summaryrefslogtreecommitdiff
path: root/kernel/bpf/tnum.c
blob: f8e70e9c3998d475509aaf1257e2f4939e8a6995 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// SPDX-License-Identifier: GPL-2.0-only
/* tnum: tracked (or tristate) numbers
 *
 * A tnum tracks knowledge about the bits of a value.  Each bit can be either
 * known (0 or 1), or unknown (x).  Arithmetic operations on tnums will
 * propagate the unknown bits such that the tnum result represents all the
 * possible results for possible values of the operands.
 */
#include <linux/kernel.h>
#include <linux/tnum.h>

#define TNUM(_v, _m)	(struct tnum){.value = _v, .mask = _m}
/* A completely unknown value */
const struct tnum tnum_unknown = { .value = 0, .mask = -1 };

struct tnum tnum_const(u64 value)
{
	return TNUM(value, 0);
}

struct tnum tnum_range(u64 min, u64 max)
{
	u64 chi = min ^ max, delta;
	u8 bits = fls64(chi);

	/* special case, needed because 1ULL << 64 is undefined */
	if (bits > 63)
		return tnum_unknown;
	/* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
	 * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
	 *  constant min (since min == max).
	 */
	delta = (1ULL << bits) - 1;
	return TNUM(min & ~delta, delta);
}

struct tnum tnum_lshift(struct tnum a, u8 shift)
{
	return TNUM(a.value << shift, a.mask << shift);
}

struct tnum tnum_rshift(struct tnum a, u8 shift)
{
	return TNUM(a.value >> shift, a.mask >> shift);
}

struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness)
{
	/* if a.value is negative, arithmetic shifting by minimum shift
	 * will have larger negative offset compared to more shifting.
	 * If a.value is nonnegative, arithmetic shifting by minimum shift
	 * will have larger positive offset compare to more shifting.
	 */
	if (insn_bitness == 32)
		return TNUM((u32)(((s32)a.value) >> min_shift),
			    (u32)(((s32)a.mask)  >> min_shift));
	else
		return TNUM((s64)a.value >> min_shift,
			    (s64)a.mask  >> min_shift);
}

struct tnum tnum_add(struct tnum a, struct tnum b)
{
	u64 sm, sv, sigma, chi, mu;

	sm = a.mask + b.mask;
	sv = a.value + b.value;
	sigma = sm + sv;
	chi = sigma ^ sv;
	mu = chi | a.mask | b.mask;
	return TNUM(sv & ~mu, mu);
}

struct tnum tnum_sub(struct tnum a, struct tnum b)
{
	u64 dv, alpha, beta, chi, mu;

	dv = a.value - b.value;
	alpha = dv + a.mask;
	beta = dv - b.mask;
	chi = alpha ^ beta;
	mu = chi | a.mask | b.mask;
	return TNUM(dv & ~mu, mu);
}

struct tnum tnum_neg(struct tnum a)
{
	return tnum_sub(TNUM(0, 0), a);
}

struct tnum tnum_and(struct tnum a, struct tnum b)
{
	u64 alpha, beta, v;

	alpha = a.value | a.mask;
	beta = b.value | b.mask;
	v = a.value & b.value;
	return TNUM(v, alpha & beta & ~v);
}

struct tnum tnum_or(struct tnum a, struct tnum b)
{
	u64 v, mu;

	v = a.value | b.value;
	mu = a.mask | b.mask;
	return TNUM(v, mu & ~v);
}

struct tnum tnum_xor(struct tnum a, struct tnum b)
{
	u64 v, mu;

	v = a.value ^ b.value;
	mu = a.mask | b.mask;
	return TNUM(v & ~mu, mu);
}

/* Perform long multiplication, iterating through the bits in a using rshift:
 * - if LSB(a) is a known 0, keep current accumulator
 * - if LSB(a) is a known 1, add b to current accumulator
 * - if LSB(a) is unknown, take a union of the above cases.
 *
 * For example:
 *
 *               acc_0:        acc_1:
 *
 *     11 *  ->      11 *  ->      11 *  -> union(0011, 1001) == x0x1
 *     x1            01            11
 * ------        ------        ------
 *     11            11            11
 *    xx            00            11
 * ------        ------        ------
 *   ????          0011          1001
 */
struct tnum tnum_mul(struct tnum a, struct tnum b)
{
	struct tnum acc = TNUM(0, 0);

	while (a.value || a.mask) {
		/* LSB of tnum a is a certain 1 */
		if (a.value & 1)
			acc = tnum_add(acc, b);
		/* LSB of tnum a is uncertain */
		else if (a.mask & 1) {
			/* acc = tnum_union(acc_0, acc_1), where acc_0 and
			 * acc_1 are partial accumulators for cases
			 * LSB(a) = certain 0 and LSB(a) = certain 1.
			 * acc_0 = acc + 0 * b = acc.
			 * acc_1 = acc + 1 * b = tnum_add(acc, b).
			 */

			acc = tnum_union(acc, tnum_add(acc, b));
		}
		/* Note: no case for LSB is certain 0 */
		a = tnum_rshift(a, 1);
		b = tnum_lshift(b, 1);
	}
	return acc;
}

bool tnum_overlap(struct tnum a, struct tnum b)
{
	u64 mu;

	mu = ~a.mask & ~b.mask;
	return (a.value & mu) == (b.value & mu);
}

/* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
 * a 'known 0' - this will return a 'known 1' for that bit.
 */
struct tnum tnum_intersect(struct tnum a, struct tnum b)
{
	u64 v, mu;

	v = a.value | b.value;
	mu = a.mask & b.mask;
	return TNUM(v & ~mu, mu);
}

/* Returns a tnum with the uncertainty from both a and b, and in addition, new
 * uncertainty at any position that a and b disagree. This represents a
 * superset of the union of the concrete sets of both a and b. Despite the
 * overapproximation, it is optimal.
 */
struct tnum tnum_union(struct tnum a, struct tnum b)
{
	u64 v = a.value & b.value;
	u64 mu = (a.value ^ b.value) | a.mask | b.mask;

	return TNUM(v & ~mu, mu);
}

struct tnum tnum_cast(struct tnum a, u8 size)
{
	a.value &= (1ULL << (size * 8)) - 1;
	a.mask &= (1ULL << (size * 8)) - 1;
	return a;
}

bool tnum_is_aligned(struct tnum a, u64 size)
{
	if (!size)
		return true;
	return !((a.value | a.mask) & (size - 1));
}

bool tnum_in(struct tnum a, struct tnum b)
{
	if (b.mask & ~a.mask)
		return false;
	b.value &= ~a.mask;
	return a.value == b.value;
}

int tnum_sbin(char *str, size_t size, struct tnum a)
{
	size_t n;

	for (n = 64; n; n--) {
		if (n < size) {
			if (a.mask & 1)
				str[n - 1] = 'x';
			else if (a.value & 1)
				str[n - 1] = '1';
			else
				str[n - 1] = '0';
		}
		a.mask >>= 1;
		a.value >>= 1;
	}
	str[min(size - 1, (size_t)64)] = 0;
	return 64;
}

struct tnum tnum_subreg(struct tnum a)
{
	return tnum_cast(a, 4);
}

struct tnum tnum_clear_subreg(struct tnum a)
{
	return tnum_lshift(tnum_rshift(a, 32), 32);
}

struct tnum tnum_with_subreg(struct tnum reg, struct tnum subreg)
{
	return tnum_or(tnum_clear_subreg(reg), tnum_subreg(subreg));
}

struct tnum tnum_const_subreg(struct tnum a, u32 value)
{
	return tnum_with_subreg(a, tnum_const(value));
}