summaryrefslogtreecommitdiff
path: root/drivers/gpu/nova-core/firmware.rs
blob: 2931912ddba0ea1fe6d027ccec70b39cdb40344a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// SPDX-License-Identifier: GPL-2.0

//! Contains structures and functions dedicated to the parsing, building and patching of firmwares
//! to be loaded into a given execution unit.

use core::marker::PhantomData;

use kernel::device;
use kernel::firmware;
use kernel::prelude::*;
use kernel::str::CString;

use crate::dma::DmaObject;
use crate::falcon::FalconFirmware;
use crate::gpu;
use crate::gpu::Chipset;

pub(crate) mod fwsec;

pub(crate) const FIRMWARE_VERSION: &str = "535.113.01";

/// Structure encapsulating the firmware blobs required for the GPU to operate.
#[expect(dead_code)]
pub(crate) struct Firmware {
    booter_load: firmware::Firmware,
    booter_unload: firmware::Firmware,
    bootloader: firmware::Firmware,
    gsp: firmware::Firmware,
}

impl Firmware {
    pub(crate) fn new(dev: &device::Device, chipset: Chipset, ver: &str) -> Result<Firmware> {
        let mut chip_name = CString::try_from_fmt(fmt!("{chipset}"))?;
        chip_name.make_ascii_lowercase();
        let chip_name = &*chip_name;

        let request = |name_| {
            CString::try_from_fmt(fmt!("nvidia/{chip_name}/gsp/{name_}-{ver}.bin"))
                .and_then(|path| firmware::Firmware::request(&path, dev))
        };

        Ok(Firmware {
            booter_load: request("booter_load")?,
            booter_unload: request("booter_unload")?,
            bootloader: request("bootloader")?,
            gsp: request("gsp")?,
        })
    }
}

/// Structure used to describe some firmwares, notably FWSEC-FRTS.
#[repr(C)]
#[derive(Debug, Clone)]
pub(crate) struct FalconUCodeDescV3 {
    /// Header defined by `NV_BIT_FALCON_UCODE_DESC_HEADER_VDESC*` in OpenRM.
    hdr: u32,
    /// Stored size of the ucode after the header.
    stored_size: u32,
    /// Offset in `DMEM` at which the signature is expected to be found.
    pub(crate) pkc_data_offset: u32,
    /// Offset after the code segment at which the app headers are located.
    pub(crate) interface_offset: u32,
    /// Base address at which to load the code segment into `IMEM`.
    pub(crate) imem_phys_base: u32,
    /// Size in bytes of the code to copy into `IMEM`.
    pub(crate) imem_load_size: u32,
    /// Virtual `IMEM` address (i.e. `tag`) at which the code should start.
    pub(crate) imem_virt_base: u32,
    /// Base address at which to load the data segment into `DMEM`.
    pub(crate) dmem_phys_base: u32,
    /// Size in bytes of the data to copy into `DMEM`.
    pub(crate) dmem_load_size: u32,
    /// Mask of the falcon engines on which this firmware can run.
    pub(crate) engine_id_mask: u16,
    /// ID of the ucode used to infer a fuse register to validate the signature.
    pub(crate) ucode_id: u8,
    /// Number of signatures in this firmware.
    pub(crate) signature_count: u8,
    /// Versions of the signatures, used to infer a valid signature to use.
    pub(crate) signature_versions: u16,
    _reserved: u16,
}

impl FalconUCodeDescV3 {
    /// Returns the size in bytes of the header.
    pub(crate) fn size(&self) -> usize {
        const HDR_SIZE_SHIFT: u32 = 16;
        const HDR_SIZE_MASK: u32 = 0xffff0000;

        ((self.hdr & HDR_SIZE_MASK) >> HDR_SIZE_SHIFT) as usize
    }
}

/// Trait implemented by types defining the signed state of a firmware.
trait SignedState {}

/// Type indicating that the firmware must be signed before it can be used.
struct Unsigned;
impl SignedState for Unsigned {}

/// Type indicating that the firmware is signed and ready to be loaded.
struct Signed;
impl SignedState for Signed {}

/// A [`DmaObject`] containing a specific microcode ready to be loaded into a falcon.
///
/// This is module-local and meant for sub-modules to use internally.
///
/// After construction, a firmware is [`Unsigned`], and must generally be patched with a signature
/// before it can be loaded (with an exception for development hardware). The
/// [`Self::patch_signature`] and [`Self::no_patch_signature`] methods are used to transition the
/// firmware to its [`Signed`] state.
struct FirmwareDmaObject<F: FalconFirmware, S: SignedState>(DmaObject, PhantomData<(F, S)>);

/// Trait for signatures to be patched directly into a given firmware.
///
/// This is module-local and meant for sub-modules to use internally.
trait FirmwareSignature<F: FalconFirmware>: AsRef<[u8]> {}

impl<F: FalconFirmware> FirmwareDmaObject<F, Unsigned> {
    /// Patches the firmware at offset `sig_base_img` with `signature`.
    fn patch_signature<S: FirmwareSignature<F>>(
        mut self,
        signature: &S,
        sig_base_img: usize,
    ) -> Result<FirmwareDmaObject<F, Signed>> {
        let signature_bytes = signature.as_ref();
        if sig_base_img + signature_bytes.len() > self.0.size() {
            return Err(EINVAL);
        }

        // SAFETY: We are the only user of this object, so there cannot be any race.
        let dst = unsafe { self.0.start_ptr_mut().add(sig_base_img) };

        // SAFETY: `signature` and `dst` are valid, properly aligned, and do not overlap.
        unsafe {
            core::ptr::copy_nonoverlapping(signature_bytes.as_ptr(), dst, signature_bytes.len())
        };

        Ok(FirmwareDmaObject(self.0, PhantomData))
    }

    /// Mark the firmware as signed without patching it.
    ///
    /// This method is used to explicitly confirm that we do not need to sign the firmware, while
    /// allowing us to continue as if it was. This is typically only needed for development
    /// hardware.
    fn no_patch_signature(self) -> FirmwareDmaObject<F, Signed> {
        FirmwareDmaObject(self.0, PhantomData)
    }
}

pub(crate) struct ModInfoBuilder<const N: usize>(firmware::ModInfoBuilder<N>);

impl<const N: usize> ModInfoBuilder<N> {
    const fn make_entry_file(self, chipset: &str, fw: &str) -> Self {
        ModInfoBuilder(
            self.0
                .new_entry()
                .push("nvidia/")
                .push(chipset)
                .push("/gsp/")
                .push(fw)
                .push("-")
                .push(FIRMWARE_VERSION)
                .push(".bin"),
        )
    }

    const fn make_entry_chipset(self, chipset: &str) -> Self {
        self.make_entry_file(chipset, "booter_load")
            .make_entry_file(chipset, "booter_unload")
            .make_entry_file(chipset, "bootloader")
            .make_entry_file(chipset, "gsp")
    }

    pub(crate) const fn create(
        module_name: &'static kernel::str::CStr,
    ) -> firmware::ModInfoBuilder<N> {
        let mut this = Self(firmware::ModInfoBuilder::new(module_name));
        let mut i = 0;

        while i < gpu::Chipset::NAMES.len() {
            this = this.make_entry_chipset(gpu::Chipset::NAMES[i]);
            i += 1;
        }

        this.0
    }
}