1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2025 Google LLC.
use core::sync::atomic::{AtomicBool, Ordering};
use kernel::{
prelude::*,
seq_file::SeqFile,
seq_print,
sync::{Arc, SpinLock},
task::Kuid,
time::{Instant, Monotonic},
types::ScopeGuard,
};
use crate::{
allocation::{Allocation, TranslatedFds},
defs::*,
error::{BinderError, BinderResult},
node::{Node, NodeRef},
process::{Process, ProcessInner},
ptr_align,
thread::{PushWorkRes, Thread},
BinderReturnWriter, DArc, DLArc, DTRWrap, DeliverToRead,
};
#[pin_data(PinnedDrop)]
pub(crate) struct Transaction {
pub(crate) debug_id: usize,
target_node: Option<DArc<Node>>,
pub(crate) from_parent: Option<DArc<Transaction>>,
pub(crate) from: Arc<Thread>,
pub(crate) to: Arc<Process>,
#[pin]
allocation: SpinLock<Option<Allocation>>,
is_outstanding: AtomicBool,
code: u32,
pub(crate) flags: u32,
data_size: usize,
offsets_size: usize,
data_address: usize,
sender_euid: Kuid,
txn_security_ctx_off: Option<usize>,
pub(crate) oneway_spam_detected: bool,
start_time: Instant<Monotonic>,
}
kernel::list::impl_list_arc_safe! {
impl ListArcSafe<0> for Transaction { untracked; }
}
impl Transaction {
pub(crate) fn new(
node_ref: NodeRef,
from_parent: Option<DArc<Transaction>>,
from: &Arc<Thread>,
tr: &BinderTransactionDataSg,
) -> BinderResult<DLArc<Self>> {
let debug_id = super::next_debug_id();
let trd = &tr.transaction_data;
let allow_fds = node_ref.node.flags & FLAT_BINDER_FLAG_ACCEPTS_FDS != 0;
let txn_security_ctx = node_ref.node.flags & FLAT_BINDER_FLAG_TXN_SECURITY_CTX != 0;
let mut txn_security_ctx_off = if txn_security_ctx { Some(0) } else { None };
let to = node_ref.node.owner.clone();
let mut alloc = match from.copy_transaction_data(
to.clone(),
tr,
debug_id,
allow_fds,
txn_security_ctx_off.as_mut(),
) {
Ok(alloc) => alloc,
Err(err) => {
if !err.is_dead() {
pr_warn!("Failure in copy_transaction_data: {:?}", err);
}
return Err(err);
}
};
let oneway_spam_detected = alloc.oneway_spam_detected;
if trd.flags & TF_ONE_WAY != 0 {
if from_parent.is_some() {
pr_warn!("Oneway transaction should not be in a transaction stack.");
return Err(EINVAL.into());
}
alloc.set_info_oneway_node(node_ref.node.clone());
}
if trd.flags & TF_CLEAR_BUF != 0 {
alloc.set_info_clear_on_drop();
}
let target_node = node_ref.node.clone();
alloc.set_info_target_node(node_ref);
let data_address = alloc.ptr;
Ok(DTRWrap::arc_pin_init(pin_init!(Transaction {
debug_id,
target_node: Some(target_node),
from_parent,
sender_euid: from.process.task.euid(),
from: from.clone(),
to,
code: trd.code,
flags: trd.flags,
data_size: trd.data_size as _,
offsets_size: trd.offsets_size as _,
data_address,
allocation <- kernel::new_spinlock!(Some(alloc.success()), "Transaction::new"),
is_outstanding: AtomicBool::new(false),
txn_security_ctx_off,
oneway_spam_detected,
start_time: Instant::now(),
}))?)
}
pub(crate) fn new_reply(
from: &Arc<Thread>,
to: Arc<Process>,
tr: &BinderTransactionDataSg,
allow_fds: bool,
) -> BinderResult<DLArc<Self>> {
let debug_id = super::next_debug_id();
let trd = &tr.transaction_data;
let mut alloc = match from.copy_transaction_data(to.clone(), tr, debug_id, allow_fds, None)
{
Ok(alloc) => alloc,
Err(err) => {
pr_warn!("Failure in copy_transaction_data: {:?}", err);
return Err(err);
}
};
let oneway_spam_detected = alloc.oneway_spam_detected;
if trd.flags & TF_CLEAR_BUF != 0 {
alloc.set_info_clear_on_drop();
}
Ok(DTRWrap::arc_pin_init(pin_init!(Transaction {
debug_id,
target_node: None,
from_parent: None,
sender_euid: from.process.task.euid(),
from: from.clone(),
to,
code: trd.code,
flags: trd.flags,
data_size: trd.data_size as _,
offsets_size: trd.offsets_size as _,
data_address: alloc.ptr,
allocation <- kernel::new_spinlock!(Some(alloc.success()), "Transaction::new"),
is_outstanding: AtomicBool::new(false),
txn_security_ctx_off: None,
oneway_spam_detected,
start_time: Instant::now(),
}))?)
}
#[inline(never)]
pub(crate) fn debug_print_inner(&self, m: &SeqFile, prefix: &str) {
seq_print!(
m,
"{}{}: from {}:{} to {} code {:x} flags {:x} elapsed {}ms",
prefix,
self.debug_id,
self.from.process.task.pid(),
self.from.id,
self.to.task.pid(),
self.code,
self.flags,
self.start_time.elapsed().as_millis(),
);
if let Some(target_node) = &self.target_node {
seq_print!(m, " node {}", target_node.debug_id);
}
seq_print!(m, " size {}:{}\n", self.data_size, self.offsets_size);
}
/// Determines if the transaction is stacked on top of the given transaction.
pub(crate) fn is_stacked_on(&self, onext: &Option<DArc<Self>>) -> bool {
match (&self.from_parent, onext) {
(None, None) => true,
(Some(from_parent), Some(next)) => Arc::ptr_eq(from_parent, next),
_ => false,
}
}
/// Returns a pointer to the next transaction on the transaction stack, if there is one.
pub(crate) fn clone_next(&self) -> Option<DArc<Self>> {
Some(self.from_parent.as_ref()?.clone())
}
/// Searches in the transaction stack for a thread that belongs to the target process. This is
/// useful when finding a target for a new transaction: if the node belongs to a process that
/// is already part of the transaction stack, we reuse the thread.
fn find_target_thread(&self) -> Option<Arc<Thread>> {
let mut it = &self.from_parent;
while let Some(transaction) = it {
if Arc::ptr_eq(&transaction.from.process, &self.to) {
return Some(transaction.from.clone());
}
it = &transaction.from_parent;
}
None
}
/// Searches in the transaction stack for a transaction originating at the given thread.
pub(crate) fn find_from(&self, thread: &Thread) -> Option<&DArc<Transaction>> {
let mut it = &self.from_parent;
while let Some(transaction) = it {
if core::ptr::eq(thread, transaction.from.as_ref()) {
return Some(transaction);
}
it = &transaction.from_parent;
}
None
}
pub(crate) fn set_outstanding(&self, to_process: &mut ProcessInner) {
// No race because this method is only called once.
if !self.is_outstanding.load(Ordering::Relaxed) {
self.is_outstanding.store(true, Ordering::Relaxed);
to_process.add_outstanding_txn();
}
}
/// Decrement `outstanding_txns` in `to` if it hasn't already been decremented.
fn drop_outstanding_txn(&self) {
// No race because this is called at most twice, and one of the calls are in the
// destructor, which is guaranteed to not race with any other operations on the
// transaction. It also cannot race with `set_outstanding`, since submission happens
// before delivery.
if self.is_outstanding.load(Ordering::Relaxed) {
self.is_outstanding.store(false, Ordering::Relaxed);
self.to.drop_outstanding_txn();
}
}
/// Submits the transaction to a work queue. Uses a thread if there is one in the transaction
/// stack, otherwise uses the destination process.
///
/// Not used for replies.
pub(crate) fn submit(self: DLArc<Self>) -> BinderResult {
// Defined before `process_inner` so that the destructor runs after releasing the lock.
let mut _t_outdated;
let oneway = self.flags & TF_ONE_WAY != 0;
let process = self.to.clone();
let mut process_inner = process.inner.lock();
self.set_outstanding(&mut process_inner);
if oneway {
if let Some(target_node) = self.target_node.clone() {
if process_inner.is_frozen {
process_inner.async_recv = true;
if self.flags & TF_UPDATE_TXN != 0 {
if let Some(t_outdated) =
target_node.take_outdated_transaction(&self, &mut process_inner)
{
// Save the transaction to be dropped after locks are released.
_t_outdated = t_outdated;
}
}
}
match target_node.submit_oneway(self, &mut process_inner) {
Ok(()) => {}
Err((err, work)) => {
drop(process_inner);
// Drop work after releasing process lock.
drop(work);
return Err(err);
}
}
if process_inner.is_frozen {
return Err(BinderError::new_frozen_oneway());
} else {
return Ok(());
}
} else {
pr_err!("Failed to submit oneway transaction to node.");
}
}
if process_inner.is_frozen {
process_inner.sync_recv = true;
return Err(BinderError::new_frozen());
}
let res = if let Some(thread) = self.find_target_thread() {
match thread.push_work(self) {
PushWorkRes::Ok => Ok(()),
PushWorkRes::FailedDead(me) => Err((BinderError::new_dead(), me)),
}
} else {
process_inner.push_work(self)
};
drop(process_inner);
match res {
Ok(()) => Ok(()),
Err((err, work)) => {
// Drop work after releasing process lock.
drop(work);
Err(err)
}
}
}
/// Check whether one oneway transaction can supersede another.
pub(crate) fn can_replace(&self, old: &Transaction) -> bool {
if self.from.process.task.pid() != old.from.process.task.pid() {
return false;
}
if self.flags & old.flags & (TF_ONE_WAY | TF_UPDATE_TXN) != (TF_ONE_WAY | TF_UPDATE_TXN) {
return false;
}
let target_node_match = match (self.target_node.as_ref(), old.target_node.as_ref()) {
(None, None) => true,
(Some(tn1), Some(tn2)) => Arc::ptr_eq(tn1, tn2),
_ => false,
};
self.code == old.code && self.flags == old.flags && target_node_match
}
fn prepare_file_list(&self) -> Result<TranslatedFds> {
let mut alloc = self.allocation.lock().take().ok_or(ESRCH)?;
match alloc.translate_fds() {
Ok(translated) => {
*self.allocation.lock() = Some(alloc);
Ok(translated)
}
Err(err) => {
// Free the allocation eagerly.
drop(alloc);
Err(err)
}
}
}
}
impl DeliverToRead for Transaction {
fn do_work(
self: DArc<Self>,
thread: &Thread,
writer: &mut BinderReturnWriter<'_>,
) -> Result<bool> {
let send_failed_reply = ScopeGuard::new(|| {
if self.target_node.is_some() && self.flags & TF_ONE_WAY == 0 {
let reply = Err(BR_FAILED_REPLY);
self.from.deliver_reply(reply, &self);
}
self.drop_outstanding_txn();
});
let files = if let Ok(list) = self.prepare_file_list() {
list
} else {
// On failure to process the list, we send a reply back to the sender and ignore the
// transaction on the recipient.
return Ok(true);
};
let mut tr_sec = BinderTransactionDataSecctx::default();
let tr = tr_sec.tr_data();
if let Some(target_node) = &self.target_node {
let (ptr, cookie) = target_node.get_id();
tr.target.ptr = ptr as _;
tr.cookie = cookie as _;
};
tr.code = self.code;
tr.flags = self.flags;
tr.data_size = self.data_size as _;
tr.data.ptr.buffer = self.data_address as _;
tr.offsets_size = self.offsets_size as _;
if tr.offsets_size > 0 {
tr.data.ptr.offsets = (self.data_address + ptr_align(self.data_size).unwrap()) as _;
}
tr.sender_euid = self.sender_euid.into_uid_in_current_ns();
tr.sender_pid = 0;
if self.target_node.is_some() && self.flags & TF_ONE_WAY == 0 {
// Not a reply and not one-way.
tr.sender_pid = self.from.process.pid_in_current_ns();
}
let code = if self.target_node.is_none() {
BR_REPLY
} else if self.txn_security_ctx_off.is_some() {
BR_TRANSACTION_SEC_CTX
} else {
BR_TRANSACTION
};
// Write the transaction code and data to the user buffer.
writer.write_code(code)?;
if let Some(off) = self.txn_security_ctx_off {
tr_sec.secctx = (self.data_address + off) as u64;
writer.write_payload(&tr_sec)?;
} else {
writer.write_payload(&*tr)?;
}
let mut alloc = self.allocation.lock().take().ok_or(ESRCH)?;
// Dismiss the completion of transaction with a failure. No failure paths are allowed from
// here on out.
send_failed_reply.dismiss();
// Commit files, and set FDs in FDA to be closed on buffer free.
let close_on_free = files.commit();
alloc.set_info_close_on_free(close_on_free);
// It is now the user's responsibility to clear the allocation.
alloc.keep_alive();
self.drop_outstanding_txn();
// When this is not a reply and not a oneway transaction, update `current_transaction`. If
// it's a reply, `current_transaction` has already been updated appropriately.
if self.target_node.is_some() && tr_sec.transaction_data.flags & TF_ONE_WAY == 0 {
thread.set_current_transaction(self);
}
Ok(false)
}
fn cancel(self: DArc<Self>) {
let allocation = self.allocation.lock().take();
drop(allocation);
// If this is not a reply or oneway transaction, then send a dead reply.
if self.target_node.is_some() && self.flags & TF_ONE_WAY == 0 {
let reply = Err(BR_DEAD_REPLY);
self.from.deliver_reply(reply, &self);
}
self.drop_outstanding_txn();
}
fn should_sync_wakeup(&self) -> bool {
self.flags & TF_ONE_WAY == 0
}
fn debug_print(&self, m: &SeqFile, _prefix: &str, tprefix: &str) -> Result<()> {
self.debug_print_inner(m, tprefix);
Ok(())
}
}
#[pinned_drop]
impl PinnedDrop for Transaction {
fn drop(self: Pin<&mut Self>) {
self.drop_outstanding_txn();
}
}
|