1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/nstree.h>
#include <linux/proc_ns.h>
#include <linux/vfsdebug.h>
/**
* struct ns_tree - Namespace tree
* @ns_tree: Rbtree of namespaces of a particular type
* @ns_list: Sequentially walkable list of all namespaces of this type
* @ns_tree_lock: Seqlock to protect the tree and list
* @type: type of namespaces in this tree
*/
struct ns_tree {
struct rb_root ns_tree;
struct list_head ns_list;
seqlock_t ns_tree_lock;
int type;
};
struct ns_tree mnt_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(mnt_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(mnt_ns_tree.ns_tree_lock),
.type = CLONE_NEWNS,
};
struct ns_tree net_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(net_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(net_ns_tree.ns_tree_lock),
.type = CLONE_NEWNET,
};
EXPORT_SYMBOL_GPL(net_ns_tree);
struct ns_tree uts_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(uts_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(uts_ns_tree.ns_tree_lock),
.type = CLONE_NEWUTS,
};
struct ns_tree user_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(user_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(user_ns_tree.ns_tree_lock),
.type = CLONE_NEWUSER,
};
struct ns_tree ipc_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(ipc_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(ipc_ns_tree.ns_tree_lock),
.type = CLONE_NEWIPC,
};
struct ns_tree pid_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(pid_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(pid_ns_tree.ns_tree_lock),
.type = CLONE_NEWPID,
};
struct ns_tree cgroup_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(cgroup_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(cgroup_ns_tree.ns_tree_lock),
.type = CLONE_NEWCGROUP,
};
struct ns_tree time_ns_tree = {
.ns_tree = RB_ROOT,
.ns_list = LIST_HEAD_INIT(time_ns_tree.ns_list),
.ns_tree_lock = __SEQLOCK_UNLOCKED(time_ns_tree.ns_tree_lock),
.type = CLONE_NEWTIME,
};
DEFINE_COOKIE(namespace_cookie);
static inline struct ns_common *node_to_ns(const struct rb_node *node)
{
if (!node)
return NULL;
return rb_entry(node, struct ns_common, ns_tree_node);
}
static inline int ns_cmp(struct rb_node *a, const struct rb_node *b)
{
struct ns_common *ns_a = node_to_ns(a);
struct ns_common *ns_b = node_to_ns(b);
u64 ns_id_a = ns_a->ns_id;
u64 ns_id_b = ns_b->ns_id;
if (ns_id_a < ns_id_b)
return -1;
if (ns_id_a > ns_id_b)
return 1;
return 0;
}
void __ns_tree_add_raw(struct ns_common *ns, struct ns_tree *ns_tree)
{
struct rb_node *node, *prev;
VFS_WARN_ON_ONCE(!ns->ns_id);
write_seqlock(&ns_tree->ns_tree_lock);
VFS_WARN_ON_ONCE(ns->ns_type != ns_tree->type);
node = rb_find_add_rcu(&ns->ns_tree_node, &ns_tree->ns_tree, ns_cmp);
/*
* If there's no previous entry simply add it after the
* head and if there is add it after the previous entry.
*/
prev = rb_prev(&ns->ns_tree_node);
if (!prev)
list_add_rcu(&ns->ns_list_node, &ns_tree->ns_list);
else
list_add_rcu(&ns->ns_list_node, &node_to_ns(prev)->ns_list_node);
write_sequnlock(&ns_tree->ns_tree_lock);
VFS_WARN_ON_ONCE(node);
}
void __ns_tree_remove(struct ns_common *ns, struct ns_tree *ns_tree)
{
VFS_WARN_ON_ONCE(RB_EMPTY_NODE(&ns->ns_tree_node));
VFS_WARN_ON_ONCE(list_empty(&ns->ns_list_node));
VFS_WARN_ON_ONCE(ns->ns_type != ns_tree->type);
write_seqlock(&ns_tree->ns_tree_lock);
rb_erase(&ns->ns_tree_node, &ns_tree->ns_tree);
list_bidir_del_rcu(&ns->ns_list_node);
RB_CLEAR_NODE(&ns->ns_tree_node);
write_sequnlock(&ns_tree->ns_tree_lock);
}
EXPORT_SYMBOL_GPL(__ns_tree_remove);
static int ns_find(const void *key, const struct rb_node *node)
{
const u64 ns_id = *(u64 *)key;
const struct ns_common *ns = node_to_ns(node);
if (ns_id < ns->ns_id)
return -1;
if (ns_id > ns->ns_id)
return 1;
return 0;
}
static struct ns_tree *ns_tree_from_type(int ns_type)
{
switch (ns_type) {
case CLONE_NEWCGROUP:
return &cgroup_ns_tree;
case CLONE_NEWIPC:
return &ipc_ns_tree;
case CLONE_NEWNS:
return &mnt_ns_tree;
case CLONE_NEWNET:
return &net_ns_tree;
case CLONE_NEWPID:
return &pid_ns_tree;
case CLONE_NEWUSER:
return &user_ns_tree;
case CLONE_NEWUTS:
return &uts_ns_tree;
case CLONE_NEWTIME:
return &time_ns_tree;
}
return NULL;
}
struct ns_common *ns_tree_lookup_rcu(u64 ns_id, int ns_type)
{
struct ns_tree *ns_tree;
struct rb_node *node;
unsigned int seq;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious ns_tree_lookup_rcu() usage");
ns_tree = ns_tree_from_type(ns_type);
if (!ns_tree)
return NULL;
do {
seq = read_seqbegin(&ns_tree->ns_tree_lock);
node = rb_find_rcu(&ns_id, &ns_tree->ns_tree, ns_find);
if (node)
break;
} while (read_seqretry(&ns_tree->ns_tree_lock, seq));
if (!node)
return NULL;
VFS_WARN_ON_ONCE(node_to_ns(node)->ns_type != ns_type);
return node_to_ns(node);
}
/**
* ns_tree_adjoined_rcu - find the next/previous namespace in the same
* tree
* @ns: namespace to start from
* @previous: if true find the previous namespace, otherwise the next
*
* Find the next or previous namespace in the same tree as @ns. If
* there is no next/previous namespace, -ENOENT is returned.
*/
struct ns_common *__ns_tree_adjoined_rcu(struct ns_common *ns,
struct ns_tree *ns_tree, bool previous)
{
struct list_head *list;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious ns_tree_adjoined_rcu() usage");
if (previous)
list = rcu_dereference(list_bidir_prev_rcu(&ns->ns_list_node));
else
list = rcu_dereference(list_next_rcu(&ns->ns_list_node));
if (list_is_head(list, &ns_tree->ns_list))
return ERR_PTR(-ENOENT);
VFS_WARN_ON_ONCE(list_entry_rcu(list, struct ns_common, ns_list_node)->ns_type != ns_tree->type);
return list_entry_rcu(list, struct ns_common, ns_list_node);
}
/**
* ns_tree_gen_id - generate a new namespace id
* @ns: namespace to generate id for
*
* Generates a new namespace id and assigns it to the namespace. All
* namespaces types share the same id space and thus can be compared
* directly. IOW, when two ids of two namespace are equal, they are
* identical.
*/
u64 ns_tree_gen_id(struct ns_common *ns)
{
guard(preempt)();
ns->ns_id = gen_cookie_next(&namespace_cookie);
return ns->ns_id;
}
|