1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
/*
* Copyright (C) 2024-2025 Intel Corporation
*/
#include <net/gso.h>
#include <linux/ieee80211.h>
#include <net/ip.h>
#include "iwl-drv.h"
#include "iwl-utils.h"
#ifdef CONFIG_INET
int iwl_tx_tso_segment(struct sk_buff *skb, unsigned int num_subframes,
netdev_features_t netdev_flags,
struct sk_buff_head *mpdus_skbs)
{
struct sk_buff *tmp, *next;
struct ieee80211_hdr *hdr = (void *)skb->data;
char cb[sizeof(skb->cb)];
u16 i = 0;
unsigned int tcp_payload_len;
unsigned int mss = skb_shinfo(skb)->gso_size;
bool ipv4 = (skb->protocol == htons(ETH_P_IP));
bool qos = ieee80211_is_data_qos(hdr->frame_control);
u16 ip_base_id = ipv4 ? ntohs(ip_hdr(skb)->id) : 0;
skb_shinfo(skb)->gso_size = num_subframes * mss;
memcpy(cb, skb->cb, sizeof(cb));
next = skb_gso_segment(skb, netdev_flags);
skb_shinfo(skb)->gso_size = mss;
skb_shinfo(skb)->gso_type = ipv4 ? SKB_GSO_TCPV4 : SKB_GSO_TCPV6;
if (IS_ERR(next) && PTR_ERR(next) == -ENOMEM)
return -ENOMEM;
if (WARN_ONCE(IS_ERR(next),
"skb_gso_segment error: %d\n", (int)PTR_ERR(next)))
return PTR_ERR(next);
if (next)
consume_skb(skb);
skb_list_walk_safe(next, tmp, next) {
memcpy(tmp->cb, cb, sizeof(tmp->cb));
/*
* Compute the length of all the data added for the A-MSDU.
* This will be used to compute the length to write in the TX
* command. We have: SNAP + IP + TCP for n -1 subframes and
* ETH header for n subframes.
*/
tcp_payload_len = skb_tail_pointer(tmp) -
skb_transport_header(tmp) -
tcp_hdrlen(tmp) + tmp->data_len;
if (ipv4)
ip_hdr(tmp)->id = htons(ip_base_id + i * num_subframes);
if (tcp_payload_len > mss) {
skb_shinfo(tmp)->gso_size = mss;
skb_shinfo(tmp)->gso_type = ipv4 ? SKB_GSO_TCPV4 :
SKB_GSO_TCPV6;
} else {
if (qos) {
u8 *qc;
if (ipv4)
ip_send_check(ip_hdr(tmp));
qc = ieee80211_get_qos_ctl((void *)tmp->data);
*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
}
skb_shinfo(tmp)->gso_size = 0;
}
skb_mark_not_on_list(tmp);
__skb_queue_tail(mpdus_skbs, tmp);
i++;
}
return 0;
}
IWL_EXPORT_SYMBOL(iwl_tx_tso_segment);
#endif /* CONFIG_INET */
static u32 iwl_div_by_db(u32 value, u8 db)
{
/*
* 2^32 * 10**(i / 10) for i = [1, 10], skipping 0 and simply stopping
* at 10 dB and looping instead of using a much larger table.
*
* Using 64 bit math is overkill, but means the helper does not require
* a limit on the input range.
*/
static const u32 db_to_val[] = {
0xcb59185e, 0xa1866ba8, 0x804dce7a, 0x65ea59fe, 0x50f44d89,
0x404de61f, 0x331426af, 0x2892c18b, 0x203a7e5b, 0x1999999a,
};
while (value && db > 0) {
u8 change = min_t(u8, db, ARRAY_SIZE(db_to_val));
value = (((u64)value) * db_to_val[change - 1]) >> 32;
db -= change;
}
return value;
}
s8 iwl_average_neg_dbm(const u8 *neg_dbm_values, u8 len)
{
int average_magnitude;
u32 average_factor;
int sum_magnitude = -128;
u32 sum_factor = 0;
int i, count = 0;
/*
* To properly average the decibel values (signal values given in dBm)
* we need to do the math in linear space. Doing a linear average of
* dB (dBm) values is a bit annoying though due to the large range of
* at least -10 to -110 dBm that will not fit into a 32 bit integer.
*
* A 64 bit integer should be sufficient, but then we still have the
* problem that there are no directly usable utility functions
* available.
*
* So, lets not deal with that and instead do much of the calculation
* with a 16.16 fixed point integer along with a base in dBm. 16.16 bit
* gives us plenty of head-room for adding up a few values and even
* doing some math on it. And the tail should be accurate enough too
* (1/2^16 is somewhere around -48 dB, so effectively zero).
*
* i.e. the real value of sum is:
* sum = sum_factor / 2^16 * 10^(sum_magnitude / 10) mW
*
* However, that does mean we need to be able to bring two values to
* a common base, so we need a helper for that.
*
* Note that this function takes an input with unsigned negative dBm
* values but returns a signed dBm (i.e. a negative value).
*/
for (i = 0; i < len; i++) {
int val_magnitude;
u32 val_factor;
/* Assume invalid */
if (neg_dbm_values[i] == 0xff)
continue;
val_factor = 0x10000;
val_magnitude = -neg_dbm_values[i];
if (val_magnitude <= sum_magnitude) {
u8 div_db = sum_magnitude - val_magnitude;
val_factor = iwl_div_by_db(val_factor, div_db);
val_magnitude = sum_magnitude;
} else {
u8 div_db = val_magnitude - sum_magnitude;
sum_factor = iwl_div_by_db(sum_factor, div_db);
sum_magnitude = val_magnitude;
}
sum_factor += val_factor;
count++;
}
/* No valid noise measurement, return a very high noise level */
if (count == 0)
return 0;
average_magnitude = sum_magnitude;
average_factor = sum_factor / count;
/*
* average_factor will be a number smaller than 1.0 (0x10000) at this
* point. What we need to do now is to adjust average_magnitude so that
* average_factor is between -0.5 dB and 0.5 dB.
*
* Just do -1 dB steps and find the point where
* -0.5 dB * -i dB = 0x10000 * 10^(-0.5/10) / i dB
* = div_by_db(0xe429, i)
* is smaller than average_factor.
*/
for (i = 0; average_factor < iwl_div_by_db(0xe429, i); i++) {
/* nothing */
}
return clamp(average_magnitude - i, -128, 0);
}
IWL_EXPORT_SYMBOL(iwl_average_neg_dbm);
|