1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Runtime Verification.
*
* For futher information, see: kernel/trace/rv/rv.c.
*/
#ifndef _LINUX_RV_H
#define _LINUX_RV_H
#include <linux/types.h>
#include <linux/list.h>
#define MAX_DA_NAME_LEN 32
#define MAX_DA_RETRY_RACING_EVENTS 3
#ifdef CONFIG_RV
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/array_size.h>
/*
* Deterministic automaton per-object variables.
*/
struct da_monitor {
bool monitoring;
unsigned int curr_state;
};
#ifdef CONFIG_RV_LTL_MONITOR
/*
* In the future, if the number of atomic propositions or the size of Buchi
* automaton is larger, we can switch to dynamic allocation. For now, the code
* is simpler this way.
*/
#define RV_MAX_LTL_ATOM 32
#define RV_MAX_BA_STATES 32
/**
* struct ltl_monitor - A linear temporal logic runtime verification monitor
* @states: States in the Buchi automaton. As Buchi automaton is a
* non-deterministic state machine, the monitor can be in multiple
* states simultaneously. This is a bitmask of all possible states.
* If this is zero, that means either:
* - The monitor has not started yet (e.g. because not all
* atomic propositions are known).
* - There is no possible state to be in. In other words, a
* violation of the LTL property is detected.
* @atoms: The values of atomic propositions.
* @unknown_atoms: Atomic propositions which are still unknown.
*/
struct ltl_monitor {
DECLARE_BITMAP(states, RV_MAX_BA_STATES);
DECLARE_BITMAP(atoms, RV_MAX_LTL_ATOM);
DECLARE_BITMAP(unknown_atoms, RV_MAX_LTL_ATOM);
};
static inline bool rv_ltl_valid_state(struct ltl_monitor *mon)
{
for (int i = 0; i < ARRAY_SIZE(mon->states); ++i) {
if (mon->states[i])
return true;
}
return false;
}
static inline bool rv_ltl_all_atoms_known(struct ltl_monitor *mon)
{
for (int i = 0; i < ARRAY_SIZE(mon->unknown_atoms); ++i) {
if (mon->unknown_atoms[i])
return false;
}
return true;
}
#else
struct ltl_monitor {};
#endif /* CONFIG_RV_LTL_MONITOR */
#define RV_PER_TASK_MONITOR_INIT (CONFIG_RV_PER_TASK_MONITORS)
union rv_task_monitor {
struct da_monitor da_mon;
struct ltl_monitor ltl_mon;
};
#ifdef CONFIG_RV_REACTORS
struct rv_reactor {
const char *name;
const char *description;
__printf(1, 2) void (*react)(const char *msg, ...);
struct list_head list;
};
#endif
struct rv_monitor {
const char *name;
const char *description;
bool enabled;
int (*enable)(void);
void (*disable)(void);
void (*reset)(void);
#ifdef CONFIG_RV_REACTORS
struct rv_reactor *reactor;
__printf(1, 2) void (*react)(const char *msg, ...);
#endif
struct list_head list;
struct rv_monitor *parent;
struct dentry *root_d;
};
bool rv_monitoring_on(void);
int rv_unregister_monitor(struct rv_monitor *monitor);
int rv_register_monitor(struct rv_monitor *monitor, struct rv_monitor *parent);
int rv_get_task_monitor_slot(void);
void rv_put_task_monitor_slot(int slot);
#ifdef CONFIG_RV_REACTORS
bool rv_reacting_on(void);
int rv_unregister_reactor(struct rv_reactor *reactor);
int rv_register_reactor(struct rv_reactor *reactor);
#else
static inline bool rv_reacting_on(void)
{
return false;
}
#endif /* CONFIG_RV_REACTORS */
#endif /* CONFIG_RV */
#endif /* _LINUX_RV_H */
|