1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
//! This module defines the `Process` type, which represents a process using a particular binder
//! context.
//!
//! The `Process` object keeps track of all of the resources that this process owns in the binder
//! context.
//!
//! There is one `Process` object for each binder fd that a process has opened, so processes using
//! several binder contexts have several `Process` objects. This ensures that the contexts are
//! fully separated.
use core::mem::take;
use kernel::{
bindings,
cred::Credential,
error::Error,
fs::file::{self, File},
list::{List, ListArc, ListArcField, ListLinks},
mm,
prelude::*,
rbtree::{self, RBTree, RBTreeNode, RBTreeNodeReservation},
seq_file::SeqFile,
seq_print,
sync::poll::PollTable,
sync::{
lock::{spinlock::SpinLockBackend, Guard},
Arc, ArcBorrow, CondVar, CondVarTimeoutResult, Mutex, SpinLock, UniqueArc,
},
task::Task,
types::ARef,
uaccess::{UserSlice, UserSliceReader},
uapi,
workqueue::{self, Work},
};
use crate::{
allocation::{Allocation, AllocationInfo, NewAllocation},
context::Context,
defs::*,
error::{BinderError, BinderResult},
node::{CouldNotDeliverCriticalIncrement, CritIncrWrapper, Node, NodeDeath, NodeRef},
page_range::ShrinkablePageRange,
range_alloc::{RangeAllocator, ReserveNew, ReserveNewArgs},
stats::BinderStats,
thread::{PushWorkRes, Thread},
BinderfsProcFile, DArc, DLArc, DTRWrap, DeliverToRead,
};
#[path = "freeze.rs"]
mod freeze;
use self::freeze::{FreezeCookie, FreezeListener};
struct Mapping {
address: usize,
alloc: RangeAllocator<AllocationInfo>,
}
impl Mapping {
fn new(address: usize, size: usize) -> Self {
Self {
address,
alloc: RangeAllocator::new(size),
}
}
}
// bitflags for defer_work.
const PROC_DEFER_FLUSH: u8 = 1;
const PROC_DEFER_RELEASE: u8 = 2;
/// The fields of `Process` protected by the spinlock.
pub(crate) struct ProcessInner {
is_manager: bool,
pub(crate) is_dead: bool,
threads: RBTree<i32, Arc<Thread>>,
/// INVARIANT: Threads pushed to this list must be owned by this process.
ready_threads: List<Thread>,
nodes: RBTree<u64, DArc<Node>>,
mapping: Option<Mapping>,
work: List<DTRWrap<dyn DeliverToRead>>,
delivered_deaths: List<DTRWrap<NodeDeath>, 2>,
/// The number of requested threads that haven't registered yet.
requested_thread_count: u32,
/// The maximum number of threads used by the process thread pool.
max_threads: u32,
/// The number of threads the started and registered with the thread pool.
started_thread_count: u32,
/// Bitmap of deferred work to do.
defer_work: u8,
/// Number of transactions to be transmitted before processes in freeze_wait
/// are woken up.
outstanding_txns: u32,
/// Process is frozen and unable to service binder transactions.
pub(crate) is_frozen: bool,
/// Process received sync transactions since last frozen.
pub(crate) sync_recv: bool,
/// Process received async transactions since last frozen.
pub(crate) async_recv: bool,
pub(crate) binderfs_file: Option<BinderfsProcFile>,
/// Check for oneway spam
oneway_spam_detection_enabled: bool,
}
impl ProcessInner {
fn new() -> Self {
Self {
is_manager: false,
is_dead: false,
threads: RBTree::new(),
ready_threads: List::new(),
mapping: None,
nodes: RBTree::new(),
work: List::new(),
delivered_deaths: List::new(),
requested_thread_count: 0,
max_threads: 0,
started_thread_count: 0,
defer_work: 0,
outstanding_txns: 0,
is_frozen: false,
sync_recv: false,
async_recv: false,
binderfs_file: None,
oneway_spam_detection_enabled: false,
}
}
/// Schedule the work item for execution on this process.
///
/// If any threads are ready for work, then the work item is given directly to that thread and
/// it is woken up. Otherwise, it is pushed to the process work list.
///
/// This call can fail only if the process is dead. In this case, the work item is returned to
/// the caller so that the caller can drop it after releasing the inner process lock. This is
/// necessary since the destructor of `Transaction` will take locks that can't necessarily be
/// taken while holding the inner process lock.
pub(crate) fn push_work(
&mut self,
work: DLArc<dyn DeliverToRead>,
) -> Result<(), (BinderError, DLArc<dyn DeliverToRead>)> {
// Try to find a ready thread to which to push the work.
if let Some(thread) = self.ready_threads.pop_front() {
// Push to thread while holding state lock. This prevents the thread from giving up
// (for example, because of a signal) when we're about to deliver work.
match thread.push_work(work) {
PushWorkRes::Ok => Ok(()),
PushWorkRes::FailedDead(work) => Err((BinderError::new_dead(), work)),
}
} else if self.is_dead {
Err((BinderError::new_dead(), work))
} else {
let sync = work.should_sync_wakeup();
// Didn't find a thread waiting for proc work; this can happen
// in two scenarios:
// 1. All threads are busy handling transactions
// In that case, one of those threads should call back into
// the kernel driver soon and pick up this work.
// 2. Threads are using the (e)poll interface, in which case
// they may be blocked on the waitqueue without having been
// added to waiting_threads. For this case, we just iterate
// over all threads not handling transaction work, and
// wake them all up. We wake all because we don't know whether
// a thread that called into (e)poll is handling non-binder
// work currently.
self.work.push_back(work);
// Wake up polling threads, if any.
for thread in self.threads.values() {
thread.notify_if_poll_ready(sync);
}
Ok(())
}
}
pub(crate) fn remove_node(&mut self, ptr: u64) {
self.nodes.remove(&ptr);
}
/// Updates the reference count on the given node.
pub(crate) fn update_node_refcount(
&mut self,
node: &DArc<Node>,
inc: bool,
strong: bool,
count: usize,
othread: Option<&Thread>,
) {
let push = node.update_refcount_locked(inc, strong, count, self);
// If we decided that we need to push work, push either to the process or to a thread if
// one is specified.
if let Some(node) = push {
if let Some(thread) = othread {
thread.push_work_deferred(node);
} else {
let _ = self.push_work(node);
// Nothing to do: `push_work` may fail if the process is dead, but that's ok as in
// that case, it doesn't care about the notification.
}
}
}
pub(crate) fn new_node_ref(
&mut self,
node: DArc<Node>,
strong: bool,
thread: Option<&Thread>,
) -> NodeRef {
self.update_node_refcount(&node, true, strong, 1, thread);
let strong_count = if strong { 1 } else { 0 };
NodeRef::new(node, strong_count, 1 - strong_count)
}
pub(crate) fn new_node_ref_with_thread(
&mut self,
node: DArc<Node>,
strong: bool,
thread: &Thread,
wrapper: Option<CritIncrWrapper>,
) -> Result<NodeRef, CouldNotDeliverCriticalIncrement> {
let push = match wrapper {
None => node
.incr_refcount_allow_zero2one(strong, self)?
.map(|node| node as _),
Some(wrapper) => node.incr_refcount_allow_zero2one_with_wrapper(strong, wrapper, self),
};
if let Some(node) = push {
thread.push_work_deferred(node);
}
let strong_count = if strong { 1 } else { 0 };
Ok(NodeRef::new(node, strong_count, 1 - strong_count))
}
/// Returns an existing node with the given pointer and cookie, if one exists.
///
/// Returns an error if a node with the given pointer but a different cookie exists.
fn get_existing_node(&self, ptr: u64, cookie: u64) -> Result<Option<DArc<Node>>> {
match self.nodes.get(&ptr) {
None => Ok(None),
Some(node) => {
let (_, node_cookie) = node.get_id();
if node_cookie == cookie {
Ok(Some(node.clone()))
} else {
Err(EINVAL)
}
}
}
}
fn register_thread(&mut self) -> bool {
if self.requested_thread_count == 0 {
return false;
}
self.requested_thread_count -= 1;
self.started_thread_count += 1;
true
}
/// Finds a delivered death notification with the given cookie, removes it from the thread's
/// delivered list, and returns it.
fn pull_delivered_death(&mut self, cookie: u64) -> Option<DArc<NodeDeath>> {
let mut cursor = self.delivered_deaths.cursor_front();
while let Some(next) = cursor.peek_next() {
if next.cookie == cookie {
return Some(next.remove().into_arc());
}
cursor.move_next();
}
None
}
pub(crate) fn death_delivered(&mut self, death: DArc<NodeDeath>) {
if let Some(death) = ListArc::try_from_arc_or_drop(death) {
self.delivered_deaths.push_back(death);
} else {
pr_warn!("Notification added to `delivered_deaths` twice.");
}
}
pub(crate) fn add_outstanding_txn(&mut self) {
self.outstanding_txns += 1;
}
fn txns_pending_locked(&self) -> bool {
if self.outstanding_txns > 0 {
return true;
}
for thread in self.threads.values() {
if thread.has_current_transaction() {
return true;
}
}
false
}
}
/// Used to keep track of a node that this process has a handle to.
#[pin_data]
pub(crate) struct NodeRefInfo {
debug_id: usize,
/// The refcount that this process owns to the node.
node_ref: ListArcField<NodeRef, { Self::LIST_PROC }>,
death: ListArcField<Option<DArc<NodeDeath>>, { Self::LIST_PROC }>,
/// Cookie of the active freeze listener for this node.
freeze: ListArcField<Option<FreezeCookie>, { Self::LIST_PROC }>,
/// Used to store this `NodeRefInfo` in the node's `refs` list.
#[pin]
links: ListLinks<{ Self::LIST_NODE }>,
/// The handle for this `NodeRefInfo`.
handle: u32,
/// The process that has a handle to the node.
pub(crate) process: Arc<Process>,
}
impl NodeRefInfo {
/// The id used for the `Node::refs` list.
pub(crate) const LIST_NODE: u64 = 0x2da16350fb724a10;
/// The id used for the `ListArc` in `ProcessNodeRefs`.
const LIST_PROC: u64 = 0xd703a5263dcc8650;
fn new(node_ref: NodeRef, handle: u32, process: Arc<Process>) -> impl PinInit<Self> {
pin_init!(Self {
debug_id: super::next_debug_id(),
node_ref: ListArcField::new(node_ref),
death: ListArcField::new(None),
freeze: ListArcField::new(None),
links <- ListLinks::new(),
handle,
process,
})
}
kernel::list::define_list_arc_field_getter! {
pub(crate) fn death(&mut self<{Self::LIST_PROC}>) -> &mut Option<DArc<NodeDeath>> { death }
pub(crate) fn freeze(&mut self<{Self::LIST_PROC}>) -> &mut Option<FreezeCookie> { freeze }
pub(crate) fn node_ref(&mut self<{Self::LIST_PROC}>) -> &mut NodeRef { node_ref }
pub(crate) fn node_ref2(&self<{Self::LIST_PROC}>) -> &NodeRef { node_ref }
}
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<{Self::LIST_NODE}> for NodeRefInfo { untracked; }
impl ListArcSafe<{Self::LIST_PROC}> for NodeRefInfo { untracked; }
}
kernel::list::impl_list_item! {
impl ListItem<{Self::LIST_NODE}> for NodeRefInfo {
using ListLinks { self.links };
}
}
/// Keeps track of references this process has to nodes owned by other processes.
///
/// TODO: Currently, the rbtree requires two allocations per node reference, and two tree
/// traversals to look up a node by `Node::global_id`. Once the rbtree is more powerful, these
/// extra costs should be eliminated.
struct ProcessNodeRefs {
/// Used to look up nodes using the 32-bit id that this process knows it by.
by_handle: RBTree<u32, ListArc<NodeRefInfo, { NodeRefInfo::LIST_PROC }>>,
/// Used to look up nodes without knowing their local 32-bit id. The usize is the address of
/// the underlying `Node` struct as returned by `Node::global_id`.
by_node: RBTree<usize, u32>,
/// Used to look up a `FreezeListener` by cookie.
///
/// There might be multiple freeze listeners for the same node, but at most one of them is
/// active.
freeze_listeners: RBTree<FreezeCookie, FreezeListener>,
}
impl ProcessNodeRefs {
fn new() -> Self {
Self {
by_handle: RBTree::new(),
by_node: RBTree::new(),
freeze_listeners: RBTree::new(),
}
}
}
/// A process using binder.
///
/// Strictly speaking, there can be multiple of these per process. There is one for each binder fd
/// that a process has opened, so processes using several binder contexts have several `Process`
/// objects. This ensures that the contexts are fully separated.
#[pin_data]
pub(crate) struct Process {
pub(crate) ctx: Arc<Context>,
// The task leader (process).
pub(crate) task: ARef<Task>,
// Credential associated with file when `Process` is created.
pub(crate) cred: ARef<Credential>,
#[pin]
pub(crate) inner: SpinLock<ProcessInner>,
#[pin]
pub(crate) pages: ShrinkablePageRange,
// Waitqueue of processes waiting for all outstanding transactions to be
// processed.
#[pin]
freeze_wait: CondVar,
// Node references are in a different lock to avoid recursive acquisition when
// incrementing/decrementing a node in another process.
#[pin]
node_refs: Mutex<ProcessNodeRefs>,
// Work node for deferred work item.
#[pin]
defer_work: Work<Process>,
// Links for process list in Context.
#[pin]
links: ListLinks,
pub(crate) stats: BinderStats,
}
kernel::impl_has_work! {
impl HasWork<Process> for Process { self.defer_work }
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<0> for Process { untracked; }
}
kernel::list::impl_list_item! {
impl ListItem<0> for Process {
using ListLinks { self.links };
}
}
impl workqueue::WorkItem for Process {
type Pointer = Arc<Process>;
fn run(me: Arc<Self>) {
let defer;
{
let mut inner = me.inner.lock();
defer = inner.defer_work;
inner.defer_work = 0;
}
if defer & PROC_DEFER_FLUSH != 0 {
me.deferred_flush();
}
if defer & PROC_DEFER_RELEASE != 0 {
me.deferred_release();
}
}
}
impl Process {
fn new(ctx: Arc<Context>, cred: ARef<Credential>) -> Result<Arc<Self>> {
let current = kernel::current!();
let list_process = ListArc::pin_init::<Error>(
try_pin_init!(Process {
ctx,
cred,
inner <- kernel::new_spinlock!(ProcessInner::new(), "Process::inner"),
pages <- ShrinkablePageRange::new(&super::BINDER_SHRINKER),
node_refs <- kernel::new_mutex!(ProcessNodeRefs::new(), "Process::node_refs"),
freeze_wait <- kernel::new_condvar!("Process::freeze_wait"),
task: current.group_leader().into(),
defer_work <- kernel::new_work!("Process::defer_work"),
links <- ListLinks::new(),
stats: BinderStats::new(),
}),
GFP_KERNEL,
)?;
let process = list_process.clone_arc();
process.ctx.register_process(list_process);
Ok(process)
}
pub(crate) fn pid_in_current_ns(&self) -> kernel::task::Pid {
self.task.tgid_nr_ns(None)
}
#[inline(never)]
pub(crate) fn debug_print_stats(&self, m: &SeqFile, ctx: &Context) -> Result<()> {
seq_print!(m, "proc {}\n", self.pid_in_current_ns());
seq_print!(m, "context {}\n", &*ctx.name);
let inner = self.inner.lock();
seq_print!(m, " threads: {}\n", inner.threads.iter().count());
seq_print!(
m,
" requested threads: {}+{}/{}\n",
inner.requested_thread_count,
inner.started_thread_count,
inner.max_threads,
);
if let Some(mapping) = &inner.mapping {
seq_print!(
m,
" free oneway space: {}\n",
mapping.alloc.free_oneway_space()
);
seq_print!(m, " buffers: {}\n", mapping.alloc.count_buffers());
}
seq_print!(
m,
" outstanding transactions: {}\n",
inner.outstanding_txns
);
seq_print!(m, " nodes: {}\n", inner.nodes.iter().count());
drop(inner);
{
let mut refs = self.node_refs.lock();
let (mut count, mut weak, mut strong) = (0, 0, 0);
for r in refs.by_handle.values_mut() {
let node_ref = r.node_ref();
let (nstrong, nweak) = node_ref.get_count();
count += 1;
weak += nweak;
strong += nstrong;
}
seq_print!(m, " refs: {count} s {strong} w {weak}\n");
}
self.stats.debug_print(" ", m);
Ok(())
}
#[inline(never)]
pub(crate) fn debug_print(&self, m: &SeqFile, ctx: &Context, print_all: bool) -> Result<()> {
seq_print!(m, "proc {}\n", self.pid_in_current_ns());
seq_print!(m, "context {}\n", &*ctx.name);
let mut all_threads = KVec::new();
let mut all_nodes = KVec::new();
loop {
let inner = self.inner.lock();
let num_threads = inner.threads.iter().count();
let num_nodes = inner.nodes.iter().count();
if all_threads.capacity() < num_threads || all_nodes.capacity() < num_nodes {
drop(inner);
all_threads.reserve(num_threads, GFP_KERNEL)?;
all_nodes.reserve(num_nodes, GFP_KERNEL)?;
continue;
}
for thread in inner.threads.values() {
assert!(all_threads.len() < all_threads.capacity());
let _ = all_threads.push(thread.clone(), GFP_ATOMIC);
}
for node in inner.nodes.values() {
assert!(all_nodes.len() < all_nodes.capacity());
let _ = all_nodes.push(node.clone(), GFP_ATOMIC);
}
break;
}
for thread in all_threads {
thread.debug_print(m, print_all)?;
}
let mut inner = self.inner.lock();
for node in all_nodes {
if print_all || node.has_oneway_transaction(&mut inner) {
node.full_debug_print(m, &mut inner)?;
}
}
drop(inner);
if print_all {
let mut refs = self.node_refs.lock();
for r in refs.by_handle.values_mut() {
let node_ref = r.node_ref();
let dead = node_ref.node.owner.inner.lock().is_dead;
let (strong, weak) = node_ref.get_count();
let debug_id = node_ref.node.debug_id;
seq_print!(
m,
" ref {}: desc {} {}node {debug_id} s {strong} w {weak}",
r.debug_id,
r.handle,
if dead { "dead " } else { "" },
);
}
}
let inner = self.inner.lock();
for work in &inner.work {
work.debug_print(m, " ", " pending transaction ")?;
}
for _death in &inner.delivered_deaths {
seq_print!(m, " has delivered dead binder\n");
}
if let Some(mapping) = &inner.mapping {
mapping.alloc.debug_print(m)?;
}
drop(inner);
Ok(())
}
/// Attempts to fetch a work item from the process queue.
pub(crate) fn get_work(&self) -> Option<DLArc<dyn DeliverToRead>> {
self.inner.lock().work.pop_front()
}
/// Attempts to fetch a work item from the process queue. If none is available, it registers the
/// given thread as ready to receive work directly.
///
/// This must only be called when the thread is not participating in a transaction chain; when
/// it is, work will always be delivered directly to the thread (and not through the process
/// queue).
pub(crate) fn get_work_or_register<'a>(
&'a self,
thread: &'a Arc<Thread>,
) -> GetWorkOrRegister<'a> {
let mut inner = self.inner.lock();
// Try to get work from the process queue.
if let Some(work) = inner.work.pop_front() {
return GetWorkOrRegister::Work(work);
}
// Register the thread as ready.
GetWorkOrRegister::Register(Registration::new(thread, &mut inner))
}
fn get_current_thread(self: ArcBorrow<'_, Self>) -> Result<Arc<Thread>> {
let id = {
let current = kernel::current!();
if !core::ptr::eq(current.group_leader(), &*self.task) {
pr_err!("get_current_thread was called from the wrong process.");
return Err(EINVAL);
}
current.pid()
};
{
let inner = self.inner.lock();
if let Some(thread) = inner.threads.get(&id) {
return Ok(thread.clone());
}
}
// Allocate a new `Thread` without holding any locks.
let reservation = RBTreeNodeReservation::new(GFP_KERNEL)?;
let ta: Arc<Thread> = Thread::new(id, self.into())?;
let mut inner = self.inner.lock();
match inner.threads.entry(id) {
rbtree::Entry::Vacant(entry) => {
entry.insert(ta.clone(), reservation);
Ok(ta)
}
rbtree::Entry::Occupied(_entry) => {
pr_err!("Cannot create two threads with the same id.");
Err(EINVAL)
}
}
}
pub(crate) fn push_work(&self, work: DLArc<dyn DeliverToRead>) -> BinderResult {
// If push_work fails, drop the work item outside the lock.
let res = self.inner.lock().push_work(work);
match res {
Ok(()) => Ok(()),
Err((err, work)) => {
drop(work);
Err(err)
}
}
}
fn set_as_manager(
self: ArcBorrow<'_, Self>,
info: Option<FlatBinderObject>,
thread: &Thread,
) -> Result {
let (ptr, cookie, flags) = if let Some(obj) = info {
(
// SAFETY: The object type for this ioctl is implicitly `BINDER_TYPE_BINDER`, so it
// is safe to access the `binder` field.
unsafe { obj.__bindgen_anon_1.binder },
obj.cookie,
obj.flags,
)
} else {
(0, 0, 0)
};
let node_ref = self.get_node(ptr, cookie, flags as _, true, thread)?;
let node = node_ref.node.clone();
self.ctx.set_manager_node(node_ref)?;
self.inner.lock().is_manager = true;
// Force the state of the node to prevent the delivery of acquire/increfs.
let mut owner_inner = node.owner.inner.lock();
node.force_has_count(&mut owner_inner);
Ok(())
}
fn get_node_inner(
self: ArcBorrow<'_, Self>,
ptr: u64,
cookie: u64,
flags: u32,
strong: bool,
thread: &Thread,
wrapper: Option<CritIncrWrapper>,
) -> Result<Result<NodeRef, CouldNotDeliverCriticalIncrement>> {
// Try to find an existing node.
{
let mut inner = self.inner.lock();
if let Some(node) = inner.get_existing_node(ptr, cookie)? {
return Ok(inner.new_node_ref_with_thread(node, strong, thread, wrapper));
}
}
// Allocate the node before reacquiring the lock.
let node = DTRWrap::arc_pin_init(Node::new(ptr, cookie, flags, self.into()))?.into_arc();
let rbnode = RBTreeNode::new(ptr, node.clone(), GFP_KERNEL)?;
let mut inner = self.inner.lock();
if let Some(node) = inner.get_existing_node(ptr, cookie)? {
return Ok(inner.new_node_ref_with_thread(node, strong, thread, wrapper));
}
inner.nodes.insert(rbnode);
// This can only fail if someone has already pushed the node to a list, but we just created
// it and still hold the lock, so it can't fail right now.
let node_ref = inner
.new_node_ref_with_thread(node, strong, thread, wrapper)
.unwrap();
Ok(Ok(node_ref))
}
pub(crate) fn get_node(
self: ArcBorrow<'_, Self>,
ptr: u64,
cookie: u64,
flags: u32,
strong: bool,
thread: &Thread,
) -> Result<NodeRef> {
let mut wrapper = None;
for _ in 0..2 {
match self.get_node_inner(ptr, cookie, flags, strong, thread, wrapper) {
Err(err) => return Err(err),
Ok(Ok(node_ref)) => return Ok(node_ref),
Ok(Err(CouldNotDeliverCriticalIncrement)) => {
wrapper = Some(CritIncrWrapper::new()?);
}
}
}
// We only get a `CouldNotDeliverCriticalIncrement` error if `wrapper` is `None`, so the
// loop should run at most twice.
unreachable!()
}
pub(crate) fn insert_or_update_handle(
self: ArcBorrow<'_, Process>,
node_ref: NodeRef,
is_mananger: bool,
) -> Result<u32> {
{
let mut refs = self.node_refs.lock();
// Do a lookup before inserting.
if let Some(handle_ref) = refs.by_node.get(&node_ref.node.global_id()) {
let handle = *handle_ref;
let info = refs.by_handle.get_mut(&handle).unwrap();
info.node_ref().absorb(node_ref);
return Ok(handle);
}
}
// Reserve memory for tree nodes.
let reserve1 = RBTreeNodeReservation::new(GFP_KERNEL)?;
let reserve2 = RBTreeNodeReservation::new(GFP_KERNEL)?;
let info = UniqueArc::new_uninit(GFP_KERNEL)?;
let mut refs = self.node_refs.lock();
// Do a lookup again as node may have been inserted before the lock was reacquired.
if let Some(handle_ref) = refs.by_node.get(&node_ref.node.global_id()) {
let handle = *handle_ref;
let info = refs.by_handle.get_mut(&handle).unwrap();
info.node_ref().absorb(node_ref);
return Ok(handle);
}
// Find id.
let mut target: u32 = if is_mananger { 0 } else { 1 };
for handle in refs.by_handle.keys() {
if *handle > target {
break;
}
if *handle == target {
target = target.checked_add(1).ok_or(ENOMEM)?;
}
}
let gid = node_ref.node.global_id();
let (info_proc, info_node) = {
let info_init = NodeRefInfo::new(node_ref, target, self.into());
match info.pin_init_with(info_init) {
Ok(info) => ListArc::pair_from_pin_unique(info),
// error is infallible
Err(err) => match err {},
}
};
// Ensure the process is still alive while we insert a new reference.
//
// This releases the lock before inserting the nodes, but since `is_dead` is set as the
// first thing in `deferred_release`, process cleanup will not miss the items inserted into
// `refs` below.
if self.inner.lock().is_dead {
return Err(ESRCH);
}
// SAFETY: `info_proc` and `info_node` reference the same node, so we are inserting
// `info_node` into the right node's `refs` list.
unsafe { info_proc.node_ref2().node.insert_node_info(info_node) };
refs.by_node.insert(reserve1.into_node(gid, target));
refs.by_handle.insert(reserve2.into_node(target, info_proc));
Ok(target)
}
pub(crate) fn get_transaction_node(&self, handle: u32) -> BinderResult<NodeRef> {
// When handle is zero, try to get the context manager.
if handle == 0 {
Ok(self.ctx.get_manager_node(true)?)
} else {
Ok(self.get_node_from_handle(handle, true)?)
}
}
pub(crate) fn get_node_from_handle(&self, handle: u32, strong: bool) -> Result<NodeRef> {
self.node_refs
.lock()
.by_handle
.get_mut(&handle)
.ok_or(ENOENT)?
.node_ref()
.clone(strong)
}
pub(crate) fn remove_from_delivered_deaths(&self, death: &DArc<NodeDeath>) {
let mut inner = self.inner.lock();
// SAFETY: By the invariant on the `delivered_links` field, this is the right linked list.
let removed = unsafe { inner.delivered_deaths.remove(death) };
drop(inner);
drop(removed);
}
pub(crate) fn update_ref(
self: ArcBorrow<'_, Process>,
handle: u32,
inc: bool,
strong: bool,
) -> Result {
if inc && handle == 0 {
if let Ok(node_ref) = self.ctx.get_manager_node(strong) {
if core::ptr::eq(&*self, &*node_ref.node.owner) {
return Err(EINVAL);
}
let _ = self.insert_or_update_handle(node_ref, true);
return Ok(());
}
}
// To preserve original binder behaviour, we only fail requests where the manager tries to
// increment references on itself.
let mut refs = self.node_refs.lock();
if let Some(info) = refs.by_handle.get_mut(&handle) {
if info.node_ref().update(inc, strong) {
// Clean up death if there is one attached to this node reference.
if let Some(death) = info.death().take() {
death.set_cleared(true);
self.remove_from_delivered_deaths(&death);
}
// Remove reference from process tables, and from the node's `refs` list.
// SAFETY: We are removing the `NodeRefInfo` from the right node.
unsafe { info.node_ref2().node.remove_node_info(info) };
let id = info.node_ref().node.global_id();
refs.by_handle.remove(&handle);
refs.by_node.remove(&id);
}
} else {
// All refs are cleared in process exit, so this warning is expected in that case.
if !self.inner.lock().is_dead {
pr_warn!("{}: no such ref {handle}\n", self.pid_in_current_ns());
}
}
Ok(())
}
/// Decrements the refcount of the given node, if one exists.
pub(crate) fn update_node(&self, ptr: u64, cookie: u64, strong: bool) {
let mut inner = self.inner.lock();
if let Ok(Some(node)) = inner.get_existing_node(ptr, cookie) {
inner.update_node_refcount(&node, false, strong, 1, None);
}
}
pub(crate) fn inc_ref_done(&self, reader: &mut UserSliceReader, strong: bool) -> Result {
let ptr = reader.read::<u64>()?;
let cookie = reader.read::<u64>()?;
let mut inner = self.inner.lock();
if let Ok(Some(node)) = inner.get_existing_node(ptr, cookie) {
if let Some(node) = node.inc_ref_done_locked(strong, &mut inner) {
// This only fails if the process is dead.
let _ = inner.push_work(node);
}
}
Ok(())
}
pub(crate) fn buffer_alloc(
self: &Arc<Self>,
debug_id: usize,
size: usize,
is_oneway: bool,
from_pid: i32,
) -> BinderResult<NewAllocation> {
use kernel::page::PAGE_SIZE;
let mut reserve_new_args = ReserveNewArgs {
debug_id,
size,
is_oneway,
pid: from_pid,
..ReserveNewArgs::default()
};
let (new_alloc, addr) = loop {
let mut inner = self.inner.lock();
let mapping = inner.mapping.as_mut().ok_or_else(BinderError::new_dead)?;
let alloc_request = match mapping.alloc.reserve_new(reserve_new_args)? {
ReserveNew::Success(new_alloc) => break (new_alloc, mapping.address),
ReserveNew::NeedAlloc(request) => request,
};
drop(inner);
// We need to allocate memory and then call `reserve_new` again.
reserve_new_args = alloc_request.make_alloc()?;
};
let res = Allocation::new(
self.clone(),
debug_id,
new_alloc.offset,
size,
addr + new_alloc.offset,
new_alloc.oneway_spam_detected,
);
// This allocation will be marked as in use until the `Allocation` is used to free it.
//
// This method can't be called while holding a lock, so we release the lock first. It's
// okay for several threads to use the method on the same index at the same time. In that
// case, one of the calls will allocate the given page (if missing), and the other call
// will wait for the other call to finish allocating the page.
//
// We will not call `stop_using_range` in parallel with this on the same page, because the
// allocation can only be removed via the destructor of the `Allocation` object that we
// currently own.
match self.pages.use_range(
new_alloc.offset / PAGE_SIZE,
(new_alloc.offset + size).div_ceil(PAGE_SIZE),
) {
Ok(()) => {}
Err(err) => {
pr_warn!("use_range failure {:?}", err);
return Err(err.into());
}
}
Ok(NewAllocation(res))
}
pub(crate) fn buffer_get(self: &Arc<Self>, ptr: usize) -> Option<Allocation> {
let mut inner = self.inner.lock();
let mapping = inner.mapping.as_mut()?;
let offset = ptr.checked_sub(mapping.address)?;
let (size, debug_id, odata) = mapping.alloc.reserve_existing(offset).ok()?;
let mut alloc = Allocation::new(self.clone(), debug_id, offset, size, ptr, false);
if let Some(data) = odata {
alloc.set_info(data);
}
Some(alloc)
}
pub(crate) fn buffer_raw_free(&self, ptr: usize) {
let mut inner = self.inner.lock();
if let Some(ref mut mapping) = &mut inner.mapping {
let offset = match ptr.checked_sub(mapping.address) {
Some(offset) => offset,
None => return,
};
let freed_range = match mapping.alloc.reservation_abort(offset) {
Ok(freed_range) => freed_range,
Err(_) => {
pr_warn!(
"Pointer {:x} failed to free, base = {:x}\n",
ptr,
mapping.address
);
return;
}
};
// No more allocations in this range. Mark them as not in use.
//
// Must be done before we release the lock so that `use_range` is not used on these
// indices until `stop_using_range` returns.
self.pages
.stop_using_range(freed_range.start_page_idx, freed_range.end_page_idx);
}
}
pub(crate) fn buffer_make_freeable(&self, offset: usize, mut data: Option<AllocationInfo>) {
let mut inner = self.inner.lock();
if let Some(ref mut mapping) = &mut inner.mapping {
if mapping.alloc.reservation_commit(offset, &mut data).is_err() {
pr_warn!("Offset {} failed to be marked freeable\n", offset);
}
}
}
fn create_mapping(&self, vma: &mm::virt::VmaNew) -> Result {
use kernel::page::PAGE_SIZE;
let size = usize::min(vma.end() - vma.start(), bindings::SZ_4M as usize);
let mapping = Mapping::new(vma.start(), size);
let page_count = self.pages.register_with_vma(vma)?;
if page_count * PAGE_SIZE != size {
return Err(EINVAL);
}
// Save range allocator for later.
self.inner.lock().mapping = Some(mapping);
Ok(())
}
fn version(&self, data: UserSlice) -> Result {
data.writer().write(&BinderVersion::current())
}
pub(crate) fn register_thread(&self) -> bool {
self.inner.lock().register_thread()
}
fn remove_thread(&self, thread: Arc<Thread>) {
self.inner.lock().threads.remove(&thread.id);
thread.release();
}
fn set_max_threads(&self, max: u32) {
self.inner.lock().max_threads = max;
}
fn set_oneway_spam_detection_enabled(&self, enabled: u32) {
self.inner.lock().oneway_spam_detection_enabled = enabled != 0;
}
pub(crate) fn is_oneway_spam_detection_enabled(&self) -> bool {
self.inner.lock().oneway_spam_detection_enabled
}
fn get_node_debug_info(&self, data: UserSlice) -> Result {
let (mut reader, mut writer) = data.reader_writer();
// Read the starting point.
let ptr = reader.read::<BinderNodeDebugInfo>()?.ptr;
let mut out = BinderNodeDebugInfo::default();
{
let inner = self.inner.lock();
for (node_ptr, node) in &inner.nodes {
if *node_ptr > ptr {
node.populate_debug_info(&mut out, &inner);
break;
}
}
}
writer.write(&out)
}
fn get_node_info_from_ref(&self, data: UserSlice) -> Result {
let (mut reader, mut writer) = data.reader_writer();
let mut out = reader.read::<BinderNodeInfoForRef>()?;
if out.strong_count != 0
|| out.weak_count != 0
|| out.reserved1 != 0
|| out.reserved2 != 0
|| out.reserved3 != 0
{
return Err(EINVAL);
}
// Only the context manager is allowed to use this ioctl.
if !self.inner.lock().is_manager {
return Err(EPERM);
}
{
let mut node_refs = self.node_refs.lock();
let node_info = node_refs.by_handle.get_mut(&out.handle).ok_or(ENOENT)?;
let node_ref = node_info.node_ref();
let owner_inner = node_ref.node.owner.inner.lock();
node_ref.node.populate_counts(&mut out, &owner_inner);
}
// Write the result back.
writer.write(&out)
}
pub(crate) fn needs_thread(&self) -> bool {
let mut inner = self.inner.lock();
let ret = inner.requested_thread_count == 0
&& inner.ready_threads.is_empty()
&& inner.started_thread_count < inner.max_threads;
if ret {
inner.requested_thread_count += 1
}
ret
}
pub(crate) fn request_death(
self: &Arc<Self>,
reader: &mut UserSliceReader,
thread: &Thread,
) -> Result {
let handle: u32 = reader.read()?;
let cookie: u64 = reader.read()?;
// Queue BR_ERROR if we can't allocate memory for the death notification.
let death = UniqueArc::new_uninit(GFP_KERNEL).inspect_err(|_| {
thread.push_return_work(BR_ERROR);
})?;
let mut refs = self.node_refs.lock();
let Some(info) = refs.by_handle.get_mut(&handle) else {
pr_warn!("BC_REQUEST_DEATH_NOTIFICATION invalid ref {handle}\n");
return Ok(());
};
// Nothing to do if there is already a death notification request for this handle.
if info.death().is_some() {
pr_warn!("BC_REQUEST_DEATH_NOTIFICATION death notification already set\n");
return Ok(());
}
let death = {
let death_init = NodeDeath::new(info.node_ref().node.clone(), self.clone(), cookie);
match death.pin_init_with(death_init) {
Ok(death) => death,
// error is infallible
Err(err) => match err {},
}
};
// Register the death notification.
{
let owner = info.node_ref2().node.owner.clone();
let mut owner_inner = owner.inner.lock();
if owner_inner.is_dead {
let death = Arc::from(death);
*info.death() = Some(death.clone());
drop(owner_inner);
death.set_dead();
} else {
let death = ListArc::from(death);
*info.death() = Some(death.clone_arc());
info.node_ref().node.add_death(death, &mut owner_inner);
}
}
Ok(())
}
pub(crate) fn clear_death(&self, reader: &mut UserSliceReader, thread: &Thread) -> Result {
let handle: u32 = reader.read()?;
let cookie: u64 = reader.read()?;
let mut refs = self.node_refs.lock();
let Some(info) = refs.by_handle.get_mut(&handle) else {
pr_warn!("BC_CLEAR_DEATH_NOTIFICATION invalid ref {handle}\n");
return Ok(());
};
let Some(death) = info.death().take() else {
pr_warn!("BC_CLEAR_DEATH_NOTIFICATION death notification not active\n");
return Ok(());
};
if death.cookie != cookie {
*info.death() = Some(death);
pr_warn!("BC_CLEAR_DEATH_NOTIFICATION death notification cookie mismatch\n");
return Ok(());
}
// Update state and determine if we need to queue a work item. We only need to do it when
// the node is not dead or if the user already completed the death notification.
if death.set_cleared(false) {
if let Some(death) = ListArc::try_from_arc_or_drop(death) {
let _ = thread.push_work_if_looper(death);
}
}
Ok(())
}
pub(crate) fn dead_binder_done(&self, cookie: u64, thread: &Thread) {
if let Some(death) = self.inner.lock().pull_delivered_death(cookie) {
death.set_notification_done(thread);
}
}
/// Locks the spinlock and move the `nodes` rbtree out.
///
/// This allows you to iterate through `nodes` while also allowing you to give other parts of
/// the codebase exclusive access to `ProcessInner`.
pub(crate) fn lock_with_nodes(&self) -> WithNodes<'_> {
let mut inner = self.inner.lock();
WithNodes {
nodes: take(&mut inner.nodes),
inner,
}
}
fn deferred_flush(&self) {
let inner = self.inner.lock();
for thread in inner.threads.values() {
thread.exit_looper();
}
}
fn deferred_release(self: Arc<Self>) {
let is_manager = {
let mut inner = self.inner.lock();
inner.is_dead = true;
inner.is_frozen = false;
inner.sync_recv = false;
inner.async_recv = false;
inner.is_manager
};
if is_manager {
self.ctx.unset_manager_node();
}
self.ctx.deregister_process(&self);
let binderfs_file = self.inner.lock().binderfs_file.take();
drop(binderfs_file);
// Release threads.
let threads = {
let mut inner = self.inner.lock();
let threads = take(&mut inner.threads);
let ready = take(&mut inner.ready_threads);
drop(inner);
drop(ready);
for thread in threads.values() {
thread.release();
}
threads
};
// Release nodes.
{
while let Some(node) = {
let mut lock = self.inner.lock();
lock.nodes.cursor_front().map(|c| c.remove_current().1)
} {
node.to_key_value().1.release();
}
}
// Clean up death listeners and remove nodes from external node info lists.
for info in self.node_refs.lock().by_handle.values_mut() {
// SAFETY: We are removing the `NodeRefInfo` from the right node.
unsafe { info.node_ref2().node.remove_node_info(info) };
// Remove all death notifications from the nodes (that belong to a different process).
let death = if let Some(existing) = info.death().take() {
existing
} else {
continue;
};
death.set_cleared(false);
}
// Clean up freeze listeners.
let freeze_listeners = take(&mut self.node_refs.lock().freeze_listeners);
for listener in freeze_listeners.values() {
listener.on_process_exit(&self);
}
drop(freeze_listeners);
// Release refs on foreign nodes.
{
let mut refs = self.node_refs.lock();
let by_handle = take(&mut refs.by_handle);
let by_node = take(&mut refs.by_node);
drop(refs);
drop(by_node);
drop(by_handle);
}
// Cancel all pending work items.
while let Some(work) = self.get_work() {
work.into_arc().cancel();
}
let delivered_deaths = take(&mut self.inner.lock().delivered_deaths);
drop(delivered_deaths);
// Free any resources kept alive by allocated buffers.
let omapping = self.inner.lock().mapping.take();
if let Some(mut mapping) = omapping {
let address = mapping.address;
mapping
.alloc
.take_for_each(|offset, size, debug_id, odata| {
let ptr = offset + address;
pr_warn!(
"{}: removing orphan mapping {offset}:{size}\n",
self.pid_in_current_ns()
);
let mut alloc =
Allocation::new(self.clone(), debug_id, offset, size, ptr, false);
if let Some(data) = odata {
alloc.set_info(data);
}
drop(alloc)
});
}
// calls to synchronize_rcu() in thread drop will happen here
drop(threads);
}
pub(crate) fn drop_outstanding_txn(&self) {
let wake = {
let mut inner = self.inner.lock();
if inner.outstanding_txns == 0 {
pr_err!("outstanding_txns underflow");
return;
}
inner.outstanding_txns -= 1;
inner.is_frozen && inner.outstanding_txns == 0
};
if wake {
self.freeze_wait.notify_all();
}
}
pub(crate) fn ioctl_freeze(&self, info: &BinderFreezeInfo) -> Result {
if info.enable == 0 {
let msgs = self.prepare_freeze_messages()?;
let mut inner = self.inner.lock();
inner.sync_recv = false;
inner.async_recv = false;
inner.is_frozen = false;
drop(inner);
msgs.send_messages();
return Ok(());
}
let mut inner = self.inner.lock();
inner.sync_recv = false;
inner.async_recv = false;
inner.is_frozen = true;
if info.timeout_ms > 0 {
let mut jiffies = kernel::time::msecs_to_jiffies(info.timeout_ms);
while jiffies > 0 {
if inner.outstanding_txns == 0 {
break;
}
match self
.freeze_wait
.wait_interruptible_timeout(&mut inner, jiffies)
{
CondVarTimeoutResult::Signal { .. } => {
inner.is_frozen = false;
return Err(ERESTARTSYS);
}
CondVarTimeoutResult::Woken { jiffies: remaining } => {
jiffies = remaining;
}
CondVarTimeoutResult::Timeout => {
jiffies = 0;
}
}
}
}
if inner.txns_pending_locked() {
inner.is_frozen = false;
Err(EAGAIN)
} else {
drop(inner);
match self.prepare_freeze_messages() {
Ok(batch) => {
batch.send_messages();
Ok(())
}
Err(kernel::alloc::AllocError) => {
self.inner.lock().is_frozen = false;
Err(ENOMEM)
}
}
}
}
}
fn get_frozen_status(data: UserSlice) -> Result {
let (mut reader, mut writer) = data.reader_writer();
let mut info = reader.read::<BinderFrozenStatusInfo>()?;
info.sync_recv = 0;
info.async_recv = 0;
let mut found = false;
for ctx in crate::context::get_all_contexts()? {
ctx.for_each_proc(|proc| {
if proc.task.pid() == info.pid as _ {
found = true;
let inner = proc.inner.lock();
let txns_pending = inner.txns_pending_locked();
info.async_recv |= inner.async_recv as u32;
info.sync_recv |= inner.sync_recv as u32;
info.sync_recv |= (txns_pending as u32) << 1;
}
});
}
if found {
writer.write(&info)?;
Ok(())
} else {
Err(EINVAL)
}
}
fn ioctl_freeze(reader: &mut UserSliceReader) -> Result {
let info = reader.read::<BinderFreezeInfo>()?;
// Very unlikely for there to be more than 3, since a process normally uses at most binder and
// hwbinder.
let mut procs = KVec::with_capacity(3, GFP_KERNEL)?;
let ctxs = crate::context::get_all_contexts()?;
for ctx in ctxs {
for proc in ctx.get_procs_with_pid(info.pid as i32)? {
procs.push(proc, GFP_KERNEL)?;
}
}
for proc in procs {
proc.ioctl_freeze(&info)?;
}
Ok(())
}
/// The ioctl handler.
impl Process {
/// Ioctls that are write-only from the perspective of userspace.
///
/// The kernel will only read from the pointer that userspace provided to us.
fn ioctl_write_only(
this: ArcBorrow<'_, Process>,
_file: &File,
cmd: u32,
reader: &mut UserSliceReader,
) -> Result {
let thread = this.get_current_thread()?;
match cmd {
uapi::BINDER_SET_MAX_THREADS => this.set_max_threads(reader.read()?),
uapi::BINDER_THREAD_EXIT => this.remove_thread(thread),
uapi::BINDER_SET_CONTEXT_MGR => this.set_as_manager(None, &thread)?,
uapi::BINDER_SET_CONTEXT_MGR_EXT => {
this.set_as_manager(Some(reader.read()?), &thread)?
}
uapi::BINDER_ENABLE_ONEWAY_SPAM_DETECTION => {
this.set_oneway_spam_detection_enabled(reader.read()?)
}
uapi::BINDER_FREEZE => ioctl_freeze(reader)?,
_ => return Err(EINVAL),
}
Ok(())
}
/// Ioctls that are read/write from the perspective of userspace.
///
/// The kernel will both read from and write to the pointer that userspace provided to us.
fn ioctl_write_read(
this: ArcBorrow<'_, Process>,
file: &File,
cmd: u32,
data: UserSlice,
) -> Result {
let thread = this.get_current_thread()?;
let blocking = (file.flags() & file::flags::O_NONBLOCK) == 0;
match cmd {
uapi::BINDER_WRITE_READ => thread.write_read(data, blocking)?,
uapi::BINDER_GET_NODE_DEBUG_INFO => this.get_node_debug_info(data)?,
uapi::BINDER_GET_NODE_INFO_FOR_REF => this.get_node_info_from_ref(data)?,
uapi::BINDER_VERSION => this.version(data)?,
uapi::BINDER_GET_FROZEN_INFO => get_frozen_status(data)?,
uapi::BINDER_GET_EXTENDED_ERROR => thread.get_extended_error(data)?,
_ => return Err(EINVAL),
}
Ok(())
}
}
/// The file operations supported by `Process`.
impl Process {
pub(crate) fn open(ctx: ArcBorrow<'_, Context>, file: &File) -> Result<Arc<Process>> {
Self::new(ctx.into(), ARef::from(file.cred()))
}
pub(crate) fn release(this: Arc<Process>, _file: &File) {
let binderfs_file;
let should_schedule;
{
let mut inner = this.inner.lock();
should_schedule = inner.defer_work == 0;
inner.defer_work |= PROC_DEFER_RELEASE;
binderfs_file = inner.binderfs_file.take();
}
if should_schedule {
// Ignore failures to schedule to the workqueue. Those just mean that we're already
// scheduled for execution.
let _ = workqueue::system().enqueue(this);
}
drop(binderfs_file);
}
pub(crate) fn flush(this: ArcBorrow<'_, Process>) -> Result {
let should_schedule;
{
let mut inner = this.inner.lock();
should_schedule = inner.defer_work == 0;
inner.defer_work |= PROC_DEFER_FLUSH;
}
if should_schedule {
// Ignore failures to schedule to the workqueue. Those just mean that we're already
// scheduled for execution.
let _ = workqueue::system().enqueue(Arc::from(this));
}
Ok(())
}
pub(crate) fn ioctl(this: ArcBorrow<'_, Process>, file: &File, cmd: u32, arg: usize) -> Result {
use kernel::ioctl::{_IOC_DIR, _IOC_SIZE};
use kernel::uapi::{_IOC_READ, _IOC_WRITE};
crate::trace::trace_ioctl(cmd, arg);
let user_slice = UserSlice::new(UserPtr::from_addr(arg), _IOC_SIZE(cmd));
const _IOC_READ_WRITE: u32 = _IOC_READ | _IOC_WRITE;
match _IOC_DIR(cmd) {
_IOC_WRITE => Self::ioctl_write_only(this, file, cmd, &mut user_slice.reader()),
_IOC_READ_WRITE => Self::ioctl_write_read(this, file, cmd, user_slice),
_ => Err(EINVAL),
}
}
pub(crate) fn compat_ioctl(
this: ArcBorrow<'_, Process>,
file: &File,
cmd: u32,
arg: usize,
) -> Result {
Self::ioctl(this, file, cmd, arg)
}
pub(crate) fn mmap(
this: ArcBorrow<'_, Process>,
_file: &File,
vma: &mm::virt::VmaNew,
) -> Result {
// We don't allow mmap to be used in a different process.
if !core::ptr::eq(kernel::current!().group_leader(), &*this.task) {
return Err(EINVAL);
}
if vma.start() == 0 {
return Err(EINVAL);
}
vma.try_clear_maywrite().map_err(|_| EPERM)?;
vma.set_dontcopy();
vma.set_mixedmap();
// TODO: Set ops. We need to learn when the user unmaps so that we can stop using it.
this.create_mapping(vma)
}
pub(crate) fn poll(
this: ArcBorrow<'_, Process>,
file: &File,
table: PollTable<'_>,
) -> Result<u32> {
let thread = this.get_current_thread()?;
let (from_proc, mut mask) = thread.poll(file, table);
if mask == 0 && from_proc && !this.inner.lock().work.is_empty() {
mask |= bindings::POLLIN;
}
Ok(mask)
}
}
/// Represents that a thread has registered with the `ready_threads` list of its process.
///
/// The destructor of this type will unregister the thread from the list of ready threads.
pub(crate) struct Registration<'a> {
thread: &'a Arc<Thread>,
}
impl<'a> Registration<'a> {
fn new(thread: &'a Arc<Thread>, guard: &mut Guard<'_, ProcessInner, SpinLockBackend>) -> Self {
assert!(core::ptr::eq(&thread.process.inner, guard.lock_ref()));
// INVARIANT: We are pushing this thread to the right `ready_threads` list.
if let Ok(list_arc) = ListArc::try_from_arc(thread.clone()) {
guard.ready_threads.push_front(list_arc);
} else {
// It is an error to hit this branch, and it should not be reachable. We try to do
// something reasonable when the failure path happens. Most likely, the thread in
// question will sleep forever.
pr_err!("Same thread registered with `ready_threads` twice.");
}
Self { thread }
}
}
impl Drop for Registration<'_> {
fn drop(&mut self) {
let mut inner = self.thread.process.inner.lock();
// SAFETY: The thread has the invariant that we never push it to any other linked list than
// the `ready_threads` list of its parent process. Therefore, the thread is either in that
// list, or in no list.
unsafe { inner.ready_threads.remove(self.thread) };
}
}
pub(crate) struct WithNodes<'a> {
pub(crate) inner: Guard<'a, ProcessInner, SpinLockBackend>,
pub(crate) nodes: RBTree<u64, DArc<Node>>,
}
impl Drop for WithNodes<'_> {
fn drop(&mut self) {
core::mem::swap(&mut self.nodes, &mut self.inner.nodes);
if self.nodes.iter().next().is_some() {
pr_err!("nodes array was modified while using lock_with_nodes\n");
}
}
}
pub(crate) enum GetWorkOrRegister<'a> {
Work(DLArc<dyn DeliverToRead>),
Register(Registration<'a>),
}
|