1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
use kernel::{
page::{PAGE_MASK, PAGE_SIZE},
prelude::*,
seq_file::SeqFile,
seq_print,
task::Pid,
};
use crate::range_alloc::{DescriptorState, FreedRange, Range};
/// Keeps track of allocations in a process' mmap.
///
/// Each process has an mmap where the data for incoming transactions will be placed. This struct
/// keeps track of allocations made in the mmap. For each allocation, we store a descriptor that
/// has metadata related to the allocation. We also keep track of available free space.
pub(super) struct ArrayRangeAllocator<T> {
/// This stores all ranges that are allocated. Unlike the tree based allocator, we do *not*
/// store the free ranges.
///
/// Sorted by offset.
pub(super) ranges: KVec<Range<T>>,
size: usize,
free_oneway_space: usize,
}
struct FindEmptyRes {
/// Which index in `ranges` should we insert the new range at?
///
/// Inserting the new range at this index keeps `ranges` sorted.
insert_at_idx: usize,
/// Which offset should we insert the new range at?
insert_at_offset: usize,
}
impl<T> ArrayRangeAllocator<T> {
pub(crate) fn new(size: usize, alloc: EmptyArrayAlloc<T>) -> Self {
Self {
ranges: alloc.ranges,
size,
free_oneway_space: size / 2,
}
}
pub(crate) fn free_oneway_space(&self) -> usize {
self.free_oneway_space
}
pub(crate) fn count_buffers(&self) -> usize {
self.ranges.len()
}
pub(crate) fn total_size(&self) -> usize {
self.size
}
pub(crate) fn is_full(&self) -> bool {
self.ranges.len() == self.ranges.capacity()
}
pub(crate) fn debug_print(&self, m: &SeqFile) -> Result<()> {
for range in &self.ranges {
seq_print!(
m,
" buffer {}: {} size {} pid {} oneway {}",
0,
range.offset,
range.size,
range.state.pid(),
range.state.is_oneway(),
);
if let DescriptorState::Reserved(_) = range.state {
seq_print!(m, " reserved\n");
} else {
seq_print!(m, " allocated\n");
}
}
Ok(())
}
/// Find somewhere to put a new range.
///
/// Unlike the tree implementation, we do not bother to find the smallest gap. The idea is that
/// fragmentation isn't a big issue when we don't have many ranges.
///
/// Returns the index that the new range should have in `self.ranges` after insertion.
fn find_empty_range(&self, size: usize) -> Option<FindEmptyRes> {
let after_last_range = self.ranges.last().map(Range::endpoint).unwrap_or(0);
if size <= self.total_size() - after_last_range {
// We can put the range at the end, so just do that.
Some(FindEmptyRes {
insert_at_idx: self.ranges.len(),
insert_at_offset: after_last_range,
})
} else {
let mut end_of_prev = 0;
for (i, range) in self.ranges.iter().enumerate() {
// Does it fit before the i'th range?
if size <= range.offset - end_of_prev {
return Some(FindEmptyRes {
insert_at_idx: i,
insert_at_offset: end_of_prev,
});
}
end_of_prev = range.endpoint();
}
None
}
}
pub(crate) fn reserve_new(
&mut self,
debug_id: usize,
size: usize,
is_oneway: bool,
pid: Pid,
) -> Result<usize> {
// Compute new value of free_oneway_space, which is set only on success.
let new_oneway_space = if is_oneway {
match self.free_oneway_space.checked_sub(size) {
Some(new_oneway_space) => new_oneway_space,
None => return Err(ENOSPC),
}
} else {
self.free_oneway_space
};
let FindEmptyRes {
insert_at_idx,
insert_at_offset,
} = self.find_empty_range(size).ok_or(ENOSPC)?;
self.free_oneway_space = new_oneway_space;
let new_range = Range {
offset: insert_at_offset,
size,
state: DescriptorState::new(is_oneway, debug_id, pid),
};
// Insert the value at the given index to keep the array sorted.
self.ranges
.insert_within_capacity(insert_at_idx, new_range)
.ok()
.unwrap();
Ok(insert_at_offset)
}
pub(crate) fn reservation_abort(&mut self, offset: usize) -> Result<FreedRange> {
// This could use a binary search, but linear scans are usually faster for small arrays.
let i = self
.ranges
.iter()
.position(|range| range.offset == offset)
.ok_or(EINVAL)?;
let range = &self.ranges[i];
if let DescriptorState::Allocated(_) = range.state {
return Err(EPERM);
}
let size = range.size;
let offset = range.offset;
if range.state.is_oneway() {
self.free_oneway_space += size;
}
// This computes the range of pages that are no longer used by *any* allocated range. The
// caller will mark them as unused, which means that they can be freed if the system comes
// under memory pressure.
let mut freed_range = FreedRange::interior_pages(offset, size);
#[expect(clippy::collapsible_if)] // reads better like this
if offset % PAGE_SIZE != 0 {
if i == 0 || self.ranges[i - 1].endpoint() <= (offset & PAGE_MASK) {
freed_range.start_page_idx -= 1;
}
}
if range.endpoint() % PAGE_SIZE != 0 {
let page_after = (range.endpoint() & PAGE_MASK) + PAGE_SIZE;
if i + 1 == self.ranges.len() || page_after <= self.ranges[i + 1].offset {
freed_range.end_page_idx += 1;
}
}
self.ranges.remove(i)?;
Ok(freed_range)
}
pub(crate) fn reservation_commit(&mut self, offset: usize, data: &mut Option<T>) -> Result {
// This could use a binary search, but linear scans are usually faster for small arrays.
let range = self
.ranges
.iter_mut()
.find(|range| range.offset == offset)
.ok_or(ENOENT)?;
let DescriptorState::Reserved(reservation) = &range.state else {
return Err(ENOENT);
};
range.state = DescriptorState::Allocated(reservation.clone().allocate(data.take()));
Ok(())
}
pub(crate) fn reserve_existing(&mut self, offset: usize) -> Result<(usize, usize, Option<T>)> {
// This could use a binary search, but linear scans are usually faster for small arrays.
let range = self
.ranges
.iter_mut()
.find(|range| range.offset == offset)
.ok_or(ENOENT)?;
let DescriptorState::Allocated(allocation) = &mut range.state else {
return Err(ENOENT);
};
let data = allocation.take();
let debug_id = allocation.reservation.debug_id;
range.state = DescriptorState::Reserved(allocation.reservation.clone());
Ok((range.size, debug_id, data))
}
pub(crate) fn take_for_each<F: Fn(usize, usize, usize, Option<T>)>(&mut self, callback: F) {
for range in self.ranges.iter_mut() {
if let DescriptorState::Allocated(allocation) = &mut range.state {
callback(
range.offset,
range.size,
allocation.reservation.debug_id,
allocation.data.take(),
);
}
}
}
}
pub(crate) struct EmptyArrayAlloc<T> {
ranges: KVec<Range<T>>,
}
impl<T> EmptyArrayAlloc<T> {
pub(crate) fn try_new(capacity: usize) -> Result<Self> {
Ok(Self {
ranges: KVec::with_capacity(capacity, GFP_KERNEL)?,
})
}
}
|