summaryrefslogtreecommitdiff
path: root/kernel/bpf/liveness.c
blob: 3c611aba7f52c541408627b780ea664776145e8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2025 Meta Platforms, Inc. and affiliates. */

#include <linux/bpf_verifier.h>
#include <linux/hashtable.h>
#include <linux/jhash.h>
#include <linux/slab.h>

/*
 * This file implements live stack slots analysis. After accumulating
 * stack usage data, the analysis answers queries about whether a
 * particular stack slot may be read by an instruction or any of it's
 * successors.  This data is consumed by the verifier states caching
 * mechanism to decide which stack slots are important when looking for a
 * visited state corresponding to the current state.
 *
 * The analysis is call chain sensitive, meaning that data is collected
 * and queried for tuples (call chain, subprogram instruction index).
 * Such sensitivity allows identifying if some subprogram call always
 * leads to writes in the caller's stack.
 *
 * The basic idea is as follows:
 * - As the verifier accumulates a set of visited states, the analysis instance
 *   accumulates a conservative estimate of stack slots that can be read
 *   or must be written for each visited tuple (call chain, instruction index).
 * - If several states happen to visit the same instruction with the same
 *   call chain, stack usage information for the corresponding tuple is joined:
 *   - "may_read" set represents a union of all possibly read slots
 *     (any slot in "may_read" set might be read at or after the instruction);
 *   - "must_write" set represents an intersection of all possibly written slots
 *     (any slot in "must_write" set is guaranteed to be written by the instruction).
 * - The analysis is split into two phases:
 *   - read and write marks accumulation;
 *   - read and write marks propagation.
 * - The propagation phase is a textbook live variable data flow analysis:
 *
 *     state[cc, i].live_after = U [state[cc, s].live_before for s in insn_successors(i)]
 *     state[cc, i].live_before =
 *       (state[cc, i].live_after / state[cc, i].must_write) U state[i].may_read
 *
 *   Where:
 *   - `U`  stands for set union
 *   - `/`  stands for set difference;
 *   - `cc` stands for a call chain;
 *   - `i` and `s` are instruction indexes;
 *
 *   The above equations are computed for each call chain and instruction
 *   index until state stops changing.
 * - Additionally, in order to transfer "must_write" information from a
 *   subprogram to call instructions invoking this subprogram,
 *   the "must_write_acc" set is tracked for each (cc, i) tuple.
 *   A set of stack slots that are guaranteed to be written by this
 *   instruction or any of its successors (within the subprogram).
 *   The equation for "must_write_acc" propagation looks as follows:
 *
 *     state[cc, i].must_write_acc =
 *       ∩ [state[cc, s].must_write_acc for s in insn_successors(i)]
 *       U state[cc, i].must_write
 *
 *   (An intersection of all "must_write_acc" for instruction successors
 *    plus all "must_write" slots for the instruction itself).
 * - After the propagation phase completes for a subprogram, information from
 *   (cc, 0) tuple (subprogram entry) is transferred to the caller's call chain:
 *   - "must_write_acc" set is intersected with the call site's "must_write" set;
 *   - "may_read" set is added to the call site's "may_read" set.
 * - Any live stack queries must be taken after the propagation phase.
 * - Accumulation and propagation phases can be entered multiple times,
 *   at any point in time:
 *   - "may_read" set only grows;
 *   - "must_write" set only shrinks;
 *   - for each visited verifier state with zero branches, all relevant
 *     read and write marks are already recorded by the analysis instance.
 *
 * Technically, the analysis is facilitated by the following data structures:
 * - Call chain: for given verifier state, the call chain is a tuple of call
 *   instruction indexes leading to the current subprogram plus the subprogram
 *   entry point index.
 * - Function instance: for a given call chain, for each instruction in
 *   the current subprogram, a mapping between instruction index and a
 *   set of "may_read", "must_write" and other marks accumulated for this
 *   instruction.
 * - A hash table mapping call chains to function instances.
 */

struct callchain {
	u32 callsites[MAX_CALL_FRAMES];	/* instruction pointer for each frame */
	/* cached subprog_info[*].start for functions owning the frames:
	 * - sp_starts[curframe] used to get insn relative index within current function;
	 * - sp_starts[0..current-1] used for fast callchain_frame_up().
	 */
	u32 sp_starts[MAX_CALL_FRAMES];
	u32 curframe;			/* depth of callsites and sp_starts arrays */
};

struct per_frame_masks {
	u64 may_read;		/* stack slots that may be read by this instruction */
	u64 must_write;		/* stack slots written by this instruction */
	u64 must_write_acc;	/* stack slots written by this instruction and its successors */
	u64 live_before;	/* stack slots that may be read by this insn and its successors */
};

/*
 * A function instance created for a specific callchain.
 * Encapsulates read and write marks for each instruction in the function.
 * Marks are tracked for each frame in the callchain.
 */
struct func_instance {
	struct hlist_node hl_node;
	struct callchain callchain;
	u32 insn_cnt;		/* cached number of insns in the function */
	bool updated;
	bool must_write_dropped;
	/* Per frame, per instruction masks, frames allocated lazily. */
	struct per_frame_masks *frames[MAX_CALL_FRAMES];
	/* For each instruction a flag telling if "must_write" had been initialized for it. */
	bool *must_write_set;
};

struct live_stack_query {
	struct func_instance *instances[MAX_CALL_FRAMES]; /* valid in range [0..curframe] */
	u32 curframe;
	u32 insn_idx;
};

struct bpf_liveness {
	DECLARE_HASHTABLE(func_instances, 8);		/* maps callchain to func_instance */
	struct live_stack_query live_stack_query;	/* cache to avoid repetitive ht lookups */
	/* Cached instance corresponding to env->cur_state, avoids per-instruction ht lookup */
	struct func_instance *cur_instance;
	/*
	 * Below fields are used to accumulate stack write marks for instruction at
	 * @write_insn_idx before submitting the marks to @cur_instance.
	 */
	u64 write_masks_acc[MAX_CALL_FRAMES];
	u32 write_insn_idx;
};

/* Compute callchain corresponding to state @st at depth @frameno */
static void compute_callchain(struct bpf_verifier_env *env, struct bpf_verifier_state *st,
			      struct callchain *callchain, u32 frameno)
{
	struct bpf_subprog_info *subprog_info = env->subprog_info;
	u32 i;

	memset(callchain, 0, sizeof(*callchain));
	for (i = 0; i <= frameno; i++) {
		callchain->sp_starts[i] = subprog_info[st->frame[i]->subprogno].start;
		if (i < st->curframe)
			callchain->callsites[i] = st->frame[i + 1]->callsite;
	}
	callchain->curframe = frameno;
	callchain->callsites[callchain->curframe] = callchain->sp_starts[callchain->curframe];
}

static u32 hash_callchain(struct callchain *callchain)
{
	return jhash2(callchain->callsites, callchain->curframe, 0);
}

static bool same_callsites(struct callchain *a, struct callchain *b)
{
	int i;

	if (a->curframe != b->curframe)
		return false;
	for (i = a->curframe; i >= 0; i--)
		if (a->callsites[i] != b->callsites[i])
			return false;
	return true;
}

/*
 * Find existing or allocate new function instance corresponding to @callchain.
 * Instances are accumulated in env->liveness->func_instances and persist
 * until the end of the verification process.
 */
static struct func_instance *__lookup_instance(struct bpf_verifier_env *env,
					       struct callchain *callchain)
{
	struct bpf_liveness *liveness = env->liveness;
	struct bpf_subprog_info *subprog;
	struct func_instance *result;
	u32 subprog_sz, size, key;

	key = hash_callchain(callchain);
	hash_for_each_possible(liveness->func_instances, result, hl_node, key)
		if (same_callsites(&result->callchain, callchain))
			return result;

	subprog = bpf_find_containing_subprog(env, callchain->sp_starts[callchain->curframe]);
	subprog_sz = (subprog + 1)->start - subprog->start;
	size = sizeof(struct func_instance);
	result = kvzalloc(size, GFP_KERNEL_ACCOUNT);
	if (!result)
		return ERR_PTR(-ENOMEM);
	result->must_write_set = kvcalloc(subprog_sz, sizeof(*result->must_write_set),
					  GFP_KERNEL_ACCOUNT);
	if (!result->must_write_set)
		return ERR_PTR(-ENOMEM);
	memcpy(&result->callchain, callchain, sizeof(*callchain));
	result->insn_cnt = subprog_sz;
	hash_add(liveness->func_instances, &result->hl_node, key);
	return result;
}

static struct func_instance *lookup_instance(struct bpf_verifier_env *env,
					     struct bpf_verifier_state *st,
					     u32 frameno)
{
	struct callchain callchain;

	compute_callchain(env, st, &callchain, frameno);
	return __lookup_instance(env, &callchain);
}

int bpf_stack_liveness_init(struct bpf_verifier_env *env)
{
	env->liveness = kvzalloc(sizeof(*env->liveness), GFP_KERNEL_ACCOUNT);
	if (!env->liveness)
		return -ENOMEM;
	hash_init(env->liveness->func_instances);
	return 0;
}

void bpf_stack_liveness_free(struct bpf_verifier_env *env)
{
	struct func_instance *instance;
	struct hlist_node *tmp;
	int bkt, i;

	if (!env->liveness)
		return;
	hash_for_each_safe(env->liveness->func_instances, bkt, tmp, instance, hl_node) {
		for (i = 0; i <= instance->callchain.curframe; i++)
			kvfree(instance->frames[i]);
		kvfree(instance->must_write_set);
		kvfree(instance);
	}
	kvfree(env->liveness);
}

/*
 * Convert absolute instruction index @insn_idx to an index relative
 * to start of the function corresponding to @instance.
 */
static int relative_idx(struct func_instance *instance, u32 insn_idx)
{
	return insn_idx - instance->callchain.sp_starts[instance->callchain.curframe];
}

static struct per_frame_masks *get_frame_masks(struct func_instance *instance,
					       u32 frame, u32 insn_idx)
{
	if (!instance->frames[frame])
		return NULL;

	return &instance->frames[frame][relative_idx(instance, insn_idx)];
}

static struct per_frame_masks *alloc_frame_masks(struct bpf_verifier_env *env,
						 struct func_instance *instance,
						 u32 frame, u32 insn_idx)
{
	struct per_frame_masks *arr;

	if (!instance->frames[frame]) {
		arr = kvcalloc(instance->insn_cnt, sizeof(*arr), GFP_KERNEL_ACCOUNT);
		instance->frames[frame] = arr;
		if (!arr)
			return ERR_PTR(-ENOMEM);
	}
	return get_frame_masks(instance, frame, insn_idx);
}

void bpf_reset_live_stack_callchain(struct bpf_verifier_env *env)
{
	env->liveness->cur_instance = NULL;
}

/* If @env->liveness->cur_instance is null, set it to instance corresponding to @env->cur_state. */
static int ensure_cur_instance(struct bpf_verifier_env *env)
{
	struct bpf_liveness *liveness = env->liveness;
	struct func_instance *instance;

	if (liveness->cur_instance)
		return 0;

	instance = lookup_instance(env, env->cur_state, env->cur_state->curframe);
	if (IS_ERR(instance))
		return PTR_ERR(instance);

	liveness->cur_instance = instance;
	return 0;
}

/* Accumulate may_read masks for @frame at @insn_idx */
static int mark_stack_read(struct bpf_verifier_env *env,
			   struct func_instance *instance, u32 frame, u32 insn_idx, u64 mask)
{
	struct per_frame_masks *masks;
	u64 new_may_read;

	masks = alloc_frame_masks(env, instance, frame, insn_idx);
	if (IS_ERR(masks))
		return PTR_ERR(masks);
	new_may_read = masks->may_read | mask;
	if (new_may_read != masks->may_read &&
	    ((new_may_read | masks->live_before) != masks->live_before))
		instance->updated = true;
	masks->may_read |= mask;
	return 0;
}

int bpf_mark_stack_read(struct bpf_verifier_env *env, u32 frame, u32 insn_idx, u64 mask)
{
	int err;

	err = ensure_cur_instance(env);
	err = err ?: mark_stack_read(env, env->liveness->cur_instance, frame, insn_idx, mask);
	return err;
}

static void reset_stack_write_marks(struct bpf_verifier_env *env,
				    struct func_instance *instance, u32 insn_idx)
{
	struct bpf_liveness *liveness = env->liveness;
	int i;

	liveness->write_insn_idx = insn_idx;
	for (i = 0; i <= instance->callchain.curframe; i++)
		liveness->write_masks_acc[i] = 0;
}

int bpf_reset_stack_write_marks(struct bpf_verifier_env *env, u32 insn_idx)
{
	struct bpf_liveness *liveness = env->liveness;
	int err;

	err = ensure_cur_instance(env);
	if (err)
		return err;

	reset_stack_write_marks(env, liveness->cur_instance, insn_idx);
	return 0;
}

void bpf_mark_stack_write(struct bpf_verifier_env *env, u32 frame, u64 mask)
{
	env->liveness->write_masks_acc[frame] |= mask;
}

static int commit_stack_write_marks(struct bpf_verifier_env *env,
				    struct func_instance *instance)
{
	struct bpf_liveness *liveness = env->liveness;
	u32 idx, frame, curframe, old_must_write;
	struct per_frame_masks *masks;
	u64 mask;

	if (!instance)
		return 0;

	curframe = instance->callchain.curframe;
	idx = relative_idx(instance, liveness->write_insn_idx);
	for (frame = 0; frame <= curframe; frame++) {
		mask = liveness->write_masks_acc[frame];
		/* avoid allocating frames for zero masks */
		if (mask == 0 && !instance->must_write_set[idx])
			continue;
		masks = alloc_frame_masks(env, instance, frame, liveness->write_insn_idx);
		if (IS_ERR(masks))
			return PTR_ERR(masks);
		old_must_write = masks->must_write;
		/*
		 * If instruction at this callchain is seen for a first time, set must_write equal
		 * to @mask. Otherwise take intersection with the previous value.
		 */
		if (instance->must_write_set[idx])
			mask &= old_must_write;
		if (old_must_write != mask) {
			masks->must_write = mask;
			instance->updated = true;
		}
		if (old_must_write & ~mask)
			instance->must_write_dropped = true;
	}
	instance->must_write_set[idx] = true;
	liveness->write_insn_idx = 0;
	return 0;
}

/*
 * Merge stack writes marks in @env->liveness->write_masks_acc
 * with information already in @env->liveness->cur_instance.
 */
int bpf_commit_stack_write_marks(struct bpf_verifier_env *env)
{
	return commit_stack_write_marks(env, env->liveness->cur_instance);
}

static char *fmt_callchain(struct bpf_verifier_env *env, struct callchain *callchain)
{
	char *buf_end = env->tmp_str_buf + sizeof(env->tmp_str_buf);
	char *buf = env->tmp_str_buf;
	int i;

	buf += snprintf(buf, buf_end - buf, "(");
	for (i = 0; i <= callchain->curframe; i++)
		buf += snprintf(buf, buf_end - buf, "%s%d", i ? "," : "", callchain->callsites[i]);
	snprintf(buf, buf_end - buf, ")");
	return env->tmp_str_buf;
}

static void log_mask_change(struct bpf_verifier_env *env, struct callchain *callchain,
			    char *pfx, u32 frame, u32 insn_idx, u64 old, u64 new)
{
	u64 changed_bits = old ^ new;
	u64 new_ones = new & changed_bits;
	u64 new_zeros = ~new & changed_bits;

	if (!changed_bits)
		return;
	bpf_log(&env->log, "%s frame %d insn %d ", fmt_callchain(env, callchain), frame, insn_idx);
	if (new_ones) {
		bpf_fmt_stack_mask(env->tmp_str_buf, sizeof(env->tmp_str_buf), new_ones);
		bpf_log(&env->log, "+%s %s ", pfx, env->tmp_str_buf);
	}
	if (new_zeros) {
		bpf_fmt_stack_mask(env->tmp_str_buf, sizeof(env->tmp_str_buf), new_zeros);
		bpf_log(&env->log, "-%s %s", pfx, env->tmp_str_buf);
	}
	bpf_log(&env->log, "\n");
}

int bpf_jmp_offset(struct bpf_insn *insn)
{
	u8 code = insn->code;

	if (code == (BPF_JMP32 | BPF_JA))
		return insn->imm;
	return insn->off;
}

__diag_push();
__diag_ignore_all("-Woverride-init", "Allow field initialization overrides for opcode_info_tbl");

inline int bpf_insn_successors(struct bpf_prog *prog, u32 idx, u32 succ[2])
{
	static const struct opcode_info {
		bool can_jump;
		bool can_fallthrough;
	} opcode_info_tbl[256] = {
		[0 ... 255] = {.can_jump = false, .can_fallthrough = true},
	#define _J(code, ...) \
		[BPF_JMP   | code] = __VA_ARGS__, \
		[BPF_JMP32 | code] = __VA_ARGS__

		_J(BPF_EXIT,  {.can_jump = false, .can_fallthrough = false}),
		_J(BPF_JA,    {.can_jump = true,  .can_fallthrough = false}),
		_J(BPF_JEQ,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JNE,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JLT,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JLE,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JGT,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JGE,   {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JSGT,  {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JSGE,  {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JSLT,  {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JSLE,  {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JCOND, {.can_jump = true,  .can_fallthrough = true}),
		_J(BPF_JSET,  {.can_jump = true,  .can_fallthrough = true}),
	#undef _J
	};
	struct bpf_insn *insn = &prog->insnsi[idx];
	const struct opcode_info *opcode_info;
	int i = 0, insn_sz;

	opcode_info = &opcode_info_tbl[BPF_CLASS(insn->code) | BPF_OP(insn->code)];
	insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
	if (opcode_info->can_fallthrough)
		succ[i++] = idx + insn_sz;

	if (opcode_info->can_jump)
		succ[i++] = idx + bpf_jmp_offset(insn) + 1;

	return i;
}

__diag_pop();

static struct func_instance *get_outer_instance(struct bpf_verifier_env *env,
						struct func_instance *instance)
{
	struct callchain callchain = instance->callchain;

	/* Adjust @callchain to represent callchain one frame up */
	callchain.callsites[callchain.curframe] = 0;
	callchain.sp_starts[callchain.curframe] = 0;
	callchain.curframe--;
	callchain.callsites[callchain.curframe] = callchain.sp_starts[callchain.curframe];
	return __lookup_instance(env, &callchain);
}

static u32 callchain_subprog_start(struct callchain *callchain)
{
	return callchain->sp_starts[callchain->curframe];
}

/*
 * Transfer @may_read and @must_write_acc marks from the first instruction of @instance,
 * to the call instruction in function instance calling @instance.
 */
static int propagate_to_outer_instance(struct bpf_verifier_env *env,
				       struct func_instance *instance)
{
	struct callchain *callchain = &instance->callchain;
	u32 this_subprog_start, callsite, frame;
	struct func_instance *outer_instance;
	struct per_frame_masks *insn;
	int err;

	this_subprog_start = callchain_subprog_start(callchain);
	outer_instance = get_outer_instance(env, instance);
	callsite = callchain->callsites[callchain->curframe - 1];

	reset_stack_write_marks(env, outer_instance, callsite);
	for (frame = 0; frame < callchain->curframe; frame++) {
		insn = get_frame_masks(instance, frame, this_subprog_start);
		if (!insn)
			continue;
		bpf_mark_stack_write(env, frame, insn->must_write_acc);
		err = mark_stack_read(env, outer_instance, frame, callsite, insn->live_before);
		if (err)
			return err;
	}
	commit_stack_write_marks(env, outer_instance);
	return 0;
}

static inline bool update_insn(struct bpf_verifier_env *env,
			       struct func_instance *instance, u32 frame, u32 insn_idx)
{
	struct bpf_insn_aux_data *aux = env->insn_aux_data;
	u64 new_before, new_after, must_write_acc;
	struct per_frame_masks *insn, *succ_insn;
	u32 succ_num, s, succ[2];
	bool changed;

	succ_num = bpf_insn_successors(env->prog, insn_idx, succ);
	if (unlikely(succ_num == 0))
		return false;

	changed = false;
	insn = get_frame_masks(instance, frame, insn_idx);
	new_before = 0;
	new_after = 0;
	/*
	 * New "must_write_acc" is an intersection of all "must_write_acc"
	 * of successors plus all "must_write" slots of instruction itself.
	 */
	must_write_acc = U64_MAX;
	for (s = 0; s < succ_num; ++s) {
		succ_insn = get_frame_masks(instance, frame, succ[s]);
		new_after |= succ_insn->live_before;
		must_write_acc &= succ_insn->must_write_acc;
	}
	must_write_acc |= insn->must_write;
	/*
	 * New "live_before" is a union of all "live_before" of successors
	 * minus slots written by instruction plus slots read by instruction.
	 */
	new_before = (new_after & ~insn->must_write) | insn->may_read;
	changed |= new_before != insn->live_before;
	changed |= must_write_acc != insn->must_write_acc;
	if (unlikely(env->log.level & BPF_LOG_LEVEL2) &&
	    (insn->may_read || insn->must_write ||
	     insn_idx == callchain_subprog_start(&instance->callchain) ||
	     aux[insn_idx].prune_point)) {
		log_mask_change(env, &instance->callchain, "live",
				frame, insn_idx, insn->live_before, new_before);
		log_mask_change(env, &instance->callchain, "written",
				frame, insn_idx, insn->must_write_acc, must_write_acc);
	}
	insn->live_before = new_before;
	insn->must_write_acc = must_write_acc;
	return changed;
}

/* Fixed-point computation of @live_before and @must_write_acc marks */
static int update_instance(struct bpf_verifier_env *env, struct func_instance *instance)
{
	u32 i, frame, po_start, po_end, cnt, this_subprog_start;
	struct callchain *callchain = &instance->callchain;
	int *insn_postorder = env->cfg.insn_postorder;
	struct bpf_subprog_info *subprog;
	struct per_frame_masks *insn;
	bool changed;
	int err;

	this_subprog_start = callchain_subprog_start(callchain);
	/*
	 * If must_write marks were updated must_write_acc needs to be reset
	 * (to account for the case when new must_write sets became smaller).
	 */
	if (instance->must_write_dropped) {
		for (frame = 0; frame <= callchain->curframe; frame++) {
			if (!instance->frames[frame])
				continue;

			for (i = 0; i < instance->insn_cnt; i++) {
				insn = get_frame_masks(instance, frame, this_subprog_start + i);
				insn->must_write_acc = 0;
			}
		}
	}

	subprog = bpf_find_containing_subprog(env, this_subprog_start);
	po_start = subprog->postorder_start;
	po_end = (subprog + 1)->postorder_start;
	cnt = 0;
	/* repeat until fixed point is reached */
	do {
		cnt++;
		changed = false;
		for (frame = 0; frame <= instance->callchain.curframe; frame++) {
			if (!instance->frames[frame])
				continue;

			for (i = po_start; i < po_end; i++)
				changed |= update_insn(env, instance, frame, insn_postorder[i]);
		}
	} while (changed);

	if (env->log.level & BPF_LOG_LEVEL2)
		bpf_log(&env->log, "%s live stack update done in %d iterations\n",
			fmt_callchain(env, callchain), cnt);

	/* transfer marks accumulated for outer frames to outer func instance (caller) */
	if (callchain->curframe > 0) {
		err = propagate_to_outer_instance(env, instance);
		if (err)
			return err;
	}

	return 0;
}

/*
 * Prepare all callchains within @env->cur_state for querying.
 * This function should be called after each verifier.c:pop_stack()
 * and whenever verifier.c:do_check_insn() processes subprogram exit.
 * This would guarantee that visited verifier states with zero branches
 * have their bpf_mark_stack_{read,write}() effects propagated in
 * @env->liveness.
 */
int bpf_update_live_stack(struct bpf_verifier_env *env)
{
	struct func_instance *instance;
	int err, frame;

	bpf_reset_live_stack_callchain(env);
	for (frame = env->cur_state->curframe; frame >= 0; --frame) {
		instance = lookup_instance(env, env->cur_state, frame);
		if (IS_ERR(instance))
			return PTR_ERR(instance);

		if (instance->updated) {
			err = update_instance(env, instance);
			if (err)
				return err;
			instance->updated = false;
			instance->must_write_dropped = false;
		}
	}
	return 0;
}

static bool is_live_before(struct func_instance *instance, u32 insn_idx, u32 frameno, u32 spi)
{
	struct per_frame_masks *masks;

	masks = get_frame_masks(instance, frameno, insn_idx);
	return masks && (masks->live_before & BIT(spi));
}

int bpf_live_stack_query_init(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
{
	struct live_stack_query *q = &env->liveness->live_stack_query;
	struct func_instance *instance;
	u32 frame;

	memset(q, 0, sizeof(*q));
	for (frame = 0; frame <= st->curframe; frame++) {
		instance = lookup_instance(env, st, frame);
		if (IS_ERR(instance))
			return PTR_ERR(instance);
		q->instances[frame] = instance;
	}
	q->curframe = st->curframe;
	q->insn_idx = st->insn_idx;
	return 0;
}

bool bpf_stack_slot_alive(struct bpf_verifier_env *env, u32 frameno, u32 spi)
{
	/*
	 * Slot is alive if it is read before q->st->insn_idx in current func instance,
	 * or if for some outer func instance:
	 * - alive before callsite if callsite calls callback, otherwise
	 * - alive after callsite
	 */
	struct live_stack_query *q = &env->liveness->live_stack_query;
	struct func_instance *instance, *curframe_instance;
	u32 i, callsite;
	bool alive;

	curframe_instance = q->instances[q->curframe];
	if (is_live_before(curframe_instance, q->insn_idx, frameno, spi))
		return true;

	for (i = frameno; i < q->curframe; i++) {
		callsite = curframe_instance->callchain.callsites[i];
		instance = q->instances[i];
		alive = bpf_calls_callback(env, callsite)
			? is_live_before(instance, callsite, frameno, spi)
			: is_live_before(instance, callsite + 1, frameno, spi);
		if (alive)
			return true;
	}

	return false;
}