summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-amlogic-spifc-a4.c
blob: 4338d00e56a6e84f24220dd7b16769c086044070 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
// SPDX-License-Identifier: (GPL-2.0-only OR MIT)
/*
 * Copyright (C) 2025 Amlogic, Inc. All rights reserved
 *
 * Driver for the SPI Mode of Amlogic Flash Controller
 * Authors:
 *  Liang Yang <liang.yang@amlogic.com>
 *  Feng Chen <feng.chen@amlogic.com>
 *  Xianwei Zhao <xianwei.zhao@amlogic.com>
 */

#include <linux/platform_device.h>
#include <linux/clk-provider.h>
#include <linux/dma-mapping.h>
#include <linux/bitfield.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/regmap.h>
#include <linux/mtd/spinand.h>
#include <linux/spi/spi-mem.h>

#define SFC_CMD				0x00
#define SFC_CFG				0x04
#define SFC_DADR			0x08
#define SFC_IADR			0x0c
#define SFC_BUF				0x10
#define SFC_INFO			0x14
#define SFC_DC				0x18
#define SFC_ADR				0x1c
#define SFC_DL				0x20
#define SFC_DH				0x24
#define SFC_CADR			0x28
#define SFC_SADR			0x2c
#define SFC_RX_IDX			0x34
#define SFC_RX_DAT			0x38
#define SFC_SPI_CFG			0x40

/* settings in SFC_CMD  */

/* 4 bits support 4 chip select, high false, low select but spi support 2*/
#define CHIP_SELECT_MASK		GENMASK(13, 10)
#define CS_NONE				0xf
#define CS_0				0xe
#define CS_1				0xd

#define CLE				(0x5 << 14)
#define ALE				(0x6 << 14)
#define DWR				(0x4 << 14)
#define DRD				(0x8 << 14)
#define DUMMY				(0xb << 14)
#define IDLE				(0xc << 14)
#define IDLE_CYCLE_MASK			GENMASK(9, 0)
#define EXT_CYCLE_MASK			GENMASK(9, 0)

#define OP_M2N				((0 << 17) | (2 << 20))
#define OP_N2M				((1 << 17) | (2 << 20))
#define OP_STS				((3 << 17) | (2 << 20))
#define OP_ADL				((0 << 16) | (3 << 20))
#define OP_ADH				((1 << 16) | (3 << 20))
#define OP_AIL				((2 << 16) | (3 << 20))
#define OP_AIH				((3 << 16) | (3 << 20))
#define OP_ASL				((4 << 16) | (3 << 20))
#define OP_ASH				((5 << 16) | (3 << 20))
#define OP_SEED				((8 << 16) | (3 << 20))
#define SEED_MASK			GENMASK(14, 0)
#define ENABLE_RANDOM			BIT(19)

#define CMD_COMMAND(cs_sel, cmd)	(CLE | ((cs_sel) << 10) | (cmd))
#define CMD_ADDR(cs_sel, addr)		(ALE | ((cs_sel) << 10) | (addr))
#define CMD_DUMMY(cs_sel, cyc)		(DUMMY | ((cs_sel) << 10) | ((cyc) & EXT_CYCLE_MASK))
#define CMD_IDLE(cs_sel, cyc)		(IDLE | ((cs_sel) << 10) | ((cyc) & IDLE_CYCLE_MASK))
#define CMD_MEM2NAND(bch, pages)	(OP_M2N | ((bch) << 14) | (pages))
#define CMD_NAND2MEM(bch, pages)	(OP_N2M | ((bch) << 14) | (pages))
#define CMD_DATA_ADDRL(addr)		(OP_ADL | ((addr) & 0xffff))
#define CMD_DATA_ADDRH(addr)		(OP_ADH | (((addr) >> 16) & 0xffff))
#define CMD_INFO_ADDRL(addr)		(OP_AIL | ((addr) & 0xffff))
#define CMD_INFO_ADDRH(addr)		(OP_AIH | (((addr) >> 16) & 0xffff))
#define CMD_SEED(seed)			(OP_SEED | ((seed) & SEED_MASK))

#define GET_CMD_SIZE(x)			(((x) >> 22) & GENMASK(4, 0))

#define DEFAULT_PULLUP_CYCLE		2
#define CS_SETUP_CYCLE			1
#define CS_HOLD_CYCLE			2
#define DEFAULT_BUS_CYCLE		4

#define RAW_SIZE			GENMASK(13, 0)
#define RAW_SIZE_BW			14

#define DMA_ADDR_ALIGN			8

/* Bit fields in SFC_SPI_CFG */
#define SPI_MODE_EN			BIT(31)
#define RAW_EXT_SIZE			GENMASK(29, 18)
#define ADDR_LANE			GENMASK(17, 16)
#define CPOL				BIT(15)
#define CPHA				BIT(14)
#define EN_HOLD				BIT(13)
#define EN_WP				BIT(12)
#define TXADJ				GENMASK(11, 8)
#define RXADJ				GENMASK(7, 4)
#define CMD_LANE			GENMASK(3, 2)
#define DATA_LANE			GENMASK(1, 0)
#define LANE_MAX			0x3

/* raw ext size[25:14] + raw size[13:0] */
#define RAW_MAX_RW_SIZE_MASK		GENMASK(25, 0)

/* Ecc fields */
#define ECC_COMPLETE			BIT(31)
#define ECC_UNCORRECTABLE		0x3f
#define ECC_ERR_CNT(x)			(((x) >> 24) & 0x3f)
#define ECC_ZERO_CNT(x)			(((x) >> 16) & 0x3f)

#define ECC_BCH8_512			1
#define ECC_BCH8_1K			2
#define ECC_BCH8_PARITY_BYTES		14
#define ECC_BCH8_USER_BYTES		2
#define ECC_BCH8_INFO_BYTES		(ECC_BCH8_USER_BYTES + ECC_BCH8_PARITY_BYTES)
#define ECC_BCH8_STRENGTH		8
#define ECC_BCH8_DEFAULT_STEP		512
#define ECC_DEFAULT_BCH_MODE		ECC_BCH8_512
#define ECC_PER_INFO_BYTE		8
#define ECC_PATTERN			0x5a
#define ECC_BCH_MAX_SECT_SIZE		63
/* soft flags for sfc */
#define SFC_HWECC			BIT(0)
#define SFC_DATA_RANDOM			BIT(1)
#define SFC_DATA_ONLY			BIT(2)
#define SFC_OOB_ONLY			BIT(3)
#define SFC_DATA_OOB			BIT(4)
#define SFC_AUTO_OOB			BIT(5)
#define SFC_RAW_RW			BIT(6)
#define SFC_XFER_MDOE_MASK		GENMASK(6, 2)

#define SFC_DATABUF_SIZE		8192
#define SFC_INFOBUF_SIZE		256
#define SFC_BUF_SIZE			(SFC_DATABUF_SIZE + SFC_INFOBUF_SIZE)

/* !!! PCB and SPI-NAND chip limitations */
#define SFC_MAX_FREQUENCY		(250 * 1000 * 1000)
#define SFC_MIN_FREQUENCY		(4 * 1000 * 1000)
#define SFC_BUS_DEFAULT_CLK		40000000
#define SFC_MAX_CS_NUM			2

/* SPI-FLASH R/W operation cmd */
#define SPIFLASH_RD_OCTALIO		0xcb
#define SPIFLASH_RD_OCTAL		0x8b
#define SPIFLASH_RD_QUADIO		0xeb
#define SPIFLASH_RD_QUAD		0x6b
#define SPIFLASH_RD_DUALIO		0xbb
#define SPIFLASH_RD_DUAL		0x3b
#define SPIFLASH_RD_FAST		0x0b
#define SPIFLASH_RD			0x03
#define SPIFLASH_WR_OCTALIO		0xC2
#define SPIFLASH_WR_OCTAL		0x82
#define SPIFLASH_WR_QUAD		0x32
#define SPIFLASH_WR			0x02
#define SPIFLASH_UP_QUAD		0x34
#define SPIFLASH_UP			0x84

struct aml_sfc_ecc_cfg {
	u32 stepsize;
	u32 nsteps;
	u32 strength;
	u32 oobsize;
	u32 bch;
};

struct aml_ecc_stats {
	u32 corrected;
	u32 bitflips;
	u32 failed;
};

struct aml_sfc_caps {
	struct aml_sfc_ecc_cfg *ecc_caps;
	u32 num_ecc_caps;
};

struct aml_sfc {
	struct device *dev;
	struct clk *gate_clk;
	struct clk *core_clk;
	struct spi_controller *ctrl;
	struct regmap *regmap_base;
	const struct aml_sfc_caps *caps;
	struct nand_ecc_engine ecc_eng;
	struct aml_ecc_stats ecc_stats;
	dma_addr_t daddr;
	dma_addr_t iaddr;
	u32 info_bytes;
	u32 bus_rate;
	u32 flags;
	u32 rx_adj;
	u32 cs_sel;
	u8 *data_buf;
	__le64 *info_buf;
	u8 *priv;
};

#define AML_ECC_DATA(sz, s, b)	{ .stepsize = (sz), .strength = (s), .bch = (b) }

static struct aml_sfc_ecc_cfg aml_a113l2_ecc_caps[] = {
	AML_ECC_DATA(512, 8, ECC_BCH8_512),
	AML_ECC_DATA(1024, 8, ECC_BCH8_1K),
};

static const struct aml_sfc_caps aml_a113l2_sfc_caps = {
	.ecc_caps = aml_a113l2_ecc_caps,
	.num_ecc_caps = ARRAY_SIZE(aml_a113l2_ecc_caps)
};

static struct aml_sfc *nand_to_aml_sfc(struct nand_device *nand)
{
	struct nand_ecc_engine *eng = nand->ecc.engine;

	return container_of(eng, struct aml_sfc, ecc_eng);
}

static inline void *aml_sfc_to_ecc_ctx(struct aml_sfc *sfc)
{
	return sfc->priv;
}

static int aml_sfc_wait_cmd_finish(struct aml_sfc *sfc, u64 timeout_ms)
{
	u32 cmd_size = 0;
	int ret;

	/*
	 * The SPINAND flash controller employs a two-stage pipeline:
	 * 1) command prefetch; 2) command execution.
	 *
	 * All commands are stored in the FIFO, with one prefetched for execution.
	 *
	 * There are cases where the FIFO is detected as empty, yet a command may
	 * still be in execution and a prefetched command pending execution.
	 *
	 * So, send two idle commands to ensure all previous commands have
	 * been executed.
	 */
	regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, 0));
	regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, 0));

	/* Wait for the FIFO to empty. */
	ret = regmap_read_poll_timeout(sfc->regmap_base, SFC_CMD, cmd_size,
				       !GET_CMD_SIZE(cmd_size),
				       10, timeout_ms * 1000);
	if (ret)
		dev_err(sfc->dev, "wait for empty CMD FIFO time out\n");

	return ret;
}

static int aml_sfc_pre_transfer(struct aml_sfc *sfc, u32 idle_cycle, u32 cs2clk_cycle)
{
	int ret;

	ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(CS_NONE, idle_cycle));
	if (ret)
		return ret;

	return regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, cs2clk_cycle));
}

static int aml_sfc_end_transfer(struct aml_sfc *sfc, u32 clk2cs_cycle)
{
	int ret;

	ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, clk2cs_cycle));
	if (ret)
		return ret;

	return aml_sfc_wait_cmd_finish(sfc, 0);
}

static int aml_sfc_set_bus_width(struct aml_sfc *sfc, u8 buswidth, u32 mask)
{
	int i;
	u32 conf = 0;

	for (i = 0; i <= LANE_MAX; i++) {
		if (buswidth == 1 << i) {
			conf = i << __bf_shf(mask);
			return regmap_update_bits(sfc->regmap_base, SFC_SPI_CFG,
						  mask, conf);
		}
	}

	return 0;
}

static int aml_sfc_send_cmd(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
	int i, ret;
	u8 val;

	ret = aml_sfc_set_bus_width(sfc, op->cmd.buswidth, CMD_LANE);
	if (ret)
		return ret;

	for (i = 0; i < op->cmd.nbytes; i++) {
		val = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
		ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_COMMAND(sfc->cs_sel, val));
		if (ret)
			return ret;
	}

	return 0;
}

static int aml_sfc_send_addr(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
	int i, ret;
	u8 val;

	ret = aml_sfc_set_bus_width(sfc, op->addr.buswidth, ADDR_LANE);
	if (ret)
		return ret;

	for (i = 0; i < op->addr.nbytes; i++) {
		val = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;

		ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_ADDR(sfc->cs_sel, val));
		if (ret)
			return ret;
	}

	return 0;
}

static bool aml_sfc_is_xio_op(const struct spi_mem_op *op)
{
	switch (op->cmd.opcode) {
	case SPIFLASH_RD_OCTALIO:
	case SPIFLASH_RD_QUADIO:
	case SPIFLASH_RD_DUALIO:
		return true;
	default:
		break;
	}

	return false;
}

static int aml_sfc_send_cmd_addr_dummy(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
	u32 dummy_cycle, cmd;
	int ret;

	ret = aml_sfc_send_cmd(sfc, op);
	if (ret)
		return ret;

	ret = aml_sfc_send_addr(sfc, op);
	if (ret)
		return ret;

	if (op->dummy.nbytes) {
		/*  Dummy buswidth configuration is not supported */
		if (aml_sfc_is_xio_op(op))
			dummy_cycle = op->dummy.nbytes * 8 / op->data.buswidth;
		else
			dummy_cycle = op->dummy.nbytes * 8;
		cmd = CMD_DUMMY(sfc->cs_sel, dummy_cycle - 1);
		return regmap_write(sfc->regmap_base, SFC_CMD, cmd);
	}

	return 0;
}

static bool aml_sfc_is_snand_hwecc_page_op(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
	switch (op->cmd.opcode) {
	/* SPINAND read from cache cmd */
	case SPIFLASH_RD_QUADIO:
	case SPIFLASH_RD_QUAD:
	case SPIFLASH_RD_DUALIO:
	case SPIFLASH_RD_DUAL:
	case SPIFLASH_RD_FAST:
	case SPIFLASH_RD:
	/* SPINAND write to cache cmd */
	case SPIFLASH_WR_QUAD:
	case SPIFLASH_WR:
	case SPIFLASH_UP_QUAD:
	case SPIFLASH_UP:
		if (sfc->flags & SFC_HWECC)
			return true;
		else
			return false;
	default:
		break;
	}

	return false;
}

static int aml_sfc_dma_buffer_setup(struct aml_sfc *sfc, void *databuf,
				    int datalen, void *infobuf, int infolen,
				    enum dma_data_direction dir)
{
	u32 cmd = 0;
	int ret;

	sfc->daddr = dma_map_single(sfc->dev, databuf, datalen, dir);
	ret = dma_mapping_error(sfc->dev, sfc->daddr);
	if (ret) {
		dev_err(sfc->dev, "DMA mapping error\n");
		goto out_map_data;
	}

	cmd = CMD_DATA_ADDRL(sfc->daddr);
	ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
	if (ret)
		goto out_map_data;

	cmd = CMD_DATA_ADDRH(sfc->daddr);
	ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
	if (ret)
		goto out_map_data;

	if (infobuf) {
		sfc->iaddr = dma_map_single(sfc->dev, infobuf, infolen, dir);
		ret = dma_mapping_error(sfc->dev, sfc->iaddr);
		if (ret) {
			dev_err(sfc->dev, "DMA mapping error\n");
			dma_unmap_single(sfc->dev, sfc->daddr, datalen, dir);
			goto out_map_data;
		}

		sfc->info_bytes = infolen;
		cmd = CMD_INFO_ADDRL(sfc->iaddr);
		ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
		if (ret)
			goto out_map_info;

		cmd = CMD_INFO_ADDRH(sfc->iaddr);
		ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
		if (ret)
			goto out_map_info;
	}

	return 0;

out_map_info:
	dma_unmap_single(sfc->dev, sfc->iaddr, datalen, dir);
out_map_data:
	dma_unmap_single(sfc->dev, sfc->daddr, datalen, dir);

	return ret;
}

static void aml_sfc_dma_buffer_release(struct aml_sfc *sfc,
				       int datalen, int infolen,
				       enum dma_data_direction dir)
{
	dma_unmap_single(sfc->dev, sfc->daddr, datalen, dir);
	if (infolen) {
		dma_unmap_single(sfc->dev, sfc->iaddr, infolen, dir);
		sfc->info_bytes = 0;
	}
}

static bool aml_sfc_dma_buffer_is_safe(const void *buffer)
{
	if ((uintptr_t)buffer % DMA_ADDR_ALIGN)
		return false;

	if (virt_addr_valid(buffer))
		return true;

	return false;
}

static void *aml_get_dma_safe_input_buf(const struct spi_mem_op *op)
{
	if (aml_sfc_dma_buffer_is_safe(op->data.buf.in))
		return op->data.buf.in;

	return kzalloc(op->data.nbytes, GFP_KERNEL);
}

static void aml_sfc_put_dma_safe_input_buf(const struct spi_mem_op *op, void *buf)
{
	if (WARN_ON(op->data.dir != SPI_MEM_DATA_IN) || WARN_ON(!buf))
		return;

	if (buf == op->data.buf.in)
		return;

	memcpy(op->data.buf.in, buf, op->data.nbytes);
	kfree(buf);
}

static void *aml_sfc_get_dma_safe_output_buf(const struct spi_mem_op *op)
{
	if (aml_sfc_dma_buffer_is_safe(op->data.buf.out))
		return (void *)op->data.buf.out;

	return kmemdup(op->data.buf.out, op->data.nbytes, GFP_KERNEL);
}

static void aml_sfc_put_dma_safe_output_buf(const struct spi_mem_op *op, const void *buf)
{
	if (WARN_ON(op->data.dir != SPI_MEM_DATA_OUT) || WARN_ON(!buf))
		return;

	if (buf != op->data.buf.out)
		kfree(buf);
}

static u64 aml_sfc_cal_timeout_cycle(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
	u64 ms;

	/* For each byte we wait for (8 cycles / buswidth) of the SPI clock. */
	ms = 8 * MSEC_PER_SEC * op->data.nbytes / op->data.buswidth;
	do_div(ms, sfc->bus_rate / DEFAULT_BUS_CYCLE);

	/*
	 * Double the value and add a 200 ms tolerance to compensate for
	 * the impact of specific CS hold time, CS setup time sequences,
	 * controller burst gaps, and other related timing variations.
	 */
	ms += ms + 200;

	if (ms > UINT_MAX)
		ms = UINT_MAX;

	return ms;
}

static void aml_sfc_check_ecc_pages_valid(struct aml_sfc *sfc, bool raw)
{
	struct aml_sfc_ecc_cfg *ecc_cfg;
	__le64 *info;
	int ret;

	info = sfc->info_buf;
	ecc_cfg = aml_sfc_to_ecc_ctx(sfc);
	info += raw ? 0 : ecc_cfg->nsteps - 1;

	do {
		usleep_range(10, 15);
		/* info is updated by nfc dma engine*/
		smp_rmb();
		dma_sync_single_for_cpu(sfc->dev, sfc->iaddr, sfc->info_bytes,
					DMA_FROM_DEVICE);
		ret = le64_to_cpu(*info) & ECC_COMPLETE;
	} while (!ret);
}

static int aml_sfc_raw_io_op(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
	void *buf = NULL;
	int ret;
	bool is_datain = false;
	u32 cmd = 0, conf;
	u64 timeout_ms;

	if (!op->data.nbytes)
		goto end_xfer;

	conf = (op->data.nbytes >> RAW_SIZE_BW) << __bf_shf(RAW_EXT_SIZE);
	ret = regmap_update_bits(sfc->regmap_base, SFC_SPI_CFG, RAW_EXT_SIZE, conf);
	if (ret)
		goto err_out;

	if (op->data.dir == SPI_MEM_DATA_IN) {
		is_datain = true;

		buf = aml_get_dma_safe_input_buf(op);
		if (!buf) {
			ret = -ENOMEM;
			goto err_out;
		}

		cmd |= CMD_NAND2MEM(0, (op->data.nbytes & RAW_SIZE));
	} else if (op->data.dir == SPI_MEM_DATA_OUT) {
		is_datain = false;

		buf = aml_sfc_get_dma_safe_output_buf(op);
		if (!buf) {
			ret = -ENOMEM;
			goto err_out;
		}

		cmd |= CMD_MEM2NAND(0, (op->data.nbytes & RAW_SIZE));
	} else {
		goto end_xfer;
	}

	ret = aml_sfc_dma_buffer_setup(sfc, buf, op->data.nbytes,
				       is_datain ? sfc->info_buf : NULL,
				       is_datain ? ECC_PER_INFO_BYTE : 0,
				       is_datain ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
	if (ret)
		goto err_out;

	ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
	if (ret)
		goto err_out;

	timeout_ms = aml_sfc_cal_timeout_cycle(sfc, op);
	ret = aml_sfc_wait_cmd_finish(sfc, timeout_ms);
	if (ret)
		goto err_out;

	if (is_datain)
		aml_sfc_check_ecc_pages_valid(sfc, 1);

	if (op->data.dir == SPI_MEM_DATA_IN)
		aml_sfc_put_dma_safe_input_buf(op, buf);
	else if (op->data.dir == SPI_MEM_DATA_OUT)
		aml_sfc_put_dma_safe_output_buf(op, buf);

	aml_sfc_dma_buffer_release(sfc, op->data.nbytes,
				   is_datain ? ECC_PER_INFO_BYTE : 0,
				   is_datain ? DMA_FROM_DEVICE : DMA_TO_DEVICE);

end_xfer:
	return aml_sfc_end_transfer(sfc, CS_HOLD_CYCLE);

err_out:
	return ret;
}

static void aml_sfc_set_user_byte(struct aml_sfc *sfc, __le64 *info_buf, u8 *oob_buf, bool auto_oob)
{
	struct aml_sfc_ecc_cfg *ecc_cfg;
	__le64 *info;
	int i, count, step_size;

	ecc_cfg = aml_sfc_to_ecc_ctx(sfc);

	step_size = auto_oob ? ECC_BCH8_INFO_BYTES : ECC_BCH8_USER_BYTES;

	for (i = 0, count = 0; i < ecc_cfg->nsteps; i++, count += step_size) {
		info = &info_buf[i];
		*info &= cpu_to_le64(~0xffff);
		*info |= cpu_to_le64((oob_buf[count + 1] << 8) + oob_buf[count]);
	}
}

static void aml_sfc_get_user_byte(struct aml_sfc *sfc, __le64 *info_buf, u8 *oob_buf)
{
	struct aml_sfc_ecc_cfg *ecc_cfg;
	__le64 *info;
	int i, count;

	ecc_cfg = aml_sfc_to_ecc_ctx(sfc);

	for (i = 0, count = 0; i < ecc_cfg->nsteps; i++, count += ECC_BCH8_INFO_BYTES) {
		info = &info_buf[i];
		oob_buf[count] = le64_to_cpu(*info);
		oob_buf[count + 1] = le64_to_cpu(*info) >> 8;
	}
}

static int aml_sfc_check_hwecc_status(struct aml_sfc *sfc, __le64 *info_buf)
{
	struct aml_sfc_ecc_cfg *ecc_cfg;
	__le64 *info;
	u32 i, max_bitflips = 0, per_sector_bitflips = 0;

	ecc_cfg = aml_sfc_to_ecc_ctx(sfc);

	sfc->ecc_stats.failed = 0;
	sfc->ecc_stats.bitflips = 0;
	sfc->ecc_stats.corrected = 0;

	for (i = 0, info = info_buf; i < ecc_cfg->nsteps; i++, info++) {
		if (ECC_ERR_CNT(le64_to_cpu(*info)) != ECC_UNCORRECTABLE) {
			per_sector_bitflips = ECC_ERR_CNT(le64_to_cpu(*info));
			max_bitflips = max_t(u32, max_bitflips, per_sector_bitflips);
			sfc->ecc_stats.corrected += per_sector_bitflips;
			continue;
		}

		return -EBADMSG;
	}

	return max_bitflips;
}

static int aml_sfc_read_page_hwecc(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
	struct aml_sfc_ecc_cfg *ecc_cfg;
	int ret, data_len, info_len;
	u32 page_size, cmd = 0;
	u64 timeout_ms;

	ecc_cfg = aml_sfc_to_ecc_ctx(sfc);

	page_size = ecc_cfg->stepsize * ecc_cfg->nsteps;
	data_len = page_size + ecc_cfg->oobsize;
	info_len = ecc_cfg->nsteps * ECC_PER_INFO_BYTE;

	ret = aml_sfc_dma_buffer_setup(sfc, sfc->data_buf, data_len,
				       sfc->info_buf, info_len, DMA_FROM_DEVICE);
	if (ret)
		goto err_out;

	cmd |= CMD_NAND2MEM(ecc_cfg->bch, ecc_cfg->nsteps);
	ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
	if (ret)
		goto err_out;

	timeout_ms = aml_sfc_cal_timeout_cycle(sfc, op);
	ret = aml_sfc_wait_cmd_finish(sfc, timeout_ms);
	if (ret)
		goto err_out;

	aml_sfc_check_ecc_pages_valid(sfc, 0);
	aml_sfc_dma_buffer_release(sfc, data_len, info_len, DMA_FROM_DEVICE);

	/* check ecc status here */
	ret = aml_sfc_check_hwecc_status(sfc, sfc->info_buf);
	if (ret < 0)
		sfc->ecc_stats.failed++;
	else
		sfc->ecc_stats.bitflips = ret;

	if (sfc->flags & SFC_DATA_ONLY) {
		memcpy(op->data.buf.in, sfc->data_buf, page_size);
	} else if (sfc->flags & SFC_OOB_ONLY) {
		aml_sfc_get_user_byte(sfc, sfc->info_buf, op->data.buf.in);
	} else if (sfc->flags & SFC_DATA_OOB) {
		memcpy(op->data.buf.in, sfc->data_buf, page_size);
		aml_sfc_get_user_byte(sfc, sfc->info_buf, op->data.buf.in + page_size);
	}

	return aml_sfc_end_transfer(sfc, CS_HOLD_CYCLE);

err_out:
	return ret;
}

static int aml_sfc_write_page_hwecc(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
	struct aml_sfc_ecc_cfg *ecc_cfg;
	int ret, data_len, info_len;
	u32 page_size, cmd = 0;
	u64 timeout_ms;

	ecc_cfg = aml_sfc_to_ecc_ctx(sfc);

	page_size = ecc_cfg->stepsize * ecc_cfg->nsteps;
	data_len = page_size + ecc_cfg->oobsize;
	info_len = ecc_cfg->nsteps * ECC_PER_INFO_BYTE;

	memset(sfc->info_buf, ECC_PATTERN, ecc_cfg->oobsize);
	memcpy(sfc->data_buf, op->data.buf.out, page_size);

	if (!(sfc->flags & SFC_DATA_ONLY)) {
		if (sfc->flags & SFC_AUTO_OOB)
			aml_sfc_set_user_byte(sfc, sfc->info_buf,
					      (u8 *)op->data.buf.out + page_size, 1);
		else
			aml_sfc_set_user_byte(sfc, sfc->info_buf,
					      (u8 *)op->data.buf.out + page_size, 0);
	}

	ret = aml_sfc_dma_buffer_setup(sfc, sfc->data_buf, data_len,
				       sfc->info_buf, info_len, DMA_TO_DEVICE);
	if (ret)
		goto err_out;

	cmd |= CMD_MEM2NAND(ecc_cfg->bch, ecc_cfg->nsteps);
	ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
	if (ret)
		goto err_out;

	timeout_ms = aml_sfc_cal_timeout_cycle(sfc, op);

	ret = aml_sfc_wait_cmd_finish(sfc, timeout_ms);
	if (ret)
		goto err_out;

	aml_sfc_dma_buffer_release(sfc, data_len, info_len, DMA_TO_DEVICE);

	return  aml_sfc_end_transfer(sfc, CS_HOLD_CYCLE);

err_out:
	return ret;
}

static int aml_sfc_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
	struct aml_sfc *sfc;
	struct spi_device *spi;
	struct aml_sfc_ecc_cfg *ecc_cfg;
	int ret;

	sfc = spi_controller_get_devdata(mem->spi->controller);
	ecc_cfg = aml_sfc_to_ecc_ctx(sfc);
	spi = mem->spi;
	sfc->cs_sel = spi->chip_select[0] ? CS_1 : CS_0;

	dev_dbg(sfc->dev, "cmd:0x%02x - addr:%08llX@%d:%u - dummy:%d:%u - data:%d:%u",
		op->cmd.opcode, op->addr.val, op->addr.buswidth, op->addr.nbytes,
		op->dummy.buswidth, op->dummy.nbytes, op->data.buswidth, op->data.nbytes);

	ret = aml_sfc_pre_transfer(sfc, DEFAULT_PULLUP_CYCLE, CS_SETUP_CYCLE);
	if (ret)
		return ret;

	ret = aml_sfc_send_cmd_addr_dummy(sfc, op);
	if (ret)
		return ret;

	ret = aml_sfc_set_bus_width(sfc, op->data.buswidth, DATA_LANE);
	if (ret)
		return ret;

	if (aml_sfc_is_snand_hwecc_page_op(sfc, op) &&
	    ecc_cfg && !(sfc->flags & SFC_RAW_RW)) {
		if (op->data.dir == SPI_MEM_DATA_IN)
			return aml_sfc_read_page_hwecc(sfc, op);
		else
			return aml_sfc_write_page_hwecc(sfc, op);
	}

	return aml_sfc_raw_io_op(sfc, op);
}

static int aml_sfc_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
	struct aml_sfc *sfc;
	struct aml_sfc_ecc_cfg *ecc_cfg;

	sfc = spi_controller_get_devdata(mem->spi->controller);
	ecc_cfg = aml_sfc_to_ecc_ctx(sfc);

	if (aml_sfc_is_snand_hwecc_page_op(sfc, op) && ecc_cfg) {
		if (op->data.nbytes > ecc_cfg->stepsize * ECC_BCH_MAX_SECT_SIZE)
			return -EOPNOTSUPP;
	} else if (op->data.nbytes & ~RAW_MAX_RW_SIZE_MASK) {
		return -EOPNOTSUPP;
	}

	return 0;
}

static const struct spi_controller_mem_ops aml_sfc_mem_ops = {
	.adjust_op_size = aml_sfc_adjust_op_size,
	.exec_op = aml_sfc_exec_op,
};

static int aml_sfc_layout_ecc(struct mtd_info *mtd, int section,
			      struct mtd_oob_region *oobregion)
{
	struct nand_device *nand = mtd_to_nanddev(mtd);

	if (section >= nand->ecc.ctx.nsteps)
		return -ERANGE;

	oobregion->offset =  ECC_BCH8_USER_BYTES + (section * ECC_BCH8_INFO_BYTES);
	oobregion->length = ECC_BCH8_PARITY_BYTES;

	return 0;
}

static int aml_sfc_ooblayout_free(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	struct nand_device *nand = mtd_to_nanddev(mtd);

	if (section >= nand->ecc.ctx.nsteps)
		return -ERANGE;

	oobregion->offset = section * ECC_BCH8_INFO_BYTES;
	oobregion->length = ECC_BCH8_USER_BYTES;

	return 0;
}

static const struct mtd_ooblayout_ops aml_sfc_ooblayout_ops = {
	.ecc = aml_sfc_layout_ecc,
	.free = aml_sfc_ooblayout_free,
};

static int aml_spi_settings(struct aml_sfc *sfc, struct spi_device *spi)
{
	u32 conf = 0;

	if (spi->mode & SPI_CPHA)
		conf |= CPHA;

	if (spi->mode & SPI_CPOL)
		conf |= CPOL;

	conf |= FIELD_PREP(RXADJ, sfc->rx_adj);
	conf |= EN_HOLD | EN_WP;
	return regmap_update_bits(sfc->regmap_base, SFC_SPI_CFG,
					CPHA | CPOL | RXADJ |
					EN_HOLD | EN_WP, conf);
}

static int aml_set_spi_clk(struct aml_sfc *sfc, struct spi_device *spi)
{
	u32 speed_hz;
	int ret;

	if (spi->max_speed_hz > SFC_MAX_FREQUENCY)
		speed_hz = SFC_MAX_FREQUENCY;
	else if (!spi->max_speed_hz)
		speed_hz = SFC_BUS_DEFAULT_CLK;
	else if (spi->max_speed_hz < SFC_MIN_FREQUENCY)
		speed_hz = SFC_MIN_FREQUENCY;
	else
		speed_hz = spi->max_speed_hz;

	/* The SPI clock is generated by dividing the bus clock by four by default. */
	ret = regmap_write(sfc->regmap_base, SFC_CFG, (DEFAULT_BUS_CYCLE - 1));
	if (ret) {
		dev_err(sfc->dev, "failed to set bus cycle\n");
		return ret;
	}

	return clk_set_rate(sfc->core_clk, speed_hz * DEFAULT_BUS_CYCLE);
}

static int aml_sfc_setup(struct spi_device *spi)
{
	struct aml_sfc *sfc;
	int ret;

	sfc = spi_controller_get_devdata(spi->controller);
	ret = aml_spi_settings(sfc, spi);
	if (ret)
		return ret;

	ret = aml_set_spi_clk(sfc, spi);
	if (ret)
		return ret;

	sfc->bus_rate = clk_get_rate(sfc->core_clk);

	return 0;
}

static int aml_sfc_ecc_init_ctx(struct nand_device *nand)
{
	struct mtd_info *mtd = nanddev_to_mtd(nand);
	struct aml_sfc *sfc = nand_to_aml_sfc(nand);
	struct aml_sfc_ecc_cfg *ecc_cfg;
	const struct aml_sfc_caps *caps = sfc->caps;
	struct aml_sfc_ecc_cfg *ecc_caps = caps->ecc_caps;
	int i, ecc_strength, ecc_step_size;

	ecc_step_size = nand->ecc.user_conf.step_size;
	ecc_strength = nand->ecc.user_conf.strength;

	for (i = 0; i < caps->num_ecc_caps; i++) {
		if (ecc_caps[i].stepsize == ecc_step_size) {
			nand->ecc.ctx.conf.step_size = ecc_step_size;
			nand->ecc.ctx.conf.flags |= BIT(ecc_caps[i].bch);
		}

		if (ecc_caps[i].strength == ecc_strength)
			nand->ecc.ctx.conf.strength = ecc_strength;
	}

	if (!nand->ecc.ctx.conf.step_size) {
		nand->ecc.ctx.conf.step_size = ECC_BCH8_DEFAULT_STEP;
		nand->ecc.ctx.conf.flags |= BIT(ECC_DEFAULT_BCH_MODE);
	}

	if (!nand->ecc.ctx.conf.strength)
		nand->ecc.ctx.conf.strength = ECC_BCH8_STRENGTH;

	nand->ecc.ctx.nsteps = nand->memorg.pagesize / nand->ecc.ctx.conf.step_size;
	nand->ecc.ctx.total = nand->ecc.ctx.nsteps * ECC_BCH8_PARITY_BYTES;

	/* Verify the page size and OOB size against the SFC requirements. */
	if ((nand->memorg.pagesize % nand->ecc.ctx.conf.step_size) ||
	    (nand->memorg.oobsize < (nand->ecc.ctx.total +
	     nand->ecc.ctx.nsteps * ECC_BCH8_USER_BYTES)))
		return -EOPNOTSUPP;

	nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;

	ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
	if (!ecc_cfg)
		return -ENOMEM;

	ecc_cfg->stepsize = nand->ecc.ctx.conf.step_size;
	ecc_cfg->nsteps = nand->ecc.ctx.nsteps;
	ecc_cfg->strength = nand->ecc.ctx.conf.strength;
	ecc_cfg->oobsize = nand->memorg.oobsize;
	ecc_cfg->bch = nand->ecc.ctx.conf.flags & BIT(ECC_DEFAULT_BCH_MODE) ? 1 : 2;

	nand->ecc.ctx.priv = ecc_cfg;
	sfc->priv = (void *)ecc_cfg;
	mtd_set_ooblayout(mtd, &aml_sfc_ooblayout_ops);

	sfc->flags |= SFC_HWECC;

	return 0;
}

static void aml_sfc_ecc_cleanup_ctx(struct nand_device *nand)
{
	struct aml_sfc *sfc = nand_to_aml_sfc(nand);

	sfc->flags &= ~(SFC_HWECC);
	kfree(nand->ecc.ctx.priv);
	sfc->priv = NULL;
}

static int aml_sfc_ecc_prepare_io_req(struct nand_device *nand,
				      struct nand_page_io_req *req)
{
	struct aml_sfc *sfc = nand_to_aml_sfc(nand);
	struct spinand_device *spinand = nand_to_spinand(nand);

	sfc->flags &= ~SFC_XFER_MDOE_MASK;

	if (req->datalen && !req->ooblen)
		sfc->flags |= SFC_DATA_ONLY;
	else if (!req->datalen && req->ooblen)
		sfc->flags |= SFC_OOB_ONLY;
	else if (req->datalen && req->ooblen)
		sfc->flags |= SFC_DATA_OOB;

	if (req->mode == MTD_OPS_RAW)
		sfc->flags |= SFC_RAW_RW;
	else if (req->mode == MTD_OPS_AUTO_OOB)
		sfc->flags |= SFC_AUTO_OOB;

	memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));

	return 0;
}

static int aml_sfc_ecc_finish_io_req(struct nand_device *nand,
				     struct nand_page_io_req *req)
{
	struct aml_sfc *sfc = nand_to_aml_sfc(nand);
	struct mtd_info *mtd = nanddev_to_mtd(nand);

	if (req->mode == MTD_OPS_RAW || req->type == NAND_PAGE_WRITE)
		return 0;

	if (sfc->ecc_stats.failed)
		mtd->ecc_stats.failed++;

	mtd->ecc_stats.corrected += sfc->ecc_stats.corrected;

	return sfc->ecc_stats.failed ? -EBADMSG : sfc->ecc_stats.bitflips;
}

static const struct spi_controller_mem_caps aml_sfc_mem_caps = {
	.ecc = true,
};

static const struct nand_ecc_engine_ops aml_sfc_ecc_engine_ops = {
	.init_ctx = aml_sfc_ecc_init_ctx,
	.cleanup_ctx = aml_sfc_ecc_cleanup_ctx,
	.prepare_io_req = aml_sfc_ecc_prepare_io_req,
	.finish_io_req = aml_sfc_ecc_finish_io_req,
};

static int aml_sfc_clk_init(struct aml_sfc *sfc)
{
	sfc->gate_clk = devm_clk_get_enabled(sfc->dev, "gate");
	if (IS_ERR(sfc->gate_clk)) {
		dev_err(sfc->dev, "unable to enable gate clk\n");
		return PTR_ERR(sfc->gate_clk);
	}

	sfc->core_clk = devm_clk_get_enabled(sfc->dev, "core");
	if (IS_ERR(sfc->core_clk)) {
		dev_err(sfc->dev, "unable to enable core clk\n");
		return PTR_ERR(sfc->core_clk);
	}

	return clk_set_rate(sfc->core_clk, SFC_BUS_DEFAULT_CLK);
}

static int aml_sfc_disable_clk(struct aml_sfc *sfc)
{
	clk_disable_unprepare(sfc->core_clk);
	clk_disable_unprepare(sfc->gate_clk);

	return 0;
}

static int aml_sfc_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct spi_controller *ctrl;
	struct aml_sfc *sfc;
	void __iomem *reg_base;
	int ret;
	u32 val = 0;

	const struct regmap_config core_config = {
		.reg_bits = 32,
		.val_bits = 32,
		.reg_stride = 4,
		.max_register = SFC_SPI_CFG,
	};

	ctrl = devm_spi_alloc_host(dev, sizeof(*sfc));
	if (!ctrl)
		return -ENOMEM;
	platform_set_drvdata(pdev, ctrl);

	sfc = spi_controller_get_devdata(ctrl);
	sfc->dev = dev;
	sfc->ctrl = ctrl;

	sfc->caps = of_device_get_match_data(dev);
	if (!sfc->caps)
		return dev_err_probe(dev, -ENODEV, "failed to get device data\n");

	reg_base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(reg_base))
		return PTR_ERR(reg_base);

	sfc->regmap_base = devm_regmap_init_mmio(dev, reg_base, &core_config);
	if (IS_ERR(sfc->regmap_base))
		return dev_err_probe(dev, PTR_ERR(sfc->regmap_base),
			"failed to init sfc base regmap\n");

	sfc->data_buf = devm_kzalloc(dev, SFC_BUF_SIZE, GFP_KERNEL);
	if (!sfc->data_buf)
		return -ENOMEM;
	sfc->info_buf = (__le64 *)(sfc->data_buf + SFC_DATABUF_SIZE);

	ret = aml_sfc_clk_init(sfc);
	if (ret)
		return dev_err_probe(dev, ret, "failed to initialize SFC clock\n");

	/* Enable Amlogic flash controller spi mode */
	ret = regmap_write(sfc->regmap_base, SFC_SPI_CFG, SPI_MODE_EN);
	if (ret) {
		dev_err(dev, "failed to enable SPI mode\n");
		goto err_out;
	}

	ret = dma_set_mask(sfc->dev, DMA_BIT_MASK(32));
	if (ret) {
		dev_err(sfc->dev, "failed to set dma mask\n");
		goto err_out;
	}

	sfc->ecc_eng.dev = &pdev->dev;
	sfc->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
	sfc->ecc_eng.ops = &aml_sfc_ecc_engine_ops;
	sfc->ecc_eng.priv = sfc;

	ret = nand_ecc_register_on_host_hw_engine(&sfc->ecc_eng);
	if (ret) {
		dev_err(&pdev->dev, "failed to register Aml host ecc engine.\n");
		goto err_out;
	}

	ret = of_property_read_u32(np, "amlogic,rx-adj", &val);
	if (!ret)
		sfc->rx_adj = val;

	ctrl->dev.of_node = np;
	ctrl->mem_ops = &aml_sfc_mem_ops;
	ctrl->mem_caps = &aml_sfc_mem_caps;
	ctrl->setup = aml_sfc_setup;
	ctrl->mode_bits = SPI_TX_QUAD | SPI_TX_DUAL | SPI_RX_QUAD |
			  SPI_RX_DUAL | SPI_TX_OCTAL | SPI_RX_OCTAL;
	ctrl->max_speed_hz = SFC_MAX_FREQUENCY;
	ctrl->min_speed_hz = SFC_MIN_FREQUENCY;
	ctrl->num_chipselect = SFC_MAX_CS_NUM;

	ret = devm_spi_register_controller(dev, ctrl);
	if (ret)
		goto err_out;

	return 0;

err_out:
	aml_sfc_disable_clk(sfc);

	return ret;
}

static void aml_sfc_remove(struct platform_device *pdev)
{
	struct spi_controller *ctlr = platform_get_drvdata(pdev);
	struct aml_sfc *sfc = spi_controller_get_devdata(ctlr);

	aml_sfc_disable_clk(sfc);
}

static const struct of_device_id aml_sfc_of_match[] = {
	{
		.compatible = "amlogic,a4-spifc",
		.data = &aml_a113l2_sfc_caps
	},
	{},
};
MODULE_DEVICE_TABLE(of, aml_sfc_of_match);

static struct platform_driver aml_sfc_driver = {
	.driver = {
		.name = "aml_sfc",
		.of_match_table = aml_sfc_of_match,
	},
	.probe = aml_sfc_probe,
	.remove = aml_sfc_remove,
};
module_platform_driver(aml_sfc_driver);

MODULE_DESCRIPTION("Amlogic SPI Flash Controller driver");
MODULE_AUTHOR("Feng Chen <feng.chen@amlogic.com>");
MODULE_LICENSE("Dual MIT/GPL");