summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/vkms/vkms_formats.c
blob: 6d0227c6635adbedf28301672fb4b0a411c9e6df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
// SPDX-License-Identifier: GPL-2.0+

#include <linux/kernel.h>
#include <linux/minmax.h>

#include <drm/drm_blend.h>
#include <drm/drm_rect.h>
#include <drm/drm_fixed.h>

#include <kunit/visibility.h>

#include "vkms_formats.h"

/**
 * packed_pixels_offset() - Get the offset of the block containing the pixel at coordinates x/y
 *
 * @frame_info: Buffer metadata
 * @x: The x coordinate of the wanted pixel in the buffer
 * @y: The y coordinate of the wanted pixel in the buffer
 * @plane_index: The index of the plane to use
 * @offset: The returned offset inside the buffer of the block
 * @rem_x: The returned X coordinate of the requested pixel in the block
 * @rem_y: The returned Y coordinate of the requested pixel in the block
 *
 * As some pixel formats store multiple pixels in a block (DRM_FORMAT_R* for example), some
 * pixels are not individually addressable. This function return 3 values: the offset of the
 * whole block, and the coordinate of the requested pixel inside this block.
 * For example, if the format is DRM_FORMAT_R1 and the requested coordinate is 13,5, the offset
 * will point to the byte 5*pitches + 13/8 (second byte of the 5th line), and the rem_x/rem_y
 * coordinates will be (13 % 8, 5 % 1) = (5, 0)
 *
 * With this function, the caller just have to extract the correct pixel from the block.
 */
static void packed_pixels_offset(const struct vkms_frame_info *frame_info, int x, int y,
				 int plane_index, int *offset, int *rem_x, int *rem_y)
{
	struct drm_framebuffer *fb = frame_info->fb;
	const struct drm_format_info *format = frame_info->fb->format;
	/* Directly using x and y to multiply pitches and format->ccp is not sufficient because
	 * in some formats a block can represent multiple pixels.
	 *
	 * Dividing x and y by the block size allows to extract the correct offset of the block
	 * containing the pixel.
	 */

	int block_x = x / drm_format_info_block_width(format, plane_index);
	int block_y = y / drm_format_info_block_height(format, plane_index);
	int block_pitch = fb->pitches[plane_index] * drm_format_info_block_height(format,
										  plane_index);
	*rem_x = x % drm_format_info_block_width(format, plane_index);
	*rem_y = y % drm_format_info_block_height(format, plane_index);
	*offset = fb->offsets[plane_index] +
		  block_y * block_pitch +
		  block_x * format->char_per_block[plane_index];
}

/**
 * packed_pixels_addr() - Get the pointer to the block containing the pixel at the given
 * coordinates
 *
 * @frame_info: Buffer metadata
 * @x: The x (width) coordinate inside the plane
 * @y: The y (height) coordinate inside the plane
 * @plane_index: The index of the plane
 * @addr: The returned pointer
 * @rem_x: The returned X coordinate of the requested pixel in the block
 * @rem_y: The returned Y coordinate of the requested pixel in the block
 *
 * Takes the information stored in the frame_info, a pair of coordinates, and returns the address
 * of the block containing this pixel and the pixel position inside this block.
 *
 * See @packed_pixels_offset for details about rem_x/rem_y behavior.
 */
static void packed_pixels_addr(const struct vkms_frame_info *frame_info,
			       int x, int y, int plane_index, u8 **addr, int *rem_x,
			       int *rem_y)
{
	int offset;

	packed_pixels_offset(frame_info, x, y, plane_index, &offset, rem_x, rem_y);
	*addr = (u8 *)frame_info->map[0].vaddr + offset;
}

/**
 * get_block_step_bytes() - Common helper to compute the correct step value between each pixel block
 * to read in a certain direction.
 *
 * @fb: Framebuffer to iter on
 * @direction: Direction of the reading
 * @plane_index: Plane to get the step from
 *
 * As the returned count is the number of bytes between two consecutive blocks in a direction,
 * the caller may have to read multiple pixels before using the next one (for example, to read from
 * left to right in a DRM_FORMAT_R1 plane, each block contains 8 pixels, so the step must be used
 * only every 8 pixels).
 */
static int get_block_step_bytes(struct drm_framebuffer *fb, enum pixel_read_direction direction,
				int plane_index)
{
	switch (direction) {
	case READ_LEFT_TO_RIGHT:
		return fb->format->char_per_block[plane_index];
	case READ_RIGHT_TO_LEFT:
		return -fb->format->char_per_block[plane_index];
	case READ_TOP_TO_BOTTOM:
		return (int)fb->pitches[plane_index] * drm_format_info_block_width(fb->format,
										   plane_index);
	case READ_BOTTOM_TO_TOP:
		return -(int)fb->pitches[plane_index] * drm_format_info_block_width(fb->format,
										    plane_index);
	}

	return 0;
}

/**
 * packed_pixels_addr_1x1() - Get the pointer to the block containing the pixel at the given
 * coordinates
 *
 * @frame_info: Buffer metadata
 * @x: The x (width) coordinate inside the plane
 * @y: The y (height) coordinate inside the plane
 * @plane_index: The index of the plane
 * @addr: The returned pointer
 *
 * This function can only be used with format where block_h == block_w == 1.
 */
static void packed_pixels_addr_1x1(const struct vkms_frame_info *frame_info,
				   int x, int y, int plane_index, u8 **addr)
{
	int offset, rem_x, rem_y;

	WARN_ONCE(drm_format_info_block_width(frame_info->fb->format,
					      plane_index) != 1,
		"%s() only support formats with block_w == 1", __func__);
	WARN_ONCE(drm_format_info_block_height(frame_info->fb->format,
					       plane_index) != 1,
		"%s() only support formats with block_h == 1", __func__);

	packed_pixels_offset(frame_info, x, y, plane_index, &offset, &rem_x,
			     &rem_y);
	*addr = (u8 *)frame_info->map[0].vaddr + offset;
}

/**
 * get_subsampling() - Get the subsampling divisor value on a specific direction
 *
 * @format: format to extarct the subsampling from
 * @direction: direction of the subsampling requested
 */
static int get_subsampling(const struct drm_format_info *format,
			   enum pixel_read_direction direction)
{
	switch (direction) {
	case READ_BOTTOM_TO_TOP:
	case READ_TOP_TO_BOTTOM:
		return format->vsub;
	case READ_RIGHT_TO_LEFT:
	case READ_LEFT_TO_RIGHT:
		return format->hsub;
	}
	WARN_ONCE(true, "Invalid direction for pixel reading: %d\n", direction);
	return 1;
}

/**
 * get_subsampling_offset() - An offset for keeping the chroma siting consistent regardless of
 * x_start and y_start values
 *
 * @direction: direction of the reading to properly compute this offset
 * @x_start: x coordinate of the starting point of the readed line
 * @y_start: y coordinate of the starting point of the readed line
 */
static int get_subsampling_offset(enum pixel_read_direction direction, int x_start, int y_start)
{
	switch (direction) {
	case READ_BOTTOM_TO_TOP:
		return -y_start - 1;
	case READ_TOP_TO_BOTTOM:
		return y_start;
	case READ_RIGHT_TO_LEFT:
		return -x_start - 1;
	case READ_LEFT_TO_RIGHT:
		return x_start;
	}
	WARN_ONCE(true, "Invalid direction for pixel reading: %d\n", direction);
	return 0;
}

/*
 * The following functions take pixel data (a, r, g, b, pixel, ...) and convert them to
 * &struct pixel_argb_u16
 *
 * They are used in the `read_line`s functions to avoid duplicate work for some pixel formats.
 */

static struct pixel_argb_u16 argb_u16_from_u8888(u8 a, u8 r, u8 g, u8 b)
{
	struct pixel_argb_u16 out_pixel;
	/*
	 * The 257 is the "conversion ratio". This number is obtained by the
	 * (2^16 - 1) / (2^8 - 1) division. Which, in this case, tries to get
	 * the best color value in a pixel format with more possibilities.
	 * A similar idea applies to others RGB color conversions.
	 */
	out_pixel.a = (u16)a * 257;
	out_pixel.r = (u16)r * 257;
	out_pixel.g = (u16)g * 257;
	out_pixel.b = (u16)b * 257;

	return out_pixel;
}

static struct pixel_argb_u16 argb_u16_from_u16161616(u16 a, u16 r, u16 g, u16 b)
{
	struct pixel_argb_u16 out_pixel;

	out_pixel.a = a;
	out_pixel.r = r;
	out_pixel.g = g;
	out_pixel.b = b;

	return out_pixel;
}

static struct pixel_argb_u16 argb_u16_from_le16161616(__le16 a, __le16 r, __le16 g, __le16 b)
{
	return argb_u16_from_u16161616(le16_to_cpu(a), le16_to_cpu(r), le16_to_cpu(g),
				       le16_to_cpu(b));
}

static struct pixel_argb_u16 argb_u16_from_RGB565(const __le16 *pixel)
{
	struct pixel_argb_u16 out_pixel;

	s64 fp_rb_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(31));
	s64 fp_g_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(63));

	u16 rgb_565 = le16_to_cpu(*pixel);
	s64 fp_r = drm_int2fixp((rgb_565 >> 11) & 0x1f);
	s64 fp_g = drm_int2fixp((rgb_565 >> 5) & 0x3f);
	s64 fp_b = drm_int2fixp(rgb_565 & 0x1f);

	out_pixel.a = (u16)0xffff;
	out_pixel.r = drm_fixp2int_round(drm_fixp_mul(fp_r, fp_rb_ratio));
	out_pixel.g = drm_fixp2int_round(drm_fixp_mul(fp_g, fp_g_ratio));
	out_pixel.b = drm_fixp2int_round(drm_fixp_mul(fp_b, fp_rb_ratio));

	return out_pixel;
}

static struct pixel_argb_u16 argb_u16_from_gray8(u8 gray)
{
	return argb_u16_from_u8888(255, gray, gray, gray);
}

static struct pixel_argb_u16 argb_u16_from_grayu16(u16 gray)
{
	return argb_u16_from_u16161616(0xFFFF, gray, gray, gray);
}

VISIBLE_IF_KUNIT struct pixel_argb_u16 argb_u16_from_yuv888(u8 y, u8 channel_1, u8 channel_2,
							    const struct conversion_matrix *matrix)
{
	u16 r, g, b;
	s64 fp_y, fp_channel_1, fp_channel_2;
	s64 fp_r, fp_g, fp_b;

	fp_y = drm_int2fixp(((int)y - matrix->y_offset) * 257);
	fp_channel_1 = drm_int2fixp(((int)channel_1 - 128) * 257);
	fp_channel_2 = drm_int2fixp(((int)channel_2 - 128) * 257);

	fp_r = drm_fixp_mul(matrix->matrix[0][0], fp_y) +
	       drm_fixp_mul(matrix->matrix[0][1], fp_channel_1) +
	       drm_fixp_mul(matrix->matrix[0][2], fp_channel_2);
	fp_g = drm_fixp_mul(matrix->matrix[1][0], fp_y) +
	       drm_fixp_mul(matrix->matrix[1][1], fp_channel_1) +
	       drm_fixp_mul(matrix->matrix[1][2], fp_channel_2);
	fp_b = drm_fixp_mul(matrix->matrix[2][0], fp_y) +
	       drm_fixp_mul(matrix->matrix[2][1], fp_channel_1) +
	       drm_fixp_mul(matrix->matrix[2][2], fp_channel_2);

	fp_r = drm_fixp2int_round(fp_r);
	fp_g = drm_fixp2int_round(fp_g);
	fp_b = drm_fixp2int_round(fp_b);

	r = clamp(fp_r, 0, 0xffff);
	g = clamp(fp_g, 0, 0xffff);
	b = clamp(fp_b, 0, 0xffff);

	return argb_u16_from_u16161616(0xffff, r, g, b);
}
EXPORT_SYMBOL_IF_KUNIT(argb_u16_from_yuv888);

/*
 * The following functions are read_line function for each pixel format supported by VKMS.
 *
 * They read a line starting at the point @x_start,@y_start following the @direction. The result
 * is stored in @out_pixel and in a 64 bits format, see struct pixel_argb_u16.
 *
 * These functions are very repetitive, but the innermost pixel loops must be kept inside these
 * functions for performance reasons. Some benchmarking was done in [1] where having the innermost
 * loop factored out of these functions showed a slowdown by a factor of three.
 *
 * [1]: https://lore.kernel.org/dri-devel/d258c8dc-78e9-4509-9037-a98f7f33b3a3@riseup.net/
 */

static void Rx_read_line(const struct vkms_plane_state *plane, int x_start,
			 int y_start, enum pixel_read_direction direction, int count,
			 struct pixel_argb_u16 out_pixel[])
{
	struct pixel_argb_u16 *end = out_pixel + count;
	int bits_per_pixel = drm_format_info_bpp(plane->frame_info->fb->format, 0);
	u8 *src_pixels;
	int rem_x, rem_y;

	WARN_ONCE(drm_format_info_block_height(plane->frame_info->fb->format, 0) != 1,
		  "%s() only support formats with block_h == 1", __func__);

	packed_pixels_addr(plane->frame_info, x_start, y_start, 0, &src_pixels, &rem_x, &rem_y);
	int bit_offset = (8 - bits_per_pixel) - rem_x * bits_per_pixel;
	int step = get_block_step_bytes(plane->frame_info->fb, direction, 0);
	int mask = (0x1 << bits_per_pixel) - 1;
	int lum_per_level = 0xFFFF / mask;

	if (direction == READ_LEFT_TO_RIGHT || direction == READ_RIGHT_TO_LEFT) {
		int restart_bit_offset;
		int step_bit_offset;

		if (direction == READ_LEFT_TO_RIGHT) {
			restart_bit_offset = 8 - bits_per_pixel;
			step_bit_offset = -bits_per_pixel;
		} else {
			restart_bit_offset = 0;
			step_bit_offset = bits_per_pixel;
		}

		while (out_pixel < end) {
			u8 val = ((*src_pixels) >> bit_offset) & mask;

			*out_pixel = argb_u16_from_grayu16((int)val * lum_per_level);

			bit_offset += step_bit_offset;
			if (bit_offset < 0 || 8 <= bit_offset) {
				bit_offset = restart_bit_offset;
				src_pixels += step;
			}
			out_pixel += 1;
		}
	} else if (direction == READ_TOP_TO_BOTTOM || direction == READ_BOTTOM_TO_TOP) {
		while (out_pixel < end) {
			u8 val = (*src_pixels >> bit_offset) & mask;
			*out_pixel = argb_u16_from_grayu16((int)val * lum_per_level);
			src_pixels += step;
			out_pixel += 1;
		}
	}
}

static void R1_read_line(const struct vkms_plane_state *plane, int x_start,
			 int y_start, enum pixel_read_direction direction, int count,
			 struct pixel_argb_u16 out_pixel[])
{
	Rx_read_line(plane, x_start, y_start, direction, count, out_pixel);
}

static void R2_read_line(const struct vkms_plane_state *plane, int x_start,
			 int y_start, enum pixel_read_direction direction, int count,
			 struct pixel_argb_u16 out_pixel[])
{
	Rx_read_line(plane, x_start, y_start, direction, count, out_pixel);
}

static void R4_read_line(const struct vkms_plane_state *plane, int x_start,
			 int y_start, enum pixel_read_direction direction, int count,
			 struct pixel_argb_u16 out_pixel[])
{
	Rx_read_line(plane, x_start, y_start, direction, count, out_pixel);
}

static void R8_read_line(const struct vkms_plane_state *plane, int x_start,
			 int y_start, enum pixel_read_direction direction, int count,
			 struct pixel_argb_u16 out_pixel[])
{
	struct pixel_argb_u16 *end = out_pixel + count;
	u8 *src_pixels;
	int step = get_block_step_bytes(plane->frame_info->fb, direction, 0);

	packed_pixels_addr_1x1(plane->frame_info, x_start, y_start, 0, &src_pixels);

	while (out_pixel < end) {
		*out_pixel = argb_u16_from_gray8(*src_pixels);
		src_pixels += step;
		out_pixel += 1;
	}
}

static void ARGB8888_read_line(const struct vkms_plane_state *plane, int x_start, int y_start,
			       enum pixel_read_direction direction, int count,
			       struct pixel_argb_u16 out_pixel[])
{
	struct pixel_argb_u16 *end = out_pixel + count;
	u8 *src_pixels;

	packed_pixels_addr_1x1(plane->frame_info, x_start, y_start, 0, &src_pixels);

	int step = get_block_step_bytes(plane->frame_info->fb, direction, 0);

	while (out_pixel < end) {
		u8 *px = (u8 *)src_pixels;
		*out_pixel = argb_u16_from_u8888(px[3], px[2], px[1], px[0]);
		out_pixel += 1;
		src_pixels += step;
	}
}

static void XRGB8888_read_line(const struct vkms_plane_state *plane, int x_start, int y_start,
			       enum pixel_read_direction direction, int count,
			       struct pixel_argb_u16 out_pixel[])
{
	struct pixel_argb_u16 *end = out_pixel + count;
	u8 *src_pixels;

	packed_pixels_addr_1x1(plane->frame_info, x_start, y_start, 0, &src_pixels);

	int step = get_block_step_bytes(plane->frame_info->fb, direction, 0);

	while (out_pixel < end) {
		u8 *px = (u8 *)src_pixels;
		*out_pixel = argb_u16_from_u8888(255, px[2], px[1], px[0]);
		out_pixel += 1;
		src_pixels += step;
	}
}

static void ABGR8888_read_line(const struct vkms_plane_state *plane, int x_start, int y_start,
			       enum pixel_read_direction direction, int count,
			       struct pixel_argb_u16 out_pixel[])
{
	struct pixel_argb_u16 *end = out_pixel + count;
	u8 *src_pixels;

	packed_pixels_addr_1x1(plane->frame_info, x_start, y_start, 0, &src_pixels);

	int step = get_block_step_bytes(plane->frame_info->fb, direction, 0);

	while (out_pixel < end) {
		u8 *px = (u8 *)src_pixels;
		/* Switch blue and red pixels. */
		*out_pixel = argb_u16_from_u8888(px[3], px[0], px[1], px[2]);
		out_pixel += 1;
		src_pixels += step;
	}
}

static void ARGB16161616_read_line(const struct vkms_plane_state *plane, int x_start,
				   int y_start, enum pixel_read_direction direction, int count,
				   struct pixel_argb_u16 out_pixel[])
{
	struct pixel_argb_u16 *end = out_pixel + count;
	u8 *src_pixels;

	packed_pixels_addr_1x1(plane->frame_info, x_start, y_start, 0, &src_pixels);

	int step = get_block_step_bytes(plane->frame_info->fb, direction, 0);

	while (out_pixel < end) {
		u16 *px = (u16 *)src_pixels;
		*out_pixel = argb_u16_from_u16161616(px[3], px[2], px[1], px[0]);
		out_pixel += 1;
		src_pixels += step;
	}
}

static void XRGB16161616_read_line(const struct vkms_plane_state *plane, int x_start,
				   int y_start, enum pixel_read_direction direction, int count,
				   struct pixel_argb_u16 out_pixel[])
{
	struct pixel_argb_u16 *end = out_pixel + count;
	u8 *src_pixels;

	packed_pixels_addr_1x1(plane->frame_info, x_start, y_start, 0, &src_pixels);

	int step = get_block_step_bytes(plane->frame_info->fb, direction, 0);

	while (out_pixel < end) {
		__le16 *px = (__le16 *)src_pixels;
		*out_pixel = argb_u16_from_le16161616(cpu_to_le16(0xFFFF), px[2], px[1], px[0]);
		out_pixel += 1;
		src_pixels += step;
	}
}

static void RGB565_read_line(const struct vkms_plane_state *plane, int x_start,
			     int y_start, enum pixel_read_direction direction, int count,
			     struct pixel_argb_u16 out_pixel[])
{
	struct pixel_argb_u16 *end = out_pixel + count;
	u8 *src_pixels;

	packed_pixels_addr_1x1(plane->frame_info, x_start, y_start, 0, &src_pixels);

	int step = get_block_step_bytes(plane->frame_info->fb, direction, 0);

	while (out_pixel < end) {
		__le16 *px = (__le16 *)src_pixels;

		*out_pixel = argb_u16_from_RGB565(px);
		out_pixel += 1;
		src_pixels += step;
	}
}

/*
 * This callback can be used for YUV formats where U and V values are
 * stored in the same plane (often called semi-planar formats). It will
 * correctly handle subsampling as described in the drm_format_info of the plane.
 *
 * The conversion matrix stored in the @plane is used to:
 * - Apply the correct color range and encoding
 * - Convert YUV and YVU with the same function (a column swap is needed when setting up
 * plane->conversion_matrix)
 */
static void semi_planar_yuv_read_line(const struct vkms_plane_state *plane, int x_start,
				      int y_start, enum pixel_read_direction direction, int count,
				      struct pixel_argb_u16 out_pixel[])
{
	u8 *y_plane;
	u8 *uv_plane;

	packed_pixels_addr_1x1(plane->frame_info, x_start, y_start, 0,
			       &y_plane);
	packed_pixels_addr_1x1(plane->frame_info,
			       x_start / plane->frame_info->fb->format->hsub,
			       y_start / plane->frame_info->fb->format->vsub, 1,
			       &uv_plane);
	int step_y = get_block_step_bytes(plane->frame_info->fb, direction, 0);
	int step_uv = get_block_step_bytes(plane->frame_info->fb, direction, 1);
	int subsampling = get_subsampling(plane->frame_info->fb->format, direction);
	int subsampling_offset = get_subsampling_offset(direction, x_start, y_start);
	const struct conversion_matrix *conversion_matrix = &plane->conversion_matrix;

	for (int i = 0; i < count; i++) {
		*out_pixel = argb_u16_from_yuv888(y_plane[0], uv_plane[0], uv_plane[1],
						  conversion_matrix);
		out_pixel += 1;
		y_plane += step_y;
		if ((i + subsampling_offset + 1) % subsampling == 0)
			uv_plane += step_uv;
	}
}

/*
 * This callback can be used for YUV format where each color component is
 * stored in a different plane (often called planar formats). It will
 * correctly handle subsampling as described in the drm_format_info of the plane.
 *
 * The conversion matrix stored in the @plane is used to:
 * - Apply the correct color range and encoding
 * - Convert YUV and YVU with the same function (a column swap is needed when setting up
 * plane->conversion_matrix)
 */
static void planar_yuv_read_line(const struct vkms_plane_state *plane, int x_start,
				 int y_start, enum pixel_read_direction direction, int count,
				 struct pixel_argb_u16 out_pixel[])
{
	u8 *y_plane;
	u8 *channel_1_plane;
	u8 *channel_2_plane;

	packed_pixels_addr_1x1(plane->frame_info, x_start, y_start, 0,
			       &y_plane);
	packed_pixels_addr_1x1(plane->frame_info,
			       x_start / plane->frame_info->fb->format->hsub,
			       y_start / plane->frame_info->fb->format->vsub, 1,
			       &channel_1_plane);
	packed_pixels_addr_1x1(plane->frame_info,
			       x_start / plane->frame_info->fb->format->hsub,
			       y_start / plane->frame_info->fb->format->vsub, 2,
			       &channel_2_plane);
	int step_y = get_block_step_bytes(plane->frame_info->fb, direction, 0);
	int step_channel_1 = get_block_step_bytes(plane->frame_info->fb, direction, 1);
	int step_channel_2 = get_block_step_bytes(plane->frame_info->fb, direction, 2);
	int subsampling = get_subsampling(plane->frame_info->fb->format, direction);
	int subsampling_offset = get_subsampling_offset(direction, x_start, y_start);
	const struct conversion_matrix *conversion_matrix = &plane->conversion_matrix;

	for (int i = 0; i < count; i++) {
		*out_pixel = argb_u16_from_yuv888(*y_plane, *channel_1_plane, *channel_2_plane,
						  conversion_matrix);
		out_pixel += 1;
		y_plane += step_y;
		if ((i + subsampling_offset + 1) % subsampling == 0) {
			channel_1_plane += step_channel_1;
			channel_2_plane += step_channel_2;
		}
	}
}

/*
 * The following functions take one &struct pixel_argb_u16 and convert it to a specific format.
 * The result is stored in @out_pixel.
 *
 * They are used in vkms_writeback_row() to convert and store a pixel from the src_buffer to
 * the writeback buffer.
 */
static void argb_u16_to_ARGB8888(u8 *out_pixel, const struct pixel_argb_u16 *in_pixel)
{
	/*
	 * This sequence below is important because the format's byte order is
	 * in little-endian. In the case of the ARGB8888 the memory is
	 * organized this way:
	 *
	 * | Addr     | = blue channel
	 * | Addr + 1 | = green channel
	 * | Addr + 2 | = Red channel
	 * | Addr + 3 | = Alpha channel
	 */
	out_pixel[3] = DIV_ROUND_CLOSEST(in_pixel->a, 257);
	out_pixel[2] = DIV_ROUND_CLOSEST(in_pixel->r, 257);
	out_pixel[1] = DIV_ROUND_CLOSEST(in_pixel->g, 257);
	out_pixel[0] = DIV_ROUND_CLOSEST(in_pixel->b, 257);
}

static void argb_u16_to_XRGB8888(u8 *out_pixel, const struct pixel_argb_u16 *in_pixel)
{
	out_pixel[3] = 0xff;
	out_pixel[2] = DIV_ROUND_CLOSEST(in_pixel->r, 257);
	out_pixel[1] = DIV_ROUND_CLOSEST(in_pixel->g, 257);
	out_pixel[0] = DIV_ROUND_CLOSEST(in_pixel->b, 257);
}

static void argb_u16_to_ABGR8888(u8 *out_pixel, const struct pixel_argb_u16 *in_pixel)
{
	out_pixel[3] = DIV_ROUND_CLOSEST(in_pixel->a, 257);
	out_pixel[2] = DIV_ROUND_CLOSEST(in_pixel->b, 257);
	out_pixel[1] = DIV_ROUND_CLOSEST(in_pixel->g, 257);
	out_pixel[0] = DIV_ROUND_CLOSEST(in_pixel->r, 257);
}

static void argb_u16_to_ARGB16161616(u8 *out_pixel, const struct pixel_argb_u16 *in_pixel)
{
	__le16 *pixel = (__le16 *)out_pixel;

	pixel[3] = cpu_to_le16(in_pixel->a);
	pixel[2] = cpu_to_le16(in_pixel->r);
	pixel[1] = cpu_to_le16(in_pixel->g);
	pixel[0] = cpu_to_le16(in_pixel->b);
}

static void argb_u16_to_XRGB16161616(u8 *out_pixel, const struct pixel_argb_u16 *in_pixel)
{
	__le16 *pixel = (__le16 *)out_pixel;

	pixel[3] = cpu_to_le16(0xffff);
	pixel[2] = cpu_to_le16(in_pixel->r);
	pixel[1] = cpu_to_le16(in_pixel->g);
	pixel[0] = cpu_to_le16(in_pixel->b);
}

static void argb_u16_to_RGB565(u8 *out_pixel, const struct pixel_argb_u16 *in_pixel)
{
	__le16 *pixel = (__le16 *)out_pixel;

	s64 fp_rb_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(31));
	s64 fp_g_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(63));

	s64 fp_r = drm_int2fixp(in_pixel->r);
	s64 fp_g = drm_int2fixp(in_pixel->g);
	s64 fp_b = drm_int2fixp(in_pixel->b);

	u16 r = drm_fixp2int(drm_fixp_div(fp_r, fp_rb_ratio));
	u16 g = drm_fixp2int(drm_fixp_div(fp_g, fp_g_ratio));
	u16 b = drm_fixp2int(drm_fixp_div(fp_b, fp_rb_ratio));

	*pixel = cpu_to_le16(r << 11 | g << 5 | b);
}

/**
 * vkms_writeback_row() - Generic loop for all supported writeback format. It is executed just
 * after the blending to write a line in the writeback buffer.
 *
 * @wb: Job where to insert the final image
 * @src_buffer: Line to write
 * @y: Row to write in the writeback buffer
 */
void vkms_writeback_row(struct vkms_writeback_job *wb,
			const struct line_buffer *src_buffer, int y)
{
	struct vkms_frame_info *frame_info = &wb->wb_frame_info;
	int x_dst = frame_info->dst.x1;
	u8 *dst_pixels;
	int rem_x, rem_y;

	packed_pixels_addr(frame_info, x_dst, y, 0, &dst_pixels, &rem_x, &rem_y);
	struct pixel_argb_u16 *in_pixels = src_buffer->pixels;
	int x_limit = min_t(size_t, drm_rect_width(&frame_info->dst), src_buffer->n_pixels);

	for (size_t x = 0; x < x_limit; x++, dst_pixels += frame_info->fb->format->cpp[0])
		wb->pixel_write(dst_pixels, &in_pixels[x]);
}

/**
 * get_pixel_read_line_function() - Retrieve the correct read_line function for a specific
 * format. The returned pointer is NULL for unsupported pixel formats. The caller must ensure that
 * the pointer is valid before using it in a vkms_plane_state.
 *
 * @format: DRM_FORMAT_* value for which to obtain a conversion function (see [drm_fourcc.h])
 */
pixel_read_line_t get_pixel_read_line_function(u32 format)
{
	switch (format) {
	case DRM_FORMAT_ARGB8888:
		return &ARGB8888_read_line;
	case DRM_FORMAT_XRGB8888:
		return &XRGB8888_read_line;
	case DRM_FORMAT_ABGR8888:
		return &ABGR8888_read_line;
	case DRM_FORMAT_ARGB16161616:
		return &ARGB16161616_read_line;
	case DRM_FORMAT_XRGB16161616:
		return &XRGB16161616_read_line;
	case DRM_FORMAT_RGB565:
		return &RGB565_read_line;
	case DRM_FORMAT_NV12:
	case DRM_FORMAT_NV16:
	case DRM_FORMAT_NV24:
	case DRM_FORMAT_NV21:
	case DRM_FORMAT_NV61:
	case DRM_FORMAT_NV42:
		return &semi_planar_yuv_read_line;
	case DRM_FORMAT_YUV420:
	case DRM_FORMAT_YUV422:
	case DRM_FORMAT_YUV444:
	case DRM_FORMAT_YVU420:
	case DRM_FORMAT_YVU422:
	case DRM_FORMAT_YVU444:
		return &planar_yuv_read_line;
	case DRM_FORMAT_R1:
		return &R1_read_line;
	case DRM_FORMAT_R2:
		return &R2_read_line;
	case DRM_FORMAT_R4:
		return &R4_read_line;
	case DRM_FORMAT_R8:
		return &R8_read_line;
	default:
		/*
		 * This is a bug in vkms_plane_atomic_check(). All the supported
		 * format must:
		 * - Be listed in vkms_formats in vkms_plane.c
		 * - Have a pixel_read callback defined here
		 */
		pr_err("Pixel format %p4cc is not supported by VKMS planes. This is a kernel bug, atomic check must forbid this configuration.\n",
		       &format);
		BUG();
	}
}

/*
 * Those matrices were generated using the colour python framework
 *
 * Below are the function calls used to generate each matrix, go to
 * https://colour.readthedocs.io/en/develop/generated/colour.matrix_YCbCr.html
 * for more info:
 *
 * numpy.around(colour.matrix_YCbCr(K=colour.WEIGHTS_YCBCR["ITU-R BT.601"],
 *                                  is_legal = False,
 *                                  bits = 8) * 2**32).astype(int)
 */
static const struct conversion_matrix no_operation = {
	.matrix = {
		{ 4294967296, 0,          0, },
		{ 0,          4294967296, 0, },
		{ 0,          0,          4294967296, },
	},
	.y_offset = 0,
};

static const struct conversion_matrix yuv_bt601_full = {
	.matrix = {
		{ 4294967296, 0,           6021544149 },
		{ 4294967296, -1478054095, -3067191994 },
		{ 4294967296, 7610682049,  0 },
	},
	.y_offset = 0,
};

/*
 * numpy.around(colour.matrix_YCbCr(K=colour.WEIGHTS_YCBCR["ITU-R BT.601"],
 *                                  is_legal = True,
 *                                  bits = 8) * 2**32).astype(int)
 */
static const struct conversion_matrix yuv_bt601_limited = {
	.matrix = {
		{ 5020601039, 0,           6881764740 },
		{ 5020601039, -1689204679, -3505362278 },
		{ 5020601039, 8697922339,  0 },
	},
	.y_offset = 16,
};

/*
 * numpy.around(colour.matrix_YCbCr(K=colour.WEIGHTS_YCBCR["ITU-R BT.709"],
 *                                  is_legal = False,
 *                                  bits = 8) * 2**32).astype(int)
 */
static const struct conversion_matrix yuv_bt709_full = {
	.matrix = {
		{ 4294967296, 0,          6763714498 },
		{ 4294967296, -804551626, -2010578443 },
		{ 4294967296, 7969741314, 0 },
	},
	.y_offset = 0,
};

/*
 * numpy.around(colour.matrix_YCbCr(K=colour.WEIGHTS_YCBCR["ITU-R BT.709"],
 *                                  is_legal = True,
 *                                  bits = 8) * 2**32).astype(int)
 */
static const struct conversion_matrix yuv_bt709_limited = {
	.matrix = {
		{ 5020601039, 0,          7729959424 },
		{ 5020601039, -919487572, -2297803934 },
		{ 5020601039, 9108275786, 0 },
	},
	.y_offset = 16,
};

/*
 * numpy.around(colour.matrix_YCbCr(K=colour.WEIGHTS_YCBCR["ITU-R BT.2020"],
 *                                  is_legal = False,
 *                                  bits = 8) * 2**32).astype(int)
 */
static const struct conversion_matrix yuv_bt2020_full = {
	.matrix = {
		{ 4294967296, 0,          6333358775 },
		{ 4294967296, -706750298, -2453942994 },
		{ 4294967296, 8080551471, 0 },
	},
	.y_offset = 0,
};

/*
 * numpy.around(colour.matrix_YCbCr(K=colour.WEIGHTS_YCBCR["ITU-R BT.2020"],
 *                                  is_legal = True,
 *                                  bits = 8) * 2**32).astype(int)
 */
static const struct conversion_matrix yuv_bt2020_limited = {
	.matrix = {
		{ 5020601039, 0,          7238124312 },
		{ 5020601039, -807714626, -2804506279 },
		{ 5020601039, 9234915964, 0 },
	},
	.y_offset = 16,
};

/**
 * swap_uv_columns() - Swap u and v column of a given matrix
 *
 * @matrix: Matrix in which column are swapped
 */
static void swap_uv_columns(struct conversion_matrix *matrix)
{
	swap(matrix->matrix[0][2], matrix->matrix[0][1]);
	swap(matrix->matrix[1][2], matrix->matrix[1][1]);
	swap(matrix->matrix[2][2], matrix->matrix[2][1]);
}

/**
 * get_conversion_matrix_to_argb_u16() - Retrieve the correct yuv to rgb conversion matrix for a
 * given encoding and range.
 *
 * @format: DRM_FORMAT_* value for which to obtain a conversion function (see [drm_fourcc.h])
 * @encoding: DRM_COLOR_* value for which to obtain a conversion matrix
 * @range: DRM_COLOR_*_RANGE value for which to obtain a conversion matrix
 * @matrix: Pointer to store the value into
 */
void get_conversion_matrix_to_argb_u16(u32 format,
				       enum drm_color_encoding encoding,
				       enum drm_color_range range,
				       struct conversion_matrix *matrix)
{
	const struct conversion_matrix *matrix_to_copy;
	bool limited_range;

	switch (range) {
	case DRM_COLOR_YCBCR_LIMITED_RANGE:
		limited_range = true;
		break;
	case DRM_COLOR_YCBCR_FULL_RANGE:
		limited_range = false;
		break;
	case DRM_COLOR_RANGE_MAX:
		limited_range = false;
		WARN_ONCE(true, "The requested range is not supported.");
		break;
	}

	switch (encoding) {
	case DRM_COLOR_YCBCR_BT601:
		matrix_to_copy = limited_range ? &yuv_bt601_limited :
						 &yuv_bt601_full;
		break;
	case DRM_COLOR_YCBCR_BT709:
		matrix_to_copy = limited_range ? &yuv_bt709_limited :
						 &yuv_bt709_full;
		break;
	case DRM_COLOR_YCBCR_BT2020:
		matrix_to_copy = limited_range ? &yuv_bt2020_limited :
						 &yuv_bt2020_full;
		break;
	case DRM_COLOR_ENCODING_MAX:
		matrix_to_copy = &no_operation;
		WARN_ONCE(true, "The requested encoding is not supported.");
		break;
	}

	memcpy(matrix, matrix_to_copy, sizeof(*matrix_to_copy));

	switch (format) {
	case DRM_FORMAT_YVU420:
	case DRM_FORMAT_YVU422:
	case DRM_FORMAT_YVU444:
	case DRM_FORMAT_NV21:
	case DRM_FORMAT_NV61:
	case DRM_FORMAT_NV42:
		swap_uv_columns(matrix);
		break;
	default:
		break;
	}
}
EXPORT_SYMBOL(get_conversion_matrix_to_argb_u16);

/**
 * get_pixel_write_function() - Retrieve the correct write_pixel function for a specific format.
 * The returned pointer is NULL for unsupported pixel formats. The caller must ensure that the
 * pointer is valid before using it in a vkms_writeback_job.
 *
 * @format: DRM_FORMAT_* value for which to obtain a conversion function (see [drm_fourcc.h])
 */
pixel_write_t get_pixel_write_function(u32 format)
{
	switch (format) {
	case DRM_FORMAT_ARGB8888:
		return &argb_u16_to_ARGB8888;
	case DRM_FORMAT_XRGB8888:
		return &argb_u16_to_XRGB8888;
	case DRM_FORMAT_ABGR8888:
		return &argb_u16_to_ABGR8888;
	case DRM_FORMAT_ARGB16161616:
		return &argb_u16_to_ARGB16161616;
	case DRM_FORMAT_XRGB16161616:
		return &argb_u16_to_XRGB16161616;
	case DRM_FORMAT_RGB565:
		return &argb_u16_to_RGB565;
	default:
		/*
		 * This is a bug in vkms_writeback_atomic_check. All the supported
		 * format must:
		 * - Be listed in vkms_wb_formats in vkms_writeback.c
		 * - Have a pixel_write callback defined here
		 */
		pr_err("Pixel format %p4cc is not supported by VKMS writeback. This is a kernel bug, atomic check must forbid this configuration.\n",
		       &format);
		BUG();
	}
}