1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
|
// SPDX-License-Identifier: GPL-2.0+
/*
* APM X-Gene MSI Driver
*
* Copyright (c) 2014, Applied Micro Circuits Corporation
* Author: Tanmay Inamdar <tinamdar@apm.com>
* Duc Dang <dhdang@apm.com>
*/
#include <linux/bitfield.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqchip/irq-msi-lib.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/of_pci.h>
#define MSI_IR0 0x000000
#define MSI_INT0 0x800000
#define IDX_PER_GROUP 8
#define IRQS_PER_IDX 16
#define NR_HW_IRQS 16
#define NR_MSI_BITS (IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS)
#define NR_MSI_VEC (NR_MSI_BITS / num_possible_cpus())
#define MSI_GROUP_MASK GENMASK(22, 19)
#define MSI_INDEX_MASK GENMASK(18, 16)
#define MSI_INTR_MASK GENMASK(19, 16)
#define MSInRx_HWIRQ_MASK GENMASK(6, 4)
#define DATA_HWIRQ_MASK GENMASK(3, 0)
struct xgene_msi {
struct irq_domain *inner_domain;
u64 msi_addr;
void __iomem *msi_regs;
unsigned long *bitmap;
struct mutex bitmap_lock;
unsigned int gic_irq[NR_HW_IRQS];
};
/* Global data */
static struct xgene_msi *xgene_msi_ctrl;
/*
* X-Gene v1 has 16 frames of MSI termination registers MSInIRx, where n is
* frame number (0..15), x is index of registers in each frame (0..7). Each
* 32b register is at the beginning of a 64kB region, each frame occupying
* 512kB (and the whole thing 8MB of PA space).
*
* Each register supports 16 MSI vectors (0..15) to generate interrupts. A
* write to the MSInIRx from the PCI side generates an interrupt. A read
* from the MSInRx on the CPU side returns a bitmap of the pending MSIs in
* the lower 16 bits. A side effect of this read is that all pending
* interrupts are acknowledged and cleared).
*
* Additionally, each MSI termination frame has 1 MSIINTn register (n is
* 0..15) to indicate the MSI pending status caused by any of its 8
* termination registers, reported as a bitmap in the lower 8 bits. Each 32b
* register is at the beginning of a 64kB region (and overall occupying an
* extra 1MB).
*
* There is one GIC IRQ assigned for each MSI termination frame, 16 in
* total.
*
* The register layout is as follows:
* MSI0IR0 base_addr
* MSI0IR1 base_addr + 0x10000
* ... ...
* MSI0IR6 base_addr + 0x60000
* MSI0IR7 base_addr + 0x70000
* MSI1IR0 base_addr + 0x80000
* MSI1IR1 base_addr + 0x90000
* ... ...
* MSI1IR7 base_addr + 0xF0000
* MSI2IR0 base_addr + 0x100000
* ... ...
* MSIFIR0 base_addr + 0x780000
* MSIFIR1 base_addr + 0x790000
* ... ...
* MSIFIR7 base_addr + 0x7F0000
* MSIINT0 base_addr + 0x800000
* MSIINT1 base_addr + 0x810000
* ... ...
* MSIINTF base_addr + 0x8F0000
*/
/* MSInIRx read helper */
static u32 xgene_msi_ir_read(struct xgene_msi *msi, u32 msi_grp, u32 msir_idx)
{
return readl_relaxed(msi->msi_regs + MSI_IR0 +
(FIELD_PREP(MSI_GROUP_MASK, msi_grp) |
FIELD_PREP(MSI_INDEX_MASK, msir_idx)));
}
/* MSIINTn read helper */
static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp)
{
return readl_relaxed(msi->msi_regs + MSI_INT0 +
FIELD_PREP(MSI_INTR_MASK, msi_grp));
}
/*
* In order to allow an MSI to be moved from one CPU to another without
* having to repaint both the address and the data (which cannot be done
* atomically), we statically partitions the MSI frames between CPUs. Given
* that XGene-1 has 8 CPUs, each CPU gets two frames assigned to it
*
* We adopt the convention that when an MSI is moved, it is configured to
* target the same register number in the congruent frame assigned to the
* new target CPU. This reserves a given MSI across all CPUs, and reduces
* the MSI capacity from 2048 to 256.
*
* Effectively, this amounts to:
* - hwirq[7]::cpu[2:0] is the target frame number (n in MSInIRx)
* - hwirq[6:4] is the register index in any given frame (x in MSInIRx)
* - hwirq[3:0] is the MSI data
*/
static irq_hw_number_t compute_hwirq(u8 frame, u8 index, u8 data)
{
return (FIELD_PREP(BIT(7), FIELD_GET(BIT(3), frame)) |
FIELD_PREP(MSInRx_HWIRQ_MASK, index) |
FIELD_PREP(DATA_HWIRQ_MASK, data));
}
static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
struct xgene_msi *msi = irq_data_get_irq_chip_data(data);
u64 target_addr;
u32 frame, msir;
int cpu;
cpu = cpumask_first(irq_data_get_effective_affinity_mask(data));
msir = FIELD_GET(MSInRx_HWIRQ_MASK, data->hwirq);
frame = FIELD_PREP(BIT(3), FIELD_GET(BIT(7), data->hwirq)) | cpu;
target_addr = msi->msi_addr;
target_addr += (FIELD_PREP(MSI_GROUP_MASK, frame) |
FIELD_PREP(MSI_INTR_MASK, msir));
msg->address_hi = upper_32_bits(target_addr);
msg->address_lo = lower_32_bits(target_addr);
msg->data = FIELD_GET(DATA_HWIRQ_MASK, data->hwirq);
}
static int xgene_msi_set_affinity(struct irq_data *irqdata,
const struct cpumask *mask, bool force)
{
int target_cpu = cpumask_first(mask);
irq_data_update_effective_affinity(irqdata, cpumask_of(target_cpu));
/* Force the core code to regenerate the message */
return IRQ_SET_MASK_OK;
}
static struct irq_chip xgene_msi_bottom_irq_chip = {
.name = "MSI",
.irq_set_affinity = xgene_msi_set_affinity,
.irq_compose_msi_msg = xgene_compose_msi_msg,
};
static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *args)
{
struct xgene_msi *msi = domain->host_data;
irq_hw_number_t hwirq;
mutex_lock(&msi->bitmap_lock);
hwirq = find_first_zero_bit(msi->bitmap, NR_MSI_VEC);
if (hwirq < NR_MSI_VEC)
set_bit(hwirq, msi->bitmap);
mutex_unlock(&msi->bitmap_lock);
if (hwirq >= NR_MSI_VEC)
return -ENOSPC;
irq_domain_set_info(domain, virq, hwirq,
&xgene_msi_bottom_irq_chip, domain->host_data,
handle_simple_irq, NULL, NULL);
irqd_set_resend_when_in_progress(irq_get_irq_data(virq));
return 0;
}
static void xgene_irq_domain_free(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
struct xgene_msi *msi = irq_data_get_irq_chip_data(d);
mutex_lock(&msi->bitmap_lock);
clear_bit(d->hwirq, msi->bitmap);
mutex_unlock(&msi->bitmap_lock);
irq_domain_free_irqs_parent(domain, virq, nr_irqs);
}
static const struct irq_domain_ops xgene_msi_domain_ops = {
.alloc = xgene_irq_domain_alloc,
.free = xgene_irq_domain_free,
};
static const struct msi_parent_ops xgene_msi_parent_ops = {
.supported_flags = (MSI_GENERIC_FLAGS_MASK |
MSI_FLAG_PCI_MSIX),
.required_flags = (MSI_FLAG_USE_DEF_DOM_OPS |
MSI_FLAG_USE_DEF_CHIP_OPS),
.bus_select_token = DOMAIN_BUS_PCI_MSI,
.init_dev_msi_info = msi_lib_init_dev_msi_info,
};
static int xgene_allocate_domains(struct device_node *node,
struct xgene_msi *msi)
{
struct irq_domain_info info = {
.fwnode = of_fwnode_handle(node),
.ops = &xgene_msi_domain_ops,
.size = NR_MSI_VEC,
.host_data = msi,
};
msi->inner_domain = msi_create_parent_irq_domain(&info, &xgene_msi_parent_ops);
return msi->inner_domain ? 0 : -ENOMEM;
}
static int xgene_msi_init_allocator(struct device *dev)
{
xgene_msi_ctrl->bitmap = devm_bitmap_zalloc(dev, NR_MSI_VEC, GFP_KERNEL);
if (!xgene_msi_ctrl->bitmap)
return -ENOMEM;
mutex_init(&xgene_msi_ctrl->bitmap_lock);
return 0;
}
static void xgene_msi_isr(struct irq_desc *desc)
{
unsigned int *irqp = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
struct xgene_msi *xgene_msi = xgene_msi_ctrl;
unsigned long grp_pending;
int msir_idx;
u32 msi_grp;
chained_irq_enter(chip, desc);
msi_grp = irqp - xgene_msi->gic_irq;
grp_pending = xgene_msi_int_read(xgene_msi, msi_grp);
for_each_set_bit(msir_idx, &grp_pending, IDX_PER_GROUP) {
unsigned long msir;
int intr_idx;
msir = xgene_msi_ir_read(xgene_msi, msi_grp, msir_idx);
for_each_set_bit(intr_idx, &msir, IRQS_PER_IDX) {
irq_hw_number_t hwirq;
int ret;
hwirq = compute_hwirq(msi_grp, msir_idx, intr_idx);
ret = generic_handle_domain_irq(xgene_msi->inner_domain,
hwirq);
WARN_ON_ONCE(ret);
}
}
chained_irq_exit(chip, desc);
}
static void xgene_msi_remove(struct platform_device *pdev)
{
for (int i = 0; i < NR_HW_IRQS; i++) {
unsigned int irq = xgene_msi_ctrl->gic_irq[i];
if (!irq)
continue;
irq_set_chained_handler_and_data(irq, NULL, NULL);
}
if (xgene_msi_ctrl->inner_domain)
irq_domain_remove(xgene_msi_ctrl->inner_domain);
}
static int xgene_msi_handler_setup(struct platform_device *pdev)
{
struct xgene_msi *xgene_msi = xgene_msi_ctrl;
int i;
for (i = 0; i < NR_HW_IRQS; i++) {
u32 msi_val;
int irq, err;
/*
* MSInIRx registers are read-to-clear; before registering
* interrupt handlers, read all of them to clear spurious
* interrupts that may occur before the driver is probed.
*/
for (int msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++)
xgene_msi_ir_read(xgene_msi, i, msi_idx);
/* Read MSIINTn to confirm */
msi_val = xgene_msi_int_read(xgene_msi, i);
if (msi_val) {
dev_err(&pdev->dev, "Failed to clear spurious IRQ\n");
return EINVAL;
}
irq = platform_get_irq(pdev, i);
if (irq < 0)
return irq;
xgene_msi->gic_irq[i] = irq;
/*
* Statically allocate MSI GIC IRQs to each CPU core.
* With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated
* to each core.
*/
irq_set_status_flags(irq, IRQ_NO_BALANCING);
err = irq_set_affinity(irq, cpumask_of(i % num_possible_cpus()));
if (err) {
pr_err("failed to set affinity for GIC IRQ");
return err;
}
irq_set_chained_handler_and_data(irq, xgene_msi_isr,
&xgene_msi_ctrl->gic_irq[i]);
}
return 0;
}
static const struct of_device_id xgene_msi_match_table[] = {
{.compatible = "apm,xgene1-msi"},
{},
};
static int xgene_msi_probe(struct platform_device *pdev)
{
struct resource *res;
struct xgene_msi *xgene_msi;
int rc;
xgene_msi_ctrl = devm_kzalloc(&pdev->dev, sizeof(*xgene_msi_ctrl),
GFP_KERNEL);
if (!xgene_msi_ctrl)
return -ENOMEM;
xgene_msi = xgene_msi_ctrl;
xgene_msi->msi_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(xgene_msi->msi_regs)) {
rc = PTR_ERR(xgene_msi->msi_regs);
goto error;
}
xgene_msi->msi_addr = res->start;
rc = xgene_msi_init_allocator(&pdev->dev);
if (rc) {
dev_err(&pdev->dev, "Error allocating MSI bitmap\n");
goto error;
}
rc = xgene_allocate_domains(dev_of_node(&pdev->dev), xgene_msi);
if (rc) {
dev_err(&pdev->dev, "Failed to allocate MSI domain\n");
goto error;
}
rc = xgene_msi_handler_setup(pdev);
if (rc)
goto error;
dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n");
return 0;
error:
xgene_msi_remove(pdev);
return rc;
}
static struct platform_driver xgene_msi_driver = {
.driver = {
.name = "xgene-msi",
.of_match_table = xgene_msi_match_table,
},
.probe = xgene_msi_probe,
.remove = xgene_msi_remove,
};
builtin_platform_driver(xgene_msi_driver);
|