1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2022-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_extent_busy.h"
#include "xfs_ag.h"
#include "xfs_ag_resv.h"
#include "xfs_quota.h"
#include "xfs_qm.h"
#include "xfs_bmap.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_attr.h"
#include "xfs_attr_remote.h"
#include "xfs_defer.h"
#include "xfs_metafile.h"
#include "xfs_rtgroup.h"
#include "xfs_rtrmap_btree.h"
#include "xfs_extfree_item.h"
#include "xfs_rmap_item.h"
#include "xfs_refcount_item.h"
#include "xfs_buf_item.h"
#include "xfs_bmap_item.h"
#include "xfs_bmap_btree.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/agb_bitmap.h"
#include "scrub/fsb_bitmap.h"
#include "scrub/rtb_bitmap.h"
#include "scrub/reap.h"
/*
* Disposal of Blocks from Old Metadata
*
* Now that we've constructed a new btree to replace the damaged one, we want
* to dispose of the blocks that (we think) the old btree was using.
* Previously, we used the rmapbt to collect the extents (bitmap) with the
* rmap owner corresponding to the tree we rebuilt, collected extents for any
* blocks with the same rmap owner that are owned by another data structure
* (sublist), and subtracted sublist from bitmap. In theory the extents
* remaining in bitmap are the old btree's blocks.
*
* Unfortunately, it's possible that the btree was crosslinked with other
* blocks on disk. The rmap data can tell us if there are multiple owners, so
* if the rmapbt says there is an owner of this block other than @oinfo, then
* the block is crosslinked. Remove the reverse mapping and continue.
*
* If there is one rmap record, we can free the block, which removes the
* reverse mapping but doesn't add the block to the free space. Our repair
* strategy is to hope the other metadata objects crosslinked on this block
* will be rebuilt (atop different blocks), thereby removing all the cross
* links.
*
* If there are no rmap records at all, we also free the block. If the btree
* being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
* supposed to be a rmap record and everything is ok. For other btrees there
* had to have been an rmap entry for the block to have ended up on @bitmap,
* so if it's gone now there's something wrong and the fs will shut down.
*
* Note: If there are multiple rmap records with only the same rmap owner as
* the btree we're trying to rebuild and the block is indeed owned by another
* data structure with the same rmap owner, then the block will be in sublist
* and therefore doesn't need disposal. If there are multiple rmap records
* with only the same rmap owner but the block is not owned by something with
* the same rmap owner, the block will be freed.
*
* The caller is responsible for locking the AG headers/inode for the entire
* rebuild operation so that nothing else can sneak in and change the incore
* state while we're not looking. We must also invalidate any buffers
* associated with @bitmap.
*/
/* Information about reaping extents after a repair. */
struct xreap_state {
struct xfs_scrub *sc;
union {
struct {
/*
* For AG blocks, this is reverse mapping owner and
* metadata reservation type.
*/
const struct xfs_owner_info *oinfo;
enum xfs_ag_resv_type resv;
};
struct {
/* For file blocks, this is the inode and fork. */
struct xfs_inode *ip;
int whichfork;
};
};
/* Number of invalidated buffers logged to the current transaction. */
unsigned int nr_binval;
/* Maximum number of buffers we can invalidate in a single tx. */
unsigned int max_binval;
/* Number of deferred reaps attached to the current transaction. */
unsigned int nr_deferred;
/* Maximum number of intents we can reap in a single transaction. */
unsigned int max_deferred;
};
/* Put a block back on the AGFL. */
STATIC int
xreap_put_freelist(
struct xfs_scrub *sc,
xfs_agblock_t agbno)
{
struct xfs_buf *agfl_bp;
int error;
/* Make sure there's space on the freelist. */
error = xrep_fix_freelist(sc, 0);
if (error)
return error;
/*
* Since we're "freeing" a lost block onto the AGFL, we have to
* create an rmap for the block prior to merging it or else other
* parts will break.
*/
error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1,
&XFS_RMAP_OINFO_AG);
if (error)
return error;
/* Put the block on the AGFL. */
error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
if (error)
return error;
error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp,
agfl_bp, agbno, 0);
if (error)
return error;
xfs_extent_busy_insert(sc->tp, pag_group(sc->sa.pag), agbno, 1,
XFS_EXTENT_BUSY_SKIP_DISCARD);
return 0;
}
/* Are there any uncommitted reap operations? */
static inline bool xreap_is_dirty(const struct xreap_state *rs)
{
return rs->nr_binval > 0 || rs->nr_deferred > 0;
}
/*
* Decide if we need to roll the transaction to clear out the the log
* reservation that we allocated to buffer invalidations.
*/
static inline bool xreap_want_binval_roll(const struct xreap_state *rs)
{
return rs->nr_binval >= rs->max_binval;
}
/* Reset the buffer invalidation count after rolling. */
static inline void xreap_binval_reset(struct xreap_state *rs)
{
rs->nr_binval = 0;
}
/*
* Bump the number of invalidated buffers, and return true if we can continue,
* or false if we need to roll the transaction.
*/
static inline bool xreap_inc_binval(struct xreap_state *rs)
{
rs->nr_binval++;
return rs->nr_binval < rs->max_binval;
}
/*
* Decide if we want to finish the deferred ops that are attached to the scrub
* transaction. We don't want to queue huge chains of deferred ops because
* that can consume a lot of log space and kernel memory. Hence we trigger a
* xfs_defer_finish if there are too many deferred reap operations or we've run
* out of space for invalidations.
*/
static inline bool xreap_want_defer_finish(const struct xreap_state *rs)
{
return rs->nr_deferred >= rs->max_deferred;
}
/*
* Reset the defer chain length and buffer invalidation count after finishing
* items.
*/
static inline void xreap_defer_finish_reset(struct xreap_state *rs)
{
rs->nr_deferred = 0;
rs->nr_binval = 0;
}
/*
* Bump the number of deferred extent reaps.
*/
static inline void xreap_inc_defer(struct xreap_state *rs)
{
rs->nr_deferred++;
}
/* Force the caller to finish a deferred item chain. */
static inline void xreap_force_defer_finish(struct xreap_state *rs)
{
rs->nr_deferred = rs->max_deferred;
}
/* Maximum number of fsblocks that we might find in a buffer to invalidate. */
static inline unsigned int
xrep_binval_max_fsblocks(
struct xfs_mount *mp)
{
/* Remote xattr values are the largest buffers that we support. */
return xfs_attr3_max_rmt_blocks(mp);
}
/*
* Compute the maximum length of a buffer cache scan (in units of sectors),
* given a quantity of fs blocks.
*/
xfs_daddr_t
xrep_bufscan_max_sectors(
struct xfs_mount *mp,
xfs_extlen_t fsblocks)
{
return XFS_FSB_TO_BB(mp, min_t(xfs_extlen_t, fsblocks,
xrep_binval_max_fsblocks(mp)));
}
/*
* Return an incore buffer from a sector scan, or NULL if there are no buffers
* left to return.
*/
struct xfs_buf *
xrep_bufscan_advance(
struct xfs_mount *mp,
struct xrep_bufscan *scan)
{
scan->__sector_count += scan->daddr_step;
while (scan->__sector_count <= scan->max_sectors) {
struct xfs_buf *bp = NULL;
int error;
error = xfs_buf_incore(mp->m_ddev_targp, scan->daddr,
scan->__sector_count, XBF_LIVESCAN, &bp);
if (!error)
return bp;
scan->__sector_count += scan->daddr_step;
}
return NULL;
}
/* Try to invalidate the incore buffers for an extent that we're freeing. */
STATIC void
xreap_agextent_binval(
struct xreap_state *rs,
xfs_agblock_t agbno,
xfs_extlen_t *aglenp)
{
struct xfs_scrub *sc = rs->sc;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_mount *mp = sc->mp;
xfs_agblock_t agbno_next = agbno + *aglenp;
xfs_agblock_t bno = agbno;
/*
* Avoid invalidating AG headers and post-EOFS blocks because we never
* own those.
*/
if (!xfs_verify_agbno(pag, agbno) ||
!xfs_verify_agbno(pag, agbno_next - 1))
return;
/*
* If there are incore buffers for these blocks, invalidate them. We
* assume that the lack of any other known owners means that the buffer
* can be locked without risk of deadlocking. The buffer cache cannot
* detect aliasing, so employ nested loops to scan for incore buffers
* of any plausible size.
*/
while (bno < agbno_next) {
struct xrep_bufscan scan = {
.daddr = xfs_agbno_to_daddr(pag, bno),
.max_sectors = xrep_bufscan_max_sectors(mp,
agbno_next - bno),
.daddr_step = XFS_FSB_TO_BB(mp, 1),
};
struct xfs_buf *bp;
while ((bp = xrep_bufscan_advance(mp, &scan)) != NULL) {
xfs_trans_bjoin(sc->tp, bp);
xfs_trans_binval(sc->tp, bp);
/*
* Stop invalidating if we've hit the limit; we should
* still have enough reservation left to free however
* far we've gotten.
*/
if (!xreap_inc_binval(rs)) {
*aglenp -= agbno_next - bno;
goto out;
}
}
bno++;
}
out:
trace_xreap_agextent_binval(pag_group(sc->sa.pag), agbno, *aglenp);
}
/*
* Figure out the longest run of blocks that we can dispose of with a single
* call. Cross-linked blocks should have their reverse mappings removed, but
* single-owner extents can be freed. AGFL blocks can only be put back one at
* a time.
*/
STATIC int
xreap_agextent_select(
struct xreap_state *rs,
xfs_agblock_t agbno,
xfs_agblock_t agbno_next,
bool *crosslinked,
xfs_extlen_t *aglenp)
{
struct xfs_scrub *sc = rs->sc;
struct xfs_btree_cur *cur;
xfs_agblock_t bno = agbno + 1;
xfs_extlen_t len = 1;
int error;
/*
* Determine if there are any other rmap records covering the first
* block of this extent. If so, the block is crosslinked.
*/
cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
sc->sa.pag);
error = xfs_rmap_has_other_keys(cur, agbno, 1, rs->oinfo,
crosslinked);
if (error)
goto out_cur;
/* AGFL blocks can only be deal with one at a time. */
if (rs->resv == XFS_AG_RESV_AGFL)
goto out_found;
/*
* Figure out how many of the subsequent blocks have the same crosslink
* status.
*/
while (bno < agbno_next) {
bool also_crosslinked;
error = xfs_rmap_has_other_keys(cur, bno, 1, rs->oinfo,
&also_crosslinked);
if (error)
goto out_cur;
if (*crosslinked != also_crosslinked)
break;
len++;
bno++;
}
out_found:
*aglenp = len;
trace_xreap_agextent_select(pag_group(sc->sa.pag), agbno, len,
*crosslinked);
out_cur:
xfs_btree_del_cursor(cur, error);
return error;
}
/*
* Dispose of as much of the beginning of this AG extent as possible. The
* number of blocks disposed of will be returned in @aglenp.
*/
STATIC int
xreap_agextent_iter(
struct xreap_state *rs,
xfs_agblock_t agbno,
xfs_extlen_t *aglenp,
bool crosslinked)
{
struct xfs_scrub *sc = rs->sc;
xfs_fsblock_t fsbno;
int error = 0;
ASSERT(rs->resv != XFS_AG_RESV_METAFILE);
fsbno = xfs_agbno_to_fsb(sc->sa.pag, agbno);
/*
* If there are other rmappings, this block is cross linked and must
* not be freed. Remove the reverse mapping and move on. Otherwise,
* we were the only owner of the block, so free the extent, which will
* also remove the rmap.
*
* XXX: XFS doesn't support detecting the case where a single block
* metadata structure is crosslinked with a multi-block structure
* because the buffer cache doesn't detect aliasing problems, so we
* can't fix 100% of crosslinking problems (yet). The verifiers will
* blow on writeout, the filesystem will shut down, and the admin gets
* to run xfs_repair.
*/
if (crosslinked) {
trace_xreap_dispose_unmap_extent(pag_group(sc->sa.pag), agbno,
*aglenp);
if (rs->oinfo == &XFS_RMAP_OINFO_COW) {
/*
* t0: Unmapping CoW staging extents, remove the
* records from the refcountbt, which will remove the
* rmap record as well.
*/
xfs_refcount_free_cow_extent(sc->tp, false, fsbno,
*aglenp);
xreap_inc_defer(rs);
return 0;
}
/* t1: unmap crosslinked metadata blocks */
xfs_rmap_free_extent(sc->tp, false, fsbno, *aglenp,
rs->oinfo->oi_owner);
xreap_inc_defer(rs);
return 0;
}
trace_xreap_dispose_free_extent(pag_group(sc->sa.pag), agbno, *aglenp);
/*
* Invalidate as many buffers as we can, starting at agbno. If this
* function sets *aglenp to zero, the transaction is full of logged
* buffer invalidations, so we need to return early so that we can
* roll and retry.
*/
xreap_agextent_binval(rs, agbno, aglenp);
if (*aglenp == 0) {
ASSERT(xreap_want_binval_roll(rs));
return 0;
}
/*
* t2: To get rid of CoW staging extents, use deferred work items
* to remove the refcountbt records (which removes the rmap records)
* and free the extent. We're not worried about the system going down
* here because log recovery walks the refcount btree to clean out the
* CoW staging extents.
*/
if (rs->oinfo == &XFS_RMAP_OINFO_COW) {
ASSERT(rs->resv == XFS_AG_RESV_NONE);
xfs_refcount_free_cow_extent(sc->tp, false, fsbno, *aglenp);
error = xfs_free_extent_later(sc->tp, fsbno, *aglenp, NULL,
rs->resv, XFS_FREE_EXTENT_SKIP_DISCARD);
if (error)
return error;
xreap_inc_defer(rs);
return 0;
}
/* t3: Put blocks back on the AGFL one at a time. */
if (rs->resv == XFS_AG_RESV_AGFL) {
ASSERT(*aglenp == 1);
error = xreap_put_freelist(sc, agbno);
if (error)
return error;
xreap_force_defer_finish(rs);
return 0;
}
/*
* t4: Use deferred frees to get rid of the old btree blocks to try to
* minimize the window in which we could crash and lose the old blocks.
* Add a defer ops barrier every other extent to avoid stressing the
* system with large EFIs.
*/
error = xfs_free_extent_later(sc->tp, fsbno, *aglenp, rs->oinfo,
rs->resv, XFS_FREE_EXTENT_SKIP_DISCARD);
if (error)
return error;
xreap_inc_defer(rs);
if (rs->nr_deferred % 2 == 0)
xfs_defer_add_barrier(sc->tp);
return 0;
}
/* Configure the deferral and invalidation limits */
static inline void
xreap_configure_limits(
struct xreap_state *rs,
unsigned int fixed_overhead,
unsigned int variable_overhead,
unsigned int per_intent,
unsigned int per_binval)
{
struct xfs_scrub *sc = rs->sc;
unsigned int res = sc->tp->t_log_res - fixed_overhead;
/* Don't underflow the reservation */
if (sc->tp->t_log_res < (fixed_overhead + variable_overhead)) {
ASSERT(sc->tp->t_log_res >=
(fixed_overhead + variable_overhead));
xfs_force_shutdown(sc->mp, SHUTDOWN_CORRUPT_INCORE);
return;
}
rs->max_deferred = per_intent ? res / variable_overhead : 0;
res -= rs->max_deferred * per_intent;
rs->max_binval = per_binval ? res / per_binval : 0;
}
/*
* Compute the maximum number of intent items that reaping can attach to the
* scrub transaction given the worst case log overhead of the intent items
* needed to reap a single per-AG space extent. This is not for freeing CoW
* staging extents.
*/
STATIC void
xreap_configure_agextent_limits(
struct xreap_state *rs)
{
struct xfs_scrub *sc = rs->sc;
struct xfs_mount *mp = sc->mp;
/*
* In the worst case, relogging an intent item causes both an intent
* item and a done item to be attached to a transaction for each extent
* that we'd like to process.
*/
const unsigned int efi = xfs_efi_log_space(1) +
xfs_efd_log_space(1);
const unsigned int rui = xfs_rui_log_space(1) +
xfs_rud_log_space();
/*
* Various things can happen when reaping non-CoW metadata blocks:
*
* t1: Unmapping crosslinked metadata blocks: deferred removal of rmap
* record.
*
* t3: Freeing to AGFL: roll and finish deferred items for every block.
* Limits here do not matter.
*
* t4: Freeing metadata blocks: deferred freeing of the space, which
* also removes the rmap record.
*
* For simplicity, we'll use the worst-case intents size to determine
* the maximum number of deferred extents before we have to finish the
* whole chain. If we're trying to reap a btree larger than this size,
* a crash midway through reaping can result in leaked blocks.
*/
const unsigned int t1 = rui;
const unsigned int t4 = rui + efi;
const unsigned int per_intent = max(t1, t4);
/*
* For each transaction in a reap chain, we must be able to take one
* step in the defer item chain, which should only consist of EFI or
* RUI items.
*/
const unsigned int f1 = xfs_calc_finish_efi_reservation(mp, 1);
const unsigned int f2 = xfs_calc_finish_rui_reservation(mp, 1);
const unsigned int step_size = max(f1, f2);
/* Largest buffer size (in fsblocks) that can be invalidated. */
const unsigned int max_binval = xrep_binval_max_fsblocks(mp);
/* Maximum overhead of invalidating one buffer. */
const unsigned int per_binval =
xfs_buf_inval_log_space(1, XFS_B_TO_FSBT(mp, max_binval));
/*
* For each transaction in a reap chain, we can delete some number of
* extents and invalidate some number of blocks. We assume that btree
* blocks aren't usually contiguous; and that scrub likely pulled all
* the buffers into memory. From these assumptions, set the maximum
* number of deferrals we can queue before flushing the defer chain,
* and the number of invalidations we can queue before rolling to a
* clean transaction (and possibly relogging some of the deferrals) to
* the same quantity.
*/
const unsigned int variable_overhead = per_intent + per_binval;
xreap_configure_limits(rs, step_size, variable_overhead, per_intent,
per_binval);
trace_xreap_agextent_limits(sc->tp, per_binval, rs->max_binval,
step_size, per_intent, rs->max_deferred);
}
/*
* Compute the maximum number of intent items that reaping can attach to the
* scrub transaction given the worst case log overhead of the intent items
* needed to reap a single CoW staging extent. This is not for freeing
* metadata blocks.
*/
STATIC void
xreap_configure_agcow_limits(
struct xreap_state *rs)
{
struct xfs_scrub *sc = rs->sc;
struct xfs_mount *mp = sc->mp;
/*
* In the worst case, relogging an intent item causes both an intent
* item and a done item to be attached to a transaction for each extent
* that we'd like to process.
*/
const unsigned int efi = xfs_efi_log_space(1) +
xfs_efd_log_space(1);
const unsigned int rui = xfs_rui_log_space(1) +
xfs_rud_log_space();
const unsigned int cui = xfs_cui_log_space(1) +
xfs_cud_log_space();
/*
* Various things can happen when reaping non-CoW metadata blocks:
*
* t0: Unmapping crosslinked CoW blocks: deferred removal of refcount
* record, which defers removal of rmap record
*
* t2: Freeing CoW blocks: deferred removal of refcount record, which
* defers removal of rmap record; and deferred removal of the space
*
* For simplicity, we'll use the worst-case intents size to determine
* the maximum number of deferred extents before we have to finish the
* whole chain. If we're trying to reap a btree larger than this size,
* a crash midway through reaping can result in leaked blocks.
*/
const unsigned int t0 = cui + rui;
const unsigned int t2 = cui + rui + efi;
const unsigned int per_intent = max(t0, t2);
/*
* For each transaction in a reap chain, we must be able to take one
* step in the defer item chain, which should only consist of CUI, EFI,
* or RUI items.
*/
const unsigned int f1 = xfs_calc_finish_efi_reservation(mp, 1);
const unsigned int f2 = xfs_calc_finish_rui_reservation(mp, 1);
const unsigned int f3 = xfs_calc_finish_cui_reservation(mp, 1);
const unsigned int step_size = max3(f1, f2, f3);
/* Largest buffer size (in fsblocks) that can be invalidated. */
const unsigned int max_binval = xrep_binval_max_fsblocks(mp);
/* Overhead of invalidating one buffer */
const unsigned int per_binval =
xfs_buf_inval_log_space(1, XFS_B_TO_FSBT(mp, max_binval));
/*
* For each transaction in a reap chain, we can delete some number of
* extents and invalidate some number of blocks. We assume that CoW
* staging extents are usually more than 1 fsblock, and that there
* shouldn't be any buffers for those blocks. From the assumptions,
* set the number of deferrals to use as much of the reservation as
* it can, but leave space to invalidate 1/8th that number of buffers.
*/
const unsigned int variable_overhead = per_intent +
(per_binval / 8);
xreap_configure_limits(rs, step_size, variable_overhead, per_intent,
per_binval);
trace_xreap_agcow_limits(sc->tp, per_binval, rs->max_binval, step_size,
per_intent, rs->max_deferred);
}
/*
* Break an AG metadata extent into sub-extents by fate (crosslinked, not
* crosslinked), and dispose of each sub-extent separately.
*/
STATIC int
xreap_agmeta_extent(
uint32_t agbno,
uint32_t len,
void *priv)
{
struct xreap_state *rs = priv;
struct xfs_scrub *sc = rs->sc;
xfs_agblock_t agbno_next = agbno + len;
int error = 0;
ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
ASSERT(sc->ip == NULL);
while (agbno < agbno_next) {
xfs_extlen_t aglen;
bool crosslinked;
error = xreap_agextent_select(rs, agbno, agbno_next,
&crosslinked, &aglen);
if (error)
return error;
error = xreap_agextent_iter(rs, agbno, &aglen, crosslinked);
if (error)
return error;
if (xreap_want_defer_finish(rs)) {
error = xrep_defer_finish(sc);
if (error)
return error;
xreap_defer_finish_reset(rs);
} else if (xreap_want_binval_roll(rs)) {
error = xrep_roll_ag_trans(sc);
if (error)
return error;
xreap_binval_reset(rs);
}
agbno += aglen;
}
return 0;
}
/* Dispose of every block of every AG metadata extent in the bitmap. */
int
xrep_reap_agblocks(
struct xfs_scrub *sc,
struct xagb_bitmap *bitmap,
const struct xfs_owner_info *oinfo,
enum xfs_ag_resv_type type)
{
struct xreap_state rs = {
.sc = sc,
.oinfo = oinfo,
.resv = type,
};
int error;
ASSERT(xfs_has_rmapbt(sc->mp));
ASSERT(sc->ip == NULL);
xreap_configure_agextent_limits(&rs);
error = xagb_bitmap_walk(bitmap, xreap_agmeta_extent, &rs);
if (error)
return error;
if (xreap_is_dirty(&rs))
return xrep_defer_finish(sc);
return 0;
}
/*
* Break a file metadata extent into sub-extents by fate (crosslinked, not
* crosslinked), and dispose of each sub-extent separately. The extent must
* not cross an AG boundary.
*/
STATIC int
xreap_fsmeta_extent(
uint64_t fsbno,
uint64_t len,
void *priv)
{
struct xreap_state *rs = priv;
struct xfs_scrub *sc = rs->sc;
xfs_agnumber_t agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
xfs_agblock_t agbno_next = agbno + len;
int error = 0;
ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
ASSERT(sc->ip != NULL);
ASSERT(!sc->sa.pag);
/*
* We're reaping blocks after repairing file metadata, which means that
* we have to init the xchk_ag structure ourselves.
*/
sc->sa.pag = xfs_perag_get(sc->mp, agno);
if (!sc->sa.pag)
return -EFSCORRUPTED;
error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &sc->sa.agf_bp);
if (error)
goto out_pag;
while (agbno < agbno_next) {
xfs_extlen_t aglen;
bool crosslinked;
error = xreap_agextent_select(rs, agbno, agbno_next,
&crosslinked, &aglen);
if (error)
goto out_agf;
error = xreap_agextent_iter(rs, agbno, &aglen, crosslinked);
if (error)
goto out_agf;
if (xreap_want_defer_finish(rs)) {
/*
* Holds the AGF buffer across the deferred chain
* processing.
*/
error = xrep_defer_finish(sc);
if (error)
goto out_agf;
xreap_defer_finish_reset(rs);
} else if (xreap_want_binval_roll(rs)) {
/*
* Hold the AGF buffer across the transaction roll so
* that we don't have to reattach it to the scrub
* context.
*/
xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
error = xfs_trans_roll_inode(&sc->tp, sc->ip);
xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
if (error)
goto out_agf;
xreap_binval_reset(rs);
}
agbno += aglen;
}
out_agf:
xfs_trans_brelse(sc->tp, sc->sa.agf_bp);
sc->sa.agf_bp = NULL;
out_pag:
xfs_perag_put(sc->sa.pag);
sc->sa.pag = NULL;
return error;
}
/*
* Dispose of every block of every fs metadata extent in the bitmap.
* Do not use this to dispose of the mappings in an ondisk inode fork.
*/
int
xrep_reap_fsblocks(
struct xfs_scrub *sc,
struct xfsb_bitmap *bitmap,
const struct xfs_owner_info *oinfo)
{
struct xreap_state rs = {
.sc = sc,
.oinfo = oinfo,
.resv = XFS_AG_RESV_NONE,
};
int error;
ASSERT(xfs_has_rmapbt(sc->mp));
ASSERT(sc->ip != NULL);
if (oinfo == &XFS_RMAP_OINFO_COW)
xreap_configure_agcow_limits(&rs);
else
xreap_configure_agextent_limits(&rs);
error = xfsb_bitmap_walk(bitmap, xreap_fsmeta_extent, &rs);
if (error)
return error;
if (xreap_is_dirty(&rs))
return xrep_defer_finish(sc);
return 0;
}
#ifdef CONFIG_XFS_RT
/*
* Figure out the longest run of blocks that we can dispose of with a single
* call. Cross-linked blocks should have their reverse mappings removed, but
* single-owner extents can be freed. Units are rt blocks, not rt extents.
*/
STATIC int
xreap_rgextent_select(
struct xreap_state *rs,
xfs_rgblock_t rgbno,
xfs_rgblock_t rgbno_next,
bool *crosslinked,
xfs_extlen_t *rglenp)
{
struct xfs_scrub *sc = rs->sc;
struct xfs_btree_cur *cur;
xfs_rgblock_t bno = rgbno + 1;
xfs_extlen_t len = 1;
int error;
/*
* Determine if there are any other rmap records covering the first
* block of this extent. If so, the block is crosslinked.
*/
cur = xfs_rtrmapbt_init_cursor(sc->tp, sc->sr.rtg);
error = xfs_rmap_has_other_keys(cur, rgbno, 1, rs->oinfo,
crosslinked);
if (error)
goto out_cur;
/*
* Figure out how many of the subsequent blocks have the same crosslink
* status.
*/
while (bno < rgbno_next) {
bool also_crosslinked;
error = xfs_rmap_has_other_keys(cur, bno, 1, rs->oinfo,
&also_crosslinked);
if (error)
goto out_cur;
if (*crosslinked != also_crosslinked)
break;
len++;
bno++;
}
*rglenp = len;
trace_xreap_agextent_select(rtg_group(sc->sr.rtg), rgbno, len,
*crosslinked);
out_cur:
xfs_btree_del_cursor(cur, error);
return error;
}
/*
* Dispose of as much of the beginning of this rtgroup extent as possible.
* The number of blocks disposed of will be returned in @rglenp.
*/
STATIC int
xreap_rgextent_iter(
struct xreap_state *rs,
xfs_rgblock_t rgbno,
xfs_extlen_t *rglenp,
bool crosslinked)
{
struct xfs_scrub *sc = rs->sc;
xfs_rtblock_t rtbno;
int error;
/*
* The only caller so far is CoW fork repair, so we only know how to
* unlink or free CoW staging extents. Here we don't have to worry
* about invalidating buffers!
*/
if (rs->oinfo != &XFS_RMAP_OINFO_COW) {
ASSERT(rs->oinfo == &XFS_RMAP_OINFO_COW);
return -EFSCORRUPTED;
}
ASSERT(rs->resv == XFS_AG_RESV_NONE);
rtbno = xfs_rgbno_to_rtb(sc->sr.rtg, rgbno);
/*
* t1: There are other rmappings; this block is cross linked and must
* not be freed. Remove the forward and reverse mapping and move on.
*/
if (crosslinked) {
trace_xreap_dispose_unmap_extent(rtg_group(sc->sr.rtg), rgbno,
*rglenp);
xfs_refcount_free_cow_extent(sc->tp, true, rtbno, *rglenp);
xreap_inc_defer(rs);
return 0;
}
trace_xreap_dispose_free_extent(rtg_group(sc->sr.rtg), rgbno, *rglenp);
/*
* t2: The CoW staging extent is not crosslinked. Use deferred work
* to remove the refcountbt records (which removes the rmap records)
* and free the extent. We're not worried about the system going down
* here because log recovery walks the refcount btree to clean out the
* CoW staging extents.
*/
xfs_refcount_free_cow_extent(sc->tp, true, rtbno, *rglenp);
error = xfs_free_extent_later(sc->tp, rtbno, *rglenp, NULL,
rs->resv,
XFS_FREE_EXTENT_REALTIME |
XFS_FREE_EXTENT_SKIP_DISCARD);
if (error)
return error;
xreap_inc_defer(rs);
return 0;
}
/*
* Compute the maximum number of intent items that reaping can attach to the
* scrub transaction given the worst case log overhead of the intent items
* needed to reap a single CoW staging extent. This is not for freeing
* metadata blocks.
*/
STATIC void
xreap_configure_rgcow_limits(
struct xreap_state *rs)
{
struct xfs_scrub *sc = rs->sc;
struct xfs_mount *mp = sc->mp;
/*
* In the worst case, relogging an intent item causes both an intent
* item and a done item to be attached to a transaction for each extent
* that we'd like to process.
*/
const unsigned int efi = xfs_efi_log_space(1) +
xfs_efd_log_space(1);
const unsigned int rui = xfs_rui_log_space(1) +
xfs_rud_log_space();
const unsigned int cui = xfs_cui_log_space(1) +
xfs_cud_log_space();
/*
* Various things can happen when reaping non-CoW metadata blocks:
*
* t1: Unmapping crosslinked CoW blocks: deferred removal of refcount
* record, which defers removal of rmap record
*
* t2: Freeing CoW blocks: deferred removal of refcount record, which
* defers removal of rmap record; and deferred removal of the space
*
* For simplicity, we'll use the worst-case intents size to determine
* the maximum number of deferred extents before we have to finish the
* whole chain. If we're trying to reap a btree larger than this size,
* a crash midway through reaping can result in leaked blocks.
*/
const unsigned int t1 = cui + rui;
const unsigned int t2 = cui + rui + efi;
const unsigned int per_intent = max(t1, t2);
/*
* For each transaction in a reap chain, we must be able to take one
* step in the defer item chain, which should only consist of CUI, EFI,
* or RUI items.
*/
const unsigned int f1 = xfs_calc_finish_rt_efi_reservation(mp, 1);
const unsigned int f2 = xfs_calc_finish_rt_rui_reservation(mp, 1);
const unsigned int f3 = xfs_calc_finish_rt_cui_reservation(mp, 1);
const unsigned int step_size = max3(f1, f2, f3);
/*
* The only buffer for the rt device is the rtgroup super, so we don't
* need to save space for buffer invalidations.
*/
xreap_configure_limits(rs, step_size, per_intent, per_intent, 0);
trace_xreap_rgcow_limits(sc->tp, 0, 0, step_size, per_intent,
rs->max_deferred);
}
#define XREAP_RTGLOCK_ALL (XFS_RTGLOCK_BITMAP | \
XFS_RTGLOCK_RMAP | \
XFS_RTGLOCK_REFCOUNT)
/*
* Break a rt file metadata extent into sub-extents by fate (crosslinked, not
* crosslinked), and dispose of each sub-extent separately. The extent must
* be aligned to a realtime extent.
*/
STATIC int
xreap_rtmeta_extent(
uint64_t rtbno,
uint64_t len,
void *priv)
{
struct xreap_state *rs = priv;
struct xfs_scrub *sc = rs->sc;
xfs_rgblock_t rgbno = xfs_rtb_to_rgbno(sc->mp, rtbno);
xfs_rgblock_t rgbno_next = rgbno + len;
int error = 0;
ASSERT(sc->ip != NULL);
ASSERT(!sc->sr.rtg);
/*
* We're reaping blocks after repairing file metadata, which means that
* we have to init the xchk_ag structure ourselves.
*/
sc->sr.rtg = xfs_rtgroup_get(sc->mp, xfs_rtb_to_rgno(sc->mp, rtbno));
if (!sc->sr.rtg)
return -EFSCORRUPTED;
xfs_rtgroup_lock(sc->sr.rtg, XREAP_RTGLOCK_ALL);
while (rgbno < rgbno_next) {
xfs_extlen_t rglen;
bool crosslinked;
error = xreap_rgextent_select(rs, rgbno, rgbno_next,
&crosslinked, &rglen);
if (error)
goto out_unlock;
error = xreap_rgextent_iter(rs, rgbno, &rglen, crosslinked);
if (error)
goto out_unlock;
if (xreap_want_defer_finish(rs)) {
error = xfs_defer_finish(&sc->tp);
if (error)
goto out_unlock;
xreap_defer_finish_reset(rs);
} else if (xreap_want_binval_roll(rs)) {
error = xfs_trans_roll_inode(&sc->tp, sc->ip);
if (error)
goto out_unlock;
xreap_binval_reset(rs);
}
rgbno += rglen;
}
out_unlock:
xfs_rtgroup_unlock(sc->sr.rtg, XREAP_RTGLOCK_ALL);
xfs_rtgroup_put(sc->sr.rtg);
sc->sr.rtg = NULL;
return error;
}
/*
* Dispose of every block of every rt metadata extent in the bitmap.
* Do not use this to dispose of the mappings in an ondisk inode fork.
*/
int
xrep_reap_rtblocks(
struct xfs_scrub *sc,
struct xrtb_bitmap *bitmap,
const struct xfs_owner_info *oinfo)
{
struct xreap_state rs = {
.sc = sc,
.oinfo = oinfo,
.resv = XFS_AG_RESV_NONE,
};
int error;
ASSERT(xfs_has_rmapbt(sc->mp));
ASSERT(sc->ip != NULL);
ASSERT(oinfo == &XFS_RMAP_OINFO_COW);
xreap_configure_rgcow_limits(&rs);
error = xrtb_bitmap_walk(bitmap, xreap_rtmeta_extent, &rs);
if (error)
return error;
if (xreap_is_dirty(&rs))
return xrep_defer_finish(sc);
return 0;
}
#endif /* CONFIG_XFS_RT */
/*
* Dispose of every block of an old metadata btree that used to be rooted in a
* metadata directory file.
*/
int
xrep_reap_metadir_fsblocks(
struct xfs_scrub *sc,
struct xfsb_bitmap *bitmap)
{
/*
* Reap old metadir btree blocks with XFS_AG_RESV_NONE because the old
* blocks are no longer mapped by the inode, and inode metadata space
* reservations can only account freed space to the i_nblocks.
*/
struct xfs_owner_info oinfo;
struct xreap_state rs = {
.sc = sc,
.oinfo = &oinfo,
.resv = XFS_AG_RESV_NONE,
};
int error;
ASSERT(xfs_has_rmapbt(sc->mp));
ASSERT(sc->ip != NULL);
ASSERT(xfs_is_metadir_inode(sc->ip));
xreap_configure_agextent_limits(&rs);
xfs_rmap_ino_bmbt_owner(&oinfo, sc->ip->i_ino, XFS_DATA_FORK);
error = xfsb_bitmap_walk(bitmap, xreap_fsmeta_extent, &rs);
if (error)
return error;
if (xreap_is_dirty(&rs)) {
error = xrep_defer_finish(sc);
if (error)
return error;
}
return xrep_reset_metafile_resv(sc);
}
/*
* Metadata files are not supposed to share blocks with anything else.
* If blocks are shared, we remove the reverse mapping (thus reducing the
* crosslink factor); if blocks are not shared, we also need to free them.
*
* This first step determines the longest subset of the passed-in imap
* (starting at its beginning) that is either crosslinked or not crosslinked.
* The blockcount will be adjust down as needed.
*/
STATIC int
xreap_bmapi_select(
struct xreap_state *rs,
struct xfs_bmbt_irec *imap,
bool *crosslinked)
{
struct xfs_owner_info oinfo;
struct xfs_scrub *sc = rs->sc;
struct xfs_btree_cur *cur;
xfs_filblks_t len = 1;
xfs_agblock_t bno;
xfs_agblock_t agbno;
xfs_agblock_t agbno_next;
int error;
agbno = XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock);
agbno_next = agbno + imap->br_blockcount;
cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
sc->sa.pag);
xfs_rmap_ino_owner(&oinfo, rs->ip->i_ino, rs->whichfork,
imap->br_startoff);
error = xfs_rmap_has_other_keys(cur, agbno, 1, &oinfo, crosslinked);
if (error)
goto out_cur;
bno = agbno + 1;
while (bno < agbno_next) {
bool also_crosslinked;
oinfo.oi_offset++;
error = xfs_rmap_has_other_keys(cur, bno, 1, &oinfo,
&also_crosslinked);
if (error)
goto out_cur;
if (also_crosslinked != *crosslinked)
break;
len++;
bno++;
}
imap->br_blockcount = len;
trace_xreap_bmapi_select(pag_group(sc->sa.pag), agbno, len,
*crosslinked);
out_cur:
xfs_btree_del_cursor(cur, error);
return error;
}
/*
* Decide if this buffer can be joined to a transaction. This is true for most
* buffers, but there are two cases that we want to catch: large remote xattr
* value buffers are not logged and can overflow the buffer log item dirty
* bitmap size; and oversized cached buffers if things have really gone
* haywire.
*/
static inline bool
xreap_buf_loggable(
const struct xfs_buf *bp)
{
int i;
for (i = 0; i < bp->b_map_count; i++) {
int chunks;
int map_size;
chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
XFS_BLF_CHUNK);
map_size = DIV_ROUND_UP(chunks, NBWORD);
if (map_size > XFS_BLF_DATAMAP_SIZE)
return false;
}
return true;
}
/*
* Invalidate any buffers for this file mapping. The @imap blockcount may be
* adjusted downward if we need to roll the transaction.
*/
STATIC int
xreap_bmapi_binval(
struct xreap_state *rs,
struct xfs_bmbt_irec *imap)
{
struct xfs_scrub *sc = rs->sc;
struct xfs_mount *mp = sc->mp;
struct xfs_perag *pag = sc->sa.pag;
int bmap_flags = xfs_bmapi_aflag(rs->whichfork);
xfs_fileoff_t off;
xfs_fileoff_t max_off;
xfs_extlen_t scan_blocks;
xfs_agblock_t bno;
xfs_agblock_t agbno;
xfs_agblock_t agbno_next;
int error;
/*
* Avoid invalidating AG headers and post-EOFS blocks because we never
* own those.
*/
agbno = bno = XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock);
agbno_next = agbno + imap->br_blockcount;
if (!xfs_verify_agbno(pag, agbno) ||
!xfs_verify_agbno(pag, agbno_next - 1))
return 0;
/*
* Buffers for file blocks can span multiple contiguous mappings. This
* means that for each block in the mapping, there could exist an
* xfs_buf indexed by that block with any length up to the maximum
* buffer size (remote xattr values) or to the next hole in the fork.
* To set up our binval scan, first we need to figure out the location
* of the next hole.
*/
off = imap->br_startoff + imap->br_blockcount;
max_off = off + xfs_attr3_max_rmt_blocks(mp);
while (off < max_off) {
struct xfs_bmbt_irec hmap;
int nhmaps = 1;
error = xfs_bmapi_read(rs->ip, off, max_off - off, &hmap,
&nhmaps, bmap_flags);
if (error)
return error;
if (nhmaps != 1 || hmap.br_startblock == DELAYSTARTBLOCK) {
ASSERT(0);
return -EFSCORRUPTED;
}
if (!xfs_bmap_is_real_extent(&hmap))
break;
off = hmap.br_startoff + hmap.br_blockcount;
}
scan_blocks = off - imap->br_startoff;
trace_xreap_bmapi_binval_scan(sc, imap, scan_blocks);
/*
* If there are incore buffers for these blocks, invalidate them. If
* we can't (try)lock the buffer we assume it's owned by someone else
* and leave it alone. The buffer cache cannot detect aliasing, so
* employ nested loops to detect incore buffers of any plausible size.
*/
while (bno < agbno_next) {
struct xrep_bufscan scan = {
.daddr = xfs_agbno_to_daddr(pag, bno),
.max_sectors = xrep_bufscan_max_sectors(mp,
scan_blocks),
.daddr_step = XFS_FSB_TO_BB(mp, 1),
};
struct xfs_buf *bp;
while ((bp = xrep_bufscan_advance(mp, &scan)) != NULL) {
if (xreap_buf_loggable(bp)) {
xfs_trans_bjoin(sc->tp, bp);
xfs_trans_binval(sc->tp, bp);
} else {
xfs_buf_stale(bp);
xfs_buf_relse(bp);
}
/*
* Stop invalidating if we've hit the limit; we should
* still have enough reservation left to free however
* far we've gotten.
*/
if (!xreap_inc_binval(rs)) {
imap->br_blockcount = agbno_next - bno;
goto out;
}
}
bno++;
scan_blocks--;
}
out:
trace_xreap_bmapi_binval(pag_group(sc->sa.pag), agbno,
imap->br_blockcount);
return 0;
}
/*
* Dispose of as much of the beginning of this file fork mapping as possible.
* The number of blocks disposed of is returned in @imap->br_blockcount.
*/
STATIC int
xrep_reap_bmapi_iter(
struct xreap_state *rs,
struct xfs_bmbt_irec *imap,
bool crosslinked)
{
struct xfs_scrub *sc = rs->sc;
int error;
if (crosslinked) {
/*
* If there are other rmappings, this block is cross linked and
* must not be freed. Remove the reverse mapping, leave the
* buffer cache in its possibly confused state, and move on.
* We don't want to risk discarding valid data buffers from
* anybody else who thinks they own the block, even though that
* runs the risk of stale buffer warnings in the future.
*/
trace_xreap_dispose_unmap_extent(pag_group(sc->sa.pag),
XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock),
imap->br_blockcount);
/*
* t0: Schedule removal of the mapping from the fork. We use
* deferred log intents in this function to control the exact
* sequence of metadata updates.
*/
xfs_bmap_unmap_extent(sc->tp, rs->ip, rs->whichfork, imap);
xfs_trans_mod_dquot_byino(sc->tp, rs->ip, XFS_TRANS_DQ_BCOUNT,
-(int64_t)imap->br_blockcount);
xfs_rmap_unmap_extent(sc->tp, rs->ip, rs->whichfork, imap);
return 0;
}
/*
* If the block is not crosslinked, we can invalidate all the incore
* buffers for the extent, and then free the extent. This is a bit of
* a mess since we don't detect discontiguous buffers that are indexed
* by a block starting before the first block of the extent but overlap
* anyway.
*/
trace_xreap_dispose_free_extent(pag_group(sc->sa.pag),
XFS_FSB_TO_AGBNO(sc->mp, imap->br_startblock),
imap->br_blockcount);
/*
* Invalidate as many buffers as we can, starting at the beginning of
* this mapping. If this function sets blockcount to zero, the
* transaction is full of logged buffer invalidations, so we need to
* return early so that we can roll and retry.
*/
error = xreap_bmapi_binval(rs, imap);
if (error || imap->br_blockcount == 0)
return error;
/*
* t1: Schedule removal of the mapping from the fork. We use deferred
* work in this function to control the exact sequence of metadata
* updates.
*/
xfs_bmap_unmap_extent(sc->tp, rs->ip, rs->whichfork, imap);
xfs_trans_mod_dquot_byino(sc->tp, rs->ip, XFS_TRANS_DQ_BCOUNT,
-(int64_t)imap->br_blockcount);
return xfs_free_extent_later(sc->tp, imap->br_startblock,
imap->br_blockcount, NULL, XFS_AG_RESV_NONE,
XFS_FREE_EXTENT_SKIP_DISCARD);
}
/* Compute the maximum mapcount of a file buffer. */
static unsigned int
xreap_bmapi_binval_mapcount(
struct xfs_scrub *sc)
{
/* directory blocks can span multiple fsblocks and be discontiguous */
if (sc->sm->sm_type == XFS_SCRUB_TYPE_DIR)
return sc->mp->m_dir_geo->fsbcount;
/* all other file xattr/symlink blocks must be contiguous */
return 1;
}
/* Compute the maximum block size of a file buffer. */
static unsigned int
xreap_bmapi_binval_blocksize(
struct xfs_scrub *sc)
{
switch (sc->sm->sm_type) {
case XFS_SCRUB_TYPE_DIR:
return sc->mp->m_dir_geo->blksize;
case XFS_SCRUB_TYPE_XATTR:
case XFS_SCRUB_TYPE_PARENT:
/*
* The xattr structure itself consists of single fsblocks, but
* there could be remote xattr blocks to invalidate.
*/
return XFS_XATTR_SIZE_MAX;
}
/* everything else is a single block */
return sc->mp->m_sb.sb_blocksize;
}
/*
* Compute the maximum number of buffer invalidations that we can do while
* reaping a single extent from a file fork.
*/
STATIC void
xreap_configure_bmapi_limits(
struct xreap_state *rs)
{
struct xfs_scrub *sc = rs->sc;
struct xfs_mount *mp = sc->mp;
/* overhead of invalidating a buffer */
const unsigned int per_binval =
xfs_buf_inval_log_space(xreap_bmapi_binval_mapcount(sc),
xreap_bmapi_binval_blocksize(sc));
/*
* In the worst case, relogging an intent item causes both an intent
* item and a done item to be attached to a transaction for each extent
* that we'd like to process.
*/
const unsigned int efi = xfs_efi_log_space(1) +
xfs_efd_log_space(1);
const unsigned int rui = xfs_rui_log_space(1) +
xfs_rud_log_space();
const unsigned int bui = xfs_bui_log_space(1) +
xfs_bud_log_space();
/*
* t1: Unmapping crosslinked file data blocks: one bmap deletion,
* possibly an EFI for underfilled bmbt blocks, and an rmap deletion.
*
* t2: Freeing freeing file data blocks: one bmap deletion, possibly an
* EFI for underfilled bmbt blocks, and another EFI for the space
* itself.
*/
const unsigned int t1 = (bui + efi) + rui;
const unsigned int t2 = (bui + efi) + efi;
const unsigned int per_intent = max(t1, t2);
/*
* For each transaction in a reap chain, we must be able to take one
* step in the defer item chain, which should only consist of CUI, EFI,
* or RUI items.
*/
const unsigned int f1 = xfs_calc_finish_efi_reservation(mp, 1);
const unsigned int f2 = xfs_calc_finish_rui_reservation(mp, 1);
const unsigned int f3 = xfs_calc_finish_bui_reservation(mp, 1);
const unsigned int step_size = max3(f1, f2, f3);
/*
* Each call to xreap_ifork_extent starts with a clean transaction and
* operates on a single mapping by creating a chain of log intent items
* for that mapping. We need to leave enough reservation in the
* transaction to log btree buffer and inode updates for each step in
* the chain, and to relog the log intents.
*/
const unsigned int per_extent_res = per_intent + step_size;
xreap_configure_limits(rs, per_extent_res, per_binval, 0, per_binval);
trace_xreap_bmapi_limits(sc->tp, per_binval, rs->max_binval,
step_size, per_intent, 1);
}
/*
* Dispose of as much of this file extent as we can. Upon successful return,
* the imap will reflect the mapping that was removed from the fork.
*/
STATIC int
xreap_ifork_extent(
struct xreap_state *rs,
struct xfs_bmbt_irec *imap)
{
struct xfs_scrub *sc = rs->sc;
xfs_agnumber_t agno;
bool crosslinked;
int error;
ASSERT(sc->sa.pag == NULL);
trace_xreap_ifork_extent(sc, rs->ip, rs->whichfork, imap);
agno = XFS_FSB_TO_AGNO(sc->mp, imap->br_startblock);
sc->sa.pag = xfs_perag_get(sc->mp, agno);
if (!sc->sa.pag)
return -EFSCORRUPTED;
error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &sc->sa.agf_bp);
if (error)
goto out_pag;
/*
* Decide the fate of the blocks at the beginning of the mapping, then
* update the mapping to use it with the unmap calls.
*/
error = xreap_bmapi_select(rs, imap, &crosslinked);
if (error)
goto out_agf;
error = xrep_reap_bmapi_iter(rs, imap, crosslinked);
if (error)
goto out_agf;
out_agf:
xfs_trans_brelse(sc->tp, sc->sa.agf_bp);
sc->sa.agf_bp = NULL;
out_pag:
xfs_perag_put(sc->sa.pag);
sc->sa.pag = NULL;
return error;
}
/*
* Dispose of each block mapped to the given fork of the given file. Callers
* must hold ILOCK_EXCL, and ip can only be sc->ip or sc->tempip. The fork
* must not have any delalloc reservations.
*/
int
xrep_reap_ifork(
struct xfs_scrub *sc,
struct xfs_inode *ip,
int whichfork)
{
struct xreap_state rs = {
.sc = sc,
.ip = ip,
.whichfork = whichfork,
};
xfs_fileoff_t off = 0;
int bmap_flags = xfs_bmapi_aflag(whichfork);
int error;
ASSERT(xfs_has_rmapbt(sc->mp));
ASSERT(ip == sc->ip || ip == sc->tempip);
ASSERT(whichfork == XFS_ATTR_FORK || !XFS_IS_REALTIME_INODE(ip));
xreap_configure_bmapi_limits(&rs);
while (off < XFS_MAX_FILEOFF) {
struct xfs_bmbt_irec imap;
int nimaps = 1;
/* Read the next extent, skip past holes and delalloc. */
error = xfs_bmapi_read(ip, off, XFS_MAX_FILEOFF - off, &imap,
&nimaps, bmap_flags);
if (error)
return error;
if (nimaps != 1 || imap.br_startblock == DELAYSTARTBLOCK) {
ASSERT(0);
return -EFSCORRUPTED;
}
/*
* If this is a real space mapping, reap as much of it as we
* can in a single transaction.
*/
if (xfs_bmap_is_real_extent(&imap)) {
error = xreap_ifork_extent(&rs, &imap);
if (error)
return error;
error = xfs_defer_finish(&sc->tp);
if (error)
return error;
xreap_defer_finish_reset(&rs);
}
off = imap.br_startoff + imap.br_blockcount;
}
return 0;
}
|