
+ } else {
+ barrier();
+ }
+}
+
+/// A read-read memory barrier.
+///
+/// A barrier that prevents compiler and CPU from reordering memory read accesses across the
+/// barrier.
+#[inline(always)]
+pub fn smp_rmb() {
+ if cfg!(CONFIG_SMP) {
+ // SAFETY: `smp_rmb()` is safe to call.
+ unsafe { bindings::smp_rmb() };
+ } else {
+ barrier();
+ }
+}
diff --git a/rust/kernel/sync/refcount.rs b/rust/kernel/sync/refcount.rs
new file mode 100644
index 000000000000..19236a5bccde
--- /dev/null
+++ b/rust/kernel/sync/refcount.rs
@@ -0,0 +1,113 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Atomic reference counting.
+//!
+//! C header: [`include/linux/refcount.h`](srctree/include/linux/refcount.h)
+
+use crate::build_assert;
+use crate::sync::atomic::Atomic;
+use crate::types::Opaque;
+
+/// Atomic reference counter.
+///
+/// This type is conceptually an atomic integer, but provides saturation semantics compared to
+/// normal atomic integers. Values in the negative range when viewed as a signed integer are
+/// saturation (bad) values. For details about the saturation semantics, please refer to top of
+/// [`include/linux/refcount.h`](srctree/include/linux/refcount.h).
+///
+/// Wraps the kernel's C `refcount_t`.
+#[repr(transparent)]
+pub struct Refcount(Opaque<bindings::refcount_t>);
+
+impl Refcount {
+ /// Construct a new [`Refcount`] from an initial value.
+ ///
+ /// The initial value should be non-saturated.
+ #[inline]
+ pub fn new(value: i32) -> Self {
+ build_assert!(value >= 0, "initial value saturated");
+ // SAFETY: There are no safety requirements for this FFI call.
+ Self(Opaque::new(unsafe { bindings::REFCOUNT_INIT(value) }))
+ }
+
+ #[inline]
+ fn as_ptr(&self) -> *mut bindings::refcount_t {
+ self.0.get()
+ }
+
+ /// Get the underlying atomic counter that backs the refcount.
+ ///
+ /// NOTE: Usage of this function is discouraged as it can circumvent the protections offered by
+ /// `refcount.h`. If there is no way to achieve the result using APIs in `refcount.h`, then
+ /// this function can be used. Otherwise consider adding a binding for the required API.
+ #[inline]
+ pub fn as_atomic(&self) -> &Atomic<i32> {
+ let ptr = self.0.get().cast();
+ // SAFETY: `refcount_t` is a transparent wrapper of `atomic_t`, which is an atomic 32-bit
+ // integer that is layout-wise compatible with `Atomic<i32>`. All values are valid for
+ // `refcount_t`, despite some of the values being considered saturated and "bad".
+ unsafe { &*ptr }
+ }
+
+ /// Set a refcount's value.
+ #[inline]
+ pub fn set(&self, value: i32) {
+ // SAFETY: `self.as_ptr()` is valid.
+ unsafe { bindings::refcount_set(self.as_ptr(), value) }
+ }
+
+ /// Increment a refcount.
+ ///
+ /// It will saturate if overflows and `WARN`. It will also `WARN` if the refcount is 0, as this
+ /// represents a possible use-after-free condition.
+ ///
+ /// Provides no memory ordering, it is assumed that caller already has a reference on the
+ /// object.
+ #[inline]
+ pub fn inc(&self) {
+ // SAFETY: self is valid.
+ unsafe { bindings::refcount_inc(self.as_ptr()) }
+ }
+
+ /// Decrement a refcount.
+ ///
+ /// It will `WARN` on underflow and fail to decrement when saturated.
+ ///
+ /// Provides release memory ordering, such that prior loads and stores are done
+ /// before.
+ #[inline]
+ pub fn dec(&self) {
+ // SAFETY: `self.as_ptr()` is valid.
+ unsafe { bindings::refcount_dec(self.as_ptr()) }
+ }
+
+ /// Decrement a refcount and test if it is 0.
+ ///
+ /// It will `WARN` on underflow and fail to decrement when saturated.
+ ///
+ /// Provides release memory ordering, such that prior loads and stores are done
+ /// before, and provides an acquire ordering on success such that memory deallocation
+ /// must come after.
+ ///
+ /// Returns true if the resulting refcount is 0, false otherwise.
+ ///
+ /// # Notes
+ ///
+ /// A common pattern of using `Refcount` is to free memory when the reference count reaches
+ /// zero. This means that the reference to `Refcount` could become invalid after calling this
+ /// function. This is fine as long as the reference to `Refcount` is no longer used when this
+ /// function returns `false`. It is not necessary to use raw pointers in this scenario, see
+ /// <https://github.com/rust-lang/rust/issues/55005>.
+ #[inline]
+ #[must_use = "use `dec` instead if you do not need to test if it is 0"]
+ pub fn dec_and_test(&self) -> bool {
+ // SAFETY: `self.as_ptr()` is valid.
+ unsafe { bindings::refcount_dec_and_test(self.as_ptr()) }
+ }
+}
+
+// SAFETY: `refcount_t` is thread-safe.
+unsafe impl Send for Refcount {}
+
+// SAFETY: `refcount_t` is thread-safe.
+unsafe impl Sync for Refcount {}
diff --git a/rust/kernel/task.rs b/rust/kernel/task.rs
index 7d0935bc325c..49fad6de0674 100644
--- a/rust/kernel/task.rs
+++ b/rust/kernel/task.rs
@@ -9,7 +9,8 @@ use crate::{
ffi::{c_int, c_long, c_uint},
mm::MmWithUser,
pid_namespace::PidNamespace,
- types::{ARef, NotThreadSafe, Opaque},
+ sync::aref::ARef,
+ types::{NotThreadSafe, Opaque},
};
use core::{
cmp::{Eq, PartialEq},
@@ -76,7 +77,7 @@ macro_rules! current {
/// incremented when creating `State` and decremented when it is dropped:
///
/// ```
-/// use kernel::{task::Task, types::ARef};
+/// use kernel::{task::Task, sync::aref::ARef};
///
/// struct State {
/// creator: ARef<Task>,
@@ -347,7 +348,7 @@ impl CurrentTask {
}
// SAFETY: The type invariants guarantee that `Task` is always refcounted.
-unsafe impl crate::types::AlwaysRefCounted for Task {
+unsafe impl crate::sync::aref::AlwaysRefCounted for Task {
#[inline]
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
diff --git a/rust/kernel/time.rs b/rust/kernel/time.rs
index 64c8dcf548d6..6ea98dfcd027 100644
--- a/rust/kernel/time.rs
+++ b/rust/kernel/time.rs
@@ -25,6 +25,7 @@
//! C header: [`include/linux/ktime.h`](srctree/include/linux/ktime.h).
use core::marker::PhantomData;
+use core::ops;
pub mod delay;
pub mod hrtimer;
@@ -200,9 +201,31 @@ impl<C: ClockSource> Instant<C> {
pub(crate) fn as_nanos(&self) -> i64 {
self.inner
}
+
+ /// Create an [`Instant`] from a `ktime_t` without checking if it is non-negative.
+ ///
+ /// # Panics
+ ///
+ /// On debug builds, this function will panic if `ktime` is not in the range from 0 to
+ /// `KTIME_MAX`.
+ ///
+ /// # Safety
+ ///
+ /// The caller promises that `ktime` is in the range from 0 to `KTIME_MAX`.
+ #[inline]
+ pub(crate) unsafe fn from_ktime(ktime: bindings::ktime_t) -> Self {
+ debug_assert!(ktime >= 0);
+
+ // INVARIANT: Our safety contract ensures that `ktime` is in the range from 0 to
+ // `KTIME_MAX`.
+ Self {
+ inner: ktime,
+ _c: PhantomData,
+ }
+ }
}
-impl<C: ClockSource> core::ops::Sub for Instant<C> {
+impl<C: ClockSource> ops::Sub for Instant<C> {
type Output = Delta;
// By the type invariant, it never overflows.
@@ -214,6 +237,46 @@ impl<C: ClockSource> core::ops::Sub for Instant<C> {
}
}
+impl<T: ClockSource> ops::Add<Delta> for Instant<T> {
+ type Output = Self;
+
+ #[inline]
+ fn add(self, rhs: Delta) -> Self::Output {
+ // INVARIANT: With arithmetic over/underflow checks enabled, this will panic if we overflow
+ // (e.g. go above `KTIME_MAX`)
+ let res = self.inner + rhs.nanos;
+
+ // INVARIANT: With overflow checks enabled, we verify here that the value is >= 0
+ #[cfg(CONFIG_RUST_OVERFLOW_CHECKS)]
+ assert!(res >= 0);
+
+ Self {
+ inner: res,
+ _c: PhantomData,
+ }
+ }
+}
+
+impl<T: ClockSource> ops::Sub<Delta> for Instant<T> {
+ type Output = Self;
+
+ #[inline]
+ fn sub(self, rhs: Delta) -> Self::Output {
+ // INVARIANT: With arithmetic over/underflow checks enabled, this will panic if we overflow
+ // (e.g. go above `KTIME_MAX`)
+ let res = self.inner - rhs.nanos;
+
+ // INVARIANT: With overflow checks enabled, we verify here that the value is >= 0
+ #[cfg(CONFIG_RUST_OVERFLOW_CHECKS)]
+ assert!(res >= 0);
+
+ Self {
+ inner: res,
+ _c: PhantomData,
+ }
+ }
+}
+
/// A span of time.
///
/// This struct represents a span of time, with its value stored as nanoseconds.
@@ -224,6 +287,78 @@ pub struct Delta {
nanos: i64,
}
+impl ops::Add for Delta {
+ type Output = Self;
+
+ #[inline]
+ fn add(self, rhs: Self) -> Self {
+ Self {
+ nanos: self.nanos + rhs.nanos,
+ }
+ }
+}
+
+impl ops::AddAssign for Delta {
+ #[inline]
+ fn add_assign(&mut self, rhs: Self) {
+ self.nanos += rhs.nanos;
+ }
+}
+
+impl ops::Sub for Delta {
+ type Output = Self;
+
+ #[inline]
+ fn sub(self, rhs: Self) -> Self::Output {
+ Self {
+ nanos: self.nanos - rhs.nanos,
+ }
+ }
+}
+
+impl ops::SubAssign for Delta {
+ #[inline]
+ fn sub_assign(&mut self, rhs: Self) {
+ self.nanos -= rhs.nanos;
+ }
+}
+
+impl ops::Mul<i64> for Delta {
+ type Output = Self;
+
+ #[inline]
+ fn mul(self, rhs: i64) -> Self::Output {
+ Self {
+ nanos: self.nanos * rhs,
+ }
+ }
+}
+
+impl ops::MulAssign<i64> for Delta {
+ #[inline]
+ fn mul_assign(&mut self, rhs: i64) {
+ self.nanos *= rhs;
+ }
+}
+
+impl ops::Div for Delta {
+ type Output = i64;
+
+ #[inline]
+ fn div(self, rhs: Self) -> Self::Output {
+ #[cfg(CONFIG_64BIT)]
+ {
+ self.nanos / rhs.nanos
+ }
+
+ #[cfg(not(CONFIG_64BIT))]
+ {
+ // SAFETY: This function is always safe to call regardless of the input values
+ unsafe { bindings::div64_s64(self.nanos, rhs.nanos) }
+ }
+ }
+}
+
impl Delta {
/// A span of time equal to zero.
pub const ZERO: Self = Self { nanos: 0 };
@@ -312,4 +447,30 @@ impl Delta {
bindings::ktime_to_ms(self.as_nanos())
}
}
+
+ /// Return `self % dividend` where `dividend` is in nanoseconds.
+ ///
+ /// The kernel doesn't have any emulation for `s64 % s64` on 32 bit platforms, so this is
+ /// limited to 32 bit dividends.
+ #[inline]
+ pub fn rem_nanos(self, dividend: i32) -> Self {
+ #[cfg(CONFIG_64BIT)]
+ {
+ Self {
+ nanos: self.as_nanos() % i64::from(dividend),
+ }
+ }
+
+ #[cfg(not(CONFIG_64BIT))]
+ {
+ let mut rem = 0;
+
+ // SAFETY: `rem` is in the stack, so we can always provide a valid pointer to it.
+ unsafe { bindings::div_s64_rem(self.as_nanos(), dividend, &mut rem) };
+
+ Self {
+ nanos: i64::from(rem),
+ }
+ }
+ }
}
diff --git a/rust/kernel/time/hrtimer.rs b/rust/kernel/time/hrtimer.rs
index 144e3b57cc78..856d2d929a00 100644
--- a/rust/kernel/time/hrtimer.rs
+++ b/rust/kernel/time/hrtimer.rs
@@ -69,9 +69,14 @@
use super::{ClockSource, Delta, Instant};
use crate::{prelude::*, types::Opaque};
-use core::marker::PhantomData;
+use core::{marker::PhantomData, ptr::NonNull};
use pin_init::PinInit;
+/// A type-alias to refer to the [`Instant<C>`] for a given `T` from [`HrTimer<T>`].
+///
+/// Where `C` is the [`ClockSource`] of the [`HrTimer`].
+pub type HrTimerInstant<T> = Instant<<<T as HasHrTimer<T>>::TimerMode as HrTimerMode>::Clock>;
+
/// A timer backed by a C `struct hrtimer`.
///
/// # Invariants
@@ -163,6 +168,84 @@ impl<T> HrTimer<T> {
// handled on the C side.
unsafe { bindings::hrtimer_cancel(c_timer_ptr) != 0 }
}
+
+ /// Forward the timer expiry for a given timer pointer.
+ ///
+ /// # Safety
+ ///
+ /// - `self_ptr` must point to a valid `Self`.
+ /// - The caller must either have exclusive access to the data pointed at by `self_ptr`, or be
+ /// within the context of the timer callback.
+ #[inline]
+ unsafe fn raw_forward(self_ptr: *mut Self, now: HrTimerInstant<T>, interval: Delta) -> u64
+ where
+ T: HasHrTimer<T>,
+ {
+ // SAFETY:
+ // * The C API requirements for this function are fulfilled by our safety contract.
+ // * `self_ptr` is guaranteed to point to a valid `Self` via our safety contract
+ unsafe {
+ bindings::hrtimer_forward(Self::raw_get(self_ptr), now.as_nanos(), interval.as_nanos())
+ }
+ }
+
+ /// Conditionally forward the timer.
+ ///
+ /// If the timer expires after `now`, this function does nothing and returns 0. If the timer
+ /// expired at or before `now`, this function forwards the timer by `interval` until the timer
+ /// expires after `now` and then returns the number of times the timer was forwarded by
+ /// `interval`.
+ ///
+ /// This function is mainly useful for timer types which can provide exclusive access to the
+ /// timer when the timer is not running. For forwarding the timer from within the timer callback
+ /// context, see [`HrTimerCallbackContext::forward()`].
+ ///
+ /// Returns the number of overruns that occurred as a result of the timer expiry change.
+ pub fn forward(self: Pin<&mut Self>, now: HrTimerInstant<T>, interval: Delta) -> u64
+ where
+ T: HasHrTimer<T>,
+ {
+ // SAFETY: `raw_forward` does not move `Self`
+ let this = unsafe { self.get_unchecked_mut() };
+
+ // SAFETY: By existence of `Pin<&mut Self>`, the pointer passed to `raw_forward` points to a
+ // valid `Self` that we have exclusive access to.
+ unsafe { Self::raw_forward(this, now, interval) }
+ }
+
+ /// Conditionally forward the timer.
+ ///
+ /// This is a variant of [`forward()`](Self::forward) that uses an interval after the current
+ /// time of the base clock for the [`HrTimer`].
+ pub fn forward_now(self: Pin<&mut Self>, interval: Delta) -> u64
+ where
+ T: HasHrTimer<T>,
+ {
+ self.forward(HrTimerInstant::<T>::now(), interval)
+ }
+
+ /// Return the time expiry for this [`HrTimer`].
+ ///
+ /// This value should only be used as a snapshot, as the actual expiry time could change after
+ /// this function is called.
+ pub fn expires(&self) -> HrTimerInstant<T>
+ where
+ T: HasHrTimer<T>,
+ {
+ // SAFETY: `self` is an immutable reference and thus always points to a valid `HrTimer`.
+ let c_timer_ptr = unsafe { HrTimer::raw_get(self) };
+
+ // SAFETY:
+ // - Timers cannot have negative ktime_t values as their expiration time.
+ // - There's no actual locking here, a racy read is fine and expected
+ unsafe {
+ Instant::from_ktime(
+ // This `read_volatile` is intended to correspond to a READ_ONCE call.
+ // FIXME(read_once): Replace with `read_once` when available on the Rust side.
+ core::ptr::read_volatile(&raw const ((*c_timer_ptr).node.expires)),
+ )
+ }
+ }
}
/// Implemented by pointer types that point to structs that contain a [`HrTimer`].
@@ -300,9 +383,13 @@ pub trait HrTimerCallback {
type Pointer<'a>: RawHrTimerCallback;
/// Called by the timer logic when the timer fires.
- fn run(this: <Self::Pointer<'_> as RawHrTimerCallback>::CallbackTarget<'_>) -> HrTimerRestart
+ fn run(
+ this: <Self::Pointer<'_> as RawHrTimerCallback>::CallbackTarget<'_>,
+ ctx: HrTimerCallbackContext<'_, Self>,
+ ) -> HrTimerRestart
where
- Self: Sized;
+ Self: Sized,
+ Self: HasHrTimer<Self>;
}
/// A handle representing a potentially running timer.
@@ -324,6 +411,8 @@ pub unsafe trait HrTimerHandle {
/// Note that the timer might be started by a concurrent start operation. If
/// so, the timer might not be in the **stopped** state when this function
/// returns.
+ ///
+ /// Returns `true` if the timer was running.
fn cancel(&mut self) -> bool;
}
@@ -585,6 +674,63 @@ impl<C: ClockSource> HrTimerMode for RelativePinnedHardMode<C> {
type Expires = Delta;
}
+/// Privileged smart-pointer for a [`HrTimer`] callback context.
+///
+/// Many [`HrTimer`] methods can only be called in two situations:
+///
+/// * When the caller has exclusive access to the `HrTimer` and the `HrTimer` is guaranteed not to
+/// be running.
+/// * From within the context of an `HrTimer`'s callback method.
+///
+/// This type provides access to said methods from within a timer callback context.
+///
+/// # Invariants
+///
+/// * The existence of this type means the caller is currently within the callback for an
+/// [`HrTimer`].
+/// * `self.0` always points to a live instance of [`HrTimer<T>`].
+pub struct HrTimerCallbackContext<'a, T: HasHrTimer<T>>(NonNull<HrTimer<T>>, PhantomData<&'a ()>);
+
+impl<'a, T: HasHrTimer<T>> HrTimerCallbackContext<'a, T> {
+ /// Create a new [`HrTimerCallbackContext`].
+ ///
+ /// # Safety
+ ///
+ /// This function relies on the caller being within the context of a timer callback, so it must
+ /// not be used anywhere except for within implementations of [`RawHrTimerCallback::run`]. The
+ /// caller promises that `timer` points to a valid initialized instance of
+ /// [`bindings::hrtimer`].
+ ///
+ /// The returned `Self` must not outlive the function context of [`RawHrTimerCallback::run`]
+ /// where this function is called.
+ pub(crate) unsafe fn from_raw(timer: *mut HrTimer<T>) -> Self {
+ // SAFETY: The caller guarantees `timer` is a valid pointer to an initialized
+ // `bindings::hrtimer`
+ // INVARIANT: Our safety contract ensures that we're within the context of a timer callback
+ // and that `timer` points to a live instance of `HrTimer<T>`.
+ Self(unsafe { NonNull::new_unchecked(timer) }, PhantomData)
+ }
+
+ /// Conditionally forward the timer.
+ ///
+ /// This function is identical to [`HrTimer::forward()`] except that it may only be used from
+ /// within the context of a [`HrTimer`] callback.
+ pub fn forward(&mut self, now: HrTimerInstant<T>, interval: Delta) -> u64 {
+ // SAFETY:
+ // - We are guaranteed to be within the context of a timer callback by our type invariants
+ // - By our type invariants, `self.0` always points to a valid `HrTimer<T>`
+ unsafe { HrTimer::<T>::raw_forward(self.0.as_ptr(), now, interval) }
+ }
+
+ /// Conditionally forward the timer.
+ ///
+ /// This is a variant of [`HrTimerCallbackContext::forward()`] that uses an interval after the
+ /// current time of the base clock for the [`HrTimer`].
+ pub fn forward_now(&mut self, duration: Delta) -> u64 {
+ self.forward(HrTimerInstant::<T>::now(), duration)
+ }
+}
+
/// Use to implement the [`HasHrTimer<T>`] trait.
///
/// See [`module`] documentation for an example.
diff --git a/rust/kernel/time/hrtimer/arc.rs b/rust/kernel/time/hrtimer/arc.rs
index ed490a7a8950..7be82bcb352a 100644
--- a/rust/kernel/time/hrtimer/arc.rs
+++ b/rust/kernel/time/hrtimer/arc.rs
@@ -3,6 +3,7 @@
use super::HasHrTimer;
use super::HrTimer;
use super::HrTimerCallback;
+use super::HrTimerCallbackContext;
use super::HrTimerHandle;
use super::HrTimerMode;
use super::HrTimerPointer;
@@ -99,6 +100,12 @@ where
// allocation from other `Arc` clones.
let receiver = unsafe { ArcBorrow::from_raw(data_ptr) };
- T::run(receiver).into_c()
+ // SAFETY:
+ // - By C API contract `timer_ptr` is the pointer that we passed when queuing the timer, so
+ // it is a valid pointer to a `HrTimer<T>` embedded in a `T`.
+ // - We are within `RawHrTimerCallback::run`
+ let context = unsafe { HrTimerCallbackContext::from_raw(timer_ptr) };
+
+ T::run(receiver, context).into_c()
}
}
diff --git a/rust/kernel/time/hrtimer/pin.rs b/rust/kernel/time/hrtimer/pin.rs
index aef16d9ee2f0..4d39ef781697 100644
--- a/rust/kernel/time/hrtimer/pin.rs
+++ b/rust/kernel/time/hrtimer/pin.rs
@@ -3,6 +3,7 @@
use super::HasHrTimer;
use super::HrTimer;
use super::HrTimerCallback;
+use super::HrTimerCallbackContext;
use super::HrTimerHandle;
use super::HrTimerMode;
use super::RawHrTimerCallback;
@@ -103,6 +104,12 @@ where
// here.
let receiver_pin = unsafe { Pin::new_unchecked(receiver_ref) };
- T::run(receiver_pin).into_c()
+ // SAFETY:
+ // - By C API contract `timer_ptr` is the pointer that we passed when queuing the timer, so
+ // it is a valid pointer to a `HrTimer<T>` embedded in a `T`.
+ // - We are within `RawHrTimerCallback::run`
+ let context = unsafe { HrTimerCallbackContext::from_raw(timer_ptr) };
+
+ T::run(receiver_pin, context).into_c()
}
}
diff --git a/rust/kernel/time/hrtimer/pin_mut.rs b/rust/kernel/time/hrtimer/pin_mut.rs
index 767d0a4e8a2c..9d9447d4d57e 100644
--- a/rust/kernel/time/hrtimer/pin_mut.rs
+++ b/rust/kernel/time/hrtimer/pin_mut.rs
@@ -1,8 +1,8 @@
// SPDX-License-Identifier: GPL-2.0
use super::{
- HasHrTimer, HrTimer, HrTimerCallback, HrTimerHandle, HrTimerMode, RawHrTimerCallback,
- UnsafeHrTimerPointer,
+ HasHrTimer, HrTimer, HrTimerCallback, HrTimerCallbackContext, HrTimerHandle, HrTimerMode,
+ RawHrTimerCallback, UnsafeHrTimerPointer,
};
use core::{marker::PhantomData, pin::Pin, ptr::NonNull};
@@ -107,6 +107,12 @@ where
// here.
let receiver_pin = unsafe { Pin::new_unchecked(receiver_ref) };
- T::run(receiver_pin).into_c()
+ // SAFETY:
+ // - By C API contract `timer_ptr` is the pointer that we passed when queuing the timer, so
+ // it is a valid pointer to a `HrTimer<T>` embedded in a `T`.
+ // - We are within `RawHrTimerCallback::run`
+ let context = unsafe { HrTimerCallbackContext::from_raw(timer_ptr) };
+
+ T::run(receiver_pin, context).into_c()
}
}
diff --git a/rust/kernel/time/hrtimer/tbox.rs b/rust/kernel/time/hrtimer/tbox.rs
index ec08303315f2..aa1ee31a7195 100644
--- a/rust/kernel/time/hrtimer/tbox.rs
+++ b/rust/kernel/time/hrtimer/tbox.rs
@@ -3,6 +3,7 @@
use super::HasHrTimer;
use super::HrTimer;
use super::HrTimerCallback;
+use super::HrTimerCallbackContext;
use super::HrTimerHandle;
use super::HrTimerMode;
use super::HrTimerPointer;
@@ -119,6 +120,12 @@ where
// `data_ptr` exist.
let data_mut_ref = unsafe { Pin::new_unchecked(&mut *data_ptr) };
- T::run(data_mut_ref).into_c()
+ // SAFETY:
+ // - By C API contract `timer_ptr` is the pointer that we passed when queuing the timer, so
+ // it is a valid pointer to a `HrTimer<T>` embedded in a `T`.
+ // - We are within `RawHrTimerCallback::run`
+ let context = unsafe { HrTimerCallbackContext::from_raw(timer_ptr) };
+
+ T::run(data_mut_ref, context).into_c()
}
}