1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
|
/*
* kernel/sched.c
*
* Kernel scheduler and related syscalls
*
* Copyright (C) 1991-2002 Linus Torvalds
*
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
* make semaphores SMP safe
* 1998-11-19 Implemented schedule_timeout() and related stuff
* by Andrea Arcangeli
* 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
* hybrid priority-list and round-robin design with
* an array-switch method of distributing timeslices
* and per-CPU runqueues. Cleanups and useful suggestions
* by Davide Libenzi, preemptible kernel bits by Robert Love.
*/
#include <linux/mm.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/kernel_stat.h>
#include <linux/security.h>
/*
* Convert user-nice values [ -20 ... 0 ... 19 ]
* to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
* and back.
*/
#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
/*
* 'User priority' is the nice value converted to something we
* can work with better when scaling various scheduler parameters,
* it's a [ 0 ... 39 ] range.
*/
#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
/*
* These are the 'tuning knobs' of the scheduler:
*
* Minimum timeslice is 10 msecs, default timeslice is 150 msecs,
* maximum timeslice is 300 msecs. Timeslices get refilled after
* they expire.
*/
#define MIN_TIMESLICE ( 10 * HZ / 1000)
#define MAX_TIMESLICE (300 * HZ / 1000)
#define CHILD_PENALTY 95
#define PARENT_PENALTY 100
#define EXIT_WEIGHT 3
#define PRIO_BONUS_RATIO 25
#define INTERACTIVE_DELTA 2
#define MAX_SLEEP_AVG (2*HZ)
#define STARVATION_LIMIT (2*HZ)
/*
* If a task is 'interactive' then we reinsert it in the active
* array after it has expired its current timeslice. (it will not
* continue to run immediately, it will still roundrobin with
* other interactive tasks.)
*
* This part scales the interactivity limit depending on niceness.
*
* We scale it linearly, offset by the INTERACTIVE_DELTA delta.
* Here are a few examples of different nice levels:
*
* TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
* TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
* TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
* TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
* TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
*
* (the X axis represents the possible -5 ... 0 ... +5 dynamic
* priority range a task can explore, a value of '1' means the
* task is rated interactive.)
*
* Ie. nice +19 tasks can never get 'interactive' enough to be
* reinserted into the active array. And only heavily CPU-hog nice -20
* tasks will be expired. Default nice 0 tasks are somewhere between,
* it takes some effort for them to get interactive, but it's not
* too hard.
*/
#define SCALE(v1,v1_max,v2_max) \
(v1) * (v2_max) / (v1_max)
#define DELTA(p) \
(SCALE(TASK_NICE(p), 40, MAX_USER_PRIO*PRIO_BONUS_RATIO/100) + \
INTERACTIVE_DELTA)
#define TASK_INTERACTIVE(p) \
((p)->prio <= (p)->static_prio - DELTA(p))
/*
* BASE_TIMESLICE scales user-nice values [ -20 ... 19 ]
* to time slice values.
*
* The higher a process's priority, the bigger timeslices
* it gets during one round of execution. But even the lowest
* priority process gets MIN_TIMESLICE worth of execution time.
*
* task_timeslice() is the interface that is used by the scheduler.
*/
#define BASE_TIMESLICE(p) (MIN_TIMESLICE + \
((MAX_TIMESLICE - MIN_TIMESLICE) * (MAX_PRIO-1-(p)->static_prio)/(MAX_USER_PRIO - 1)))
static inline unsigned int task_timeslice(task_t *p)
{
return BASE_TIMESLICE(p);
}
/*
* These are the runqueue data structures:
*/
#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
typedef struct runqueue runqueue_t;
struct prio_array {
int nr_active;
unsigned long bitmap[BITMAP_SIZE];
list_t queue[MAX_PRIO];
};
/*
* This is the main, per-CPU runqueue data structure.
*
* Locking rule: those places that want to lock multiple runqueues
* (such as the load balancing or the process migration code), lock
* acquire operations must be ordered by ascending &runqueue.
*/
struct runqueue {
spinlock_t lock;
unsigned long nr_running, nr_switches, expired_timestamp,
nr_uninterruptible;
task_t *curr, *idle;
prio_array_t *active, *expired, arrays[2];
int prev_nr_running[NR_CPUS];
task_t *migration_thread;
list_t migration_queue;
} ____cacheline_aligned;
static struct runqueue runqueues[NR_CPUS] __cacheline_aligned;
#define cpu_rq(cpu) (runqueues + (cpu))
#define this_rq() cpu_rq(smp_processor_id())
#define task_rq(p) cpu_rq(task_cpu(p))
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
#define rt_task(p) ((p)->prio < MAX_RT_PRIO)
/*
* Default context-switch locking:
*/
#ifndef prepare_arch_switch
# define prepare_arch_switch(rq, next) do { } while(0)
# define finish_arch_switch(rq, next) spin_unlock_irq(&(rq)->lock)
# define task_running(rq, p) ((rq)->curr == (p))
#endif
/*
* task_rq_lock - lock the runqueue a given task resides on and disable
* interrupts. Note the ordering: we can safely lookup the task_rq without
* explicitly disabling preemption.
*/
static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
{
struct runqueue *rq;
repeat_lock_task:
local_irq_save(*flags);
rq = task_rq(p);
spin_lock(&rq->lock);
if (unlikely(rq != task_rq(p))) {
spin_unlock_irqrestore(&rq->lock, *flags);
goto repeat_lock_task;
}
return rq;
}
static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
{
spin_unlock_irqrestore(&rq->lock, *flags);
}
/*
* rq_lock - lock a given runqueue and disable interrupts.
*/
static inline runqueue_t *this_rq_lock(void)
{
runqueue_t *rq;
local_irq_disable();
rq = this_rq();
spin_lock(&rq->lock);
return rq;
}
static inline void rq_unlock(runqueue_t *rq)
{
spin_unlock(&rq->lock);
local_irq_enable();
}
/*
* Adding/removing a task to/from a priority array:
*/
static inline void dequeue_task(struct task_struct *p, prio_array_t *array)
{
array->nr_active--;
list_del(&p->run_list);
if (list_empty(array->queue + p->prio))
__clear_bit(p->prio, array->bitmap);
}
static inline void enqueue_task(struct task_struct *p, prio_array_t *array)
{
list_add_tail(&p->run_list, array->queue + p->prio);
__set_bit(p->prio, array->bitmap);
array->nr_active++;
p->array = array;
}
static inline int effective_prio(task_t *p)
{
int bonus, prio;
/*
* Here we scale the actual sleep average [0 .... MAX_SLEEP_AVG]
* into the -5 ... 0 ... +5 bonus/penalty range.
*
* We use 25% of the full 0...39 priority range so that:
*
* 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
* 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
*
* Both properties are important to certain workloads.
*/
bonus = MAX_USER_PRIO*PRIO_BONUS_RATIO*p->sleep_avg/MAX_SLEEP_AVG/100 -
MAX_USER_PRIO*PRIO_BONUS_RATIO/100/2;
prio = p->static_prio - bonus;
if (prio < MAX_RT_PRIO)
prio = MAX_RT_PRIO;
if (prio > MAX_PRIO-1)
prio = MAX_PRIO-1;
return prio;
}
static inline void activate_task(task_t *p, runqueue_t *rq)
{
unsigned long sleep_time = jiffies - p->sleep_timestamp;
prio_array_t *array = rq->active;
if (!rt_task(p) && sleep_time) {
/*
* This code gives a bonus to interactive tasks. We update
* an 'average sleep time' value here, based on
* sleep_timestamp. The more time a task spends sleeping,
* the higher the average gets - and the higher the priority
* boost gets as well.
*/
p->sleep_avg += sleep_time;
if (p->sleep_avg > MAX_SLEEP_AVG)
p->sleep_avg = MAX_SLEEP_AVG;
p->prio = effective_prio(p);
}
enqueue_task(p, array);
rq->nr_running++;
}
static inline void deactivate_task(struct task_struct *p, runqueue_t *rq)
{
rq->nr_running--;
if (p->state == TASK_UNINTERRUPTIBLE)
rq->nr_uninterruptible++;
dequeue_task(p, p->array);
p->array = NULL;
}
static inline void resched_task(task_t *p)
{
#ifdef CONFIG_SMP
int need_resched, nrpolling;
preempt_disable();
/* minimise the chance of sending an interrupt to poll_idle() */
nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
smp_send_reschedule(task_cpu(p));
preempt_enable();
#else
set_tsk_need_resched(p);
#endif
}
#ifdef CONFIG_SMP
/*
* Wait for a process to unschedule. This is used by the exit() and
* ptrace() code.
*/
void wait_task_inactive(task_t * p)
{
unsigned long flags;
runqueue_t *rq;
repeat:
preempt_disable();
rq = task_rq(p);
if (unlikely(task_running(rq, p))) {
cpu_relax();
/*
* enable/disable preemption just to make this
* a preemption point - we are busy-waiting
* anyway.
*/
preempt_enable();
goto repeat;
}
rq = task_rq_lock(p, &flags);
if (unlikely(task_running(rq, p))) {
task_rq_unlock(rq, &flags);
preempt_enable();
goto repeat;
}
task_rq_unlock(rq, &flags);
preempt_enable();
}
#endif
/*
* Kick the remote CPU if the task is running currently,
* this code is used by the signal code to signal tasks
* which are in user-mode as quickly as possible.
*
* (Note that we do this lockless - if the task does anything
* while the message is in flight then it will notice the
* sigpending condition anyway.)
*/
void kick_if_running(task_t * p)
{
if ((task_running(task_rq(p), p)) && (task_cpu(p) != smp_processor_id()))
resched_task(p);
}
/*
* Wake up a process. Put it on the run-queue if it's not
* already there. The "current" process is always on the
* run-queue (except when the actual re-schedule is in
* progress), and as such you're allowed to do the simpler
* "current->state = TASK_RUNNING" to mark yourself runnable
* without the overhead of this.
*
* returns failure only if the task is already active.
*/
static int try_to_wake_up(task_t * p, int sync)
{
unsigned long flags;
int success = 0;
long old_state;
runqueue_t *rq;
repeat_lock_task:
rq = task_rq_lock(p, &flags);
old_state = p->state;
if (!p->array) {
/*
* Fast-migrate the task if it's not running or runnable
* currently. Do not violate hard affinity.
*/
if (unlikely(sync && !task_running(rq, p) &&
(task_cpu(p) != smp_processor_id()) &&
(p->cpus_allowed & (1UL << smp_processor_id())))) {
set_task_cpu(p, smp_processor_id());
task_rq_unlock(rq, &flags);
goto repeat_lock_task;
}
if (old_state == TASK_UNINTERRUPTIBLE)
rq->nr_uninterruptible--;
activate_task(p, rq);
if (p->prio < rq->curr->prio)
resched_task(rq->curr);
success = 1;
}
p->state = TASK_RUNNING;
task_rq_unlock(rq, &flags);
return success;
}
int wake_up_process(task_t * p)
{
return try_to_wake_up(p, 0);
}
void wake_up_forked_process(task_t * p)
{
runqueue_t *rq = this_rq_lock();
p->state = TASK_RUNNING;
if (!rt_task(p)) {
/*
* We decrease the sleep average of forking parents
* and children as well, to keep max-interactive tasks
* from forking tasks that are max-interactive.
*/
current->sleep_avg = current->sleep_avg * PARENT_PENALTY / 100;
p->sleep_avg = p->sleep_avg * CHILD_PENALTY / 100;
p->prio = effective_prio(p);
}
set_task_cpu(p, smp_processor_id());
activate_task(p, rq);
rq_unlock(rq);
}
/*
* Potentially available exiting-child timeslices are
* retrieved here - this way the parent does not get
* penalized for creating too many processes.
*
* (this cannot be used to 'generate' timeslices
* artificially, because any timeslice recovered here
* was given away by the parent in the first place.)
*/
void sched_exit(task_t * p)
{
local_irq_disable();
if (p->first_time_slice) {
current->time_slice += p->time_slice;
if (unlikely(current->time_slice > MAX_TIMESLICE))
current->time_slice = MAX_TIMESLICE;
}
local_irq_enable();
/*
* If the child was a (relative-) CPU hog then decrease
* the sleep_avg of the parent as well.
*/
if (p->sleep_avg < current->sleep_avg)
current->sleep_avg = (current->sleep_avg * EXIT_WEIGHT +
p->sleep_avg) / (EXIT_WEIGHT + 1);
}
#if CONFIG_SMP || CONFIG_PREEMPT
asmlinkage void schedule_tail(task_t *prev)
{
finish_arch_switch(this_rq(), prev);
}
#endif
static inline task_t * context_switch(task_t *prev, task_t *next)
{
struct mm_struct *mm = next->mm;
struct mm_struct *oldmm = prev->active_mm;
if (unlikely(!mm)) {
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next, smp_processor_id());
} else
switch_mm(oldmm, mm, next, smp_processor_id());
if (unlikely(!prev->mm)) {
prev->active_mm = NULL;
mmdrop(oldmm);
}
/* Here we just switch the register state and the stack. */
switch_to(prev, next, prev);
return prev;
}
unsigned long nr_running(void)
{
unsigned long i, sum = 0;
for (i = 0; i < NR_CPUS; i++)
sum += cpu_rq(i)->nr_running;
return sum;
}
unsigned long nr_uninterruptible(void)
{
unsigned long i, sum = 0;
for (i = 0; i < NR_CPUS; i++)
sum += cpu_rq(i)->nr_uninterruptible;
return sum;
}
unsigned long nr_context_switches(void)
{
unsigned long i, sum = 0;
for (i = 0; i < NR_CPUS; i++)
sum += cpu_rq(i)->nr_switches;
return sum;
}
/*
* double_rq_lock - safely lock two runqueues
*
* Note this does not disable interrupts like task_rq_lock,
* you need to do so manually before calling.
*/
static inline void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
{
if (rq1 == rq2)
spin_lock(&rq1->lock);
else {
if (rq1 < rq2) {
spin_lock(&rq1->lock);
spin_lock(&rq2->lock);
} else {
spin_lock(&rq2->lock);
spin_lock(&rq1->lock);
}
}
}
/*
* double_rq_unlock - safely unlock two runqueues
*
* Note this does not restore interrupts like task_rq_unlock,
* you need to do so manually after calling.
*/
static inline void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
{
spin_unlock(&rq1->lock);
if (rq1 != rq2)
spin_unlock(&rq2->lock);
}
#if CONFIG_SMP
/*
* Lock the busiest runqueue as well, this_rq is locked already.
* Recalculate nr_running if we have to drop the runqueue lock.
*/
static inline unsigned int double_lock_balance(runqueue_t *this_rq,
runqueue_t *busiest, int this_cpu, int idle, unsigned int nr_running)
{
if (unlikely(!spin_trylock(&busiest->lock))) {
if (busiest < this_rq) {
spin_unlock(&this_rq->lock);
spin_lock(&busiest->lock);
spin_lock(&this_rq->lock);
/* Need to recalculate nr_running */
if (idle || (this_rq->nr_running > this_rq->prev_nr_running[this_cpu]))
nr_running = this_rq->nr_running;
else
nr_running = this_rq->prev_nr_running[this_cpu];
} else
spin_lock(&busiest->lock);
}
return nr_running;
}
static inline runqueue_t *find_busiest_queue(runqueue_t *this_rq, int this_cpu, int idle, int *imbalance)
{
int nr_running, load, max_load, i;
runqueue_t *busiest, *rq_src;
/*
* We search all runqueues to find the most busy one.
* We do this lockless to reduce cache-bouncing overhead,
* we re-check the 'best' source CPU later on again, with
* the lock held.
*
* We fend off statistical fluctuations in runqueue lengths by
* saving the runqueue length during the previous load-balancing
* operation and using the smaller one the current and saved lengths.
* If a runqueue is long enough for a longer amount of time then
* we recognize it and pull tasks from it.
*
* The 'current runqueue length' is a statistical maximum variable,
* for that one we take the longer one - to avoid fluctuations in
* the other direction. So for a load-balance to happen it needs
* stable long runqueue on the target CPU and stable short runqueue
* on the local runqueue.
*
* We make an exception if this CPU is about to become idle - in
* that case we are less picky about moving a task across CPUs and
* take what can be taken.
*/
if (idle || (this_rq->nr_running > this_rq->prev_nr_running[this_cpu]))
nr_running = this_rq->nr_running;
else
nr_running = this_rq->prev_nr_running[this_cpu];
busiest = NULL;
max_load = 1;
for (i = 0; i < NR_CPUS; i++) {
if (!cpu_online(i))
continue;
rq_src = cpu_rq(i);
if (idle || (rq_src->nr_running < this_rq->prev_nr_running[i]))
load = rq_src->nr_running;
else
load = this_rq->prev_nr_running[i];
this_rq->prev_nr_running[i] = rq_src->nr_running;
if ((load > max_load) && (rq_src != this_rq)) {
busiest = rq_src;
max_load = load;
}
}
if (likely(!busiest))
goto out;
*imbalance = (max_load - nr_running) / 2;
/* It needs an at least ~25% imbalance to trigger balancing. */
if (!idle && (*imbalance < (max_load + 3)/4)) {
busiest = NULL;
goto out;
}
nr_running = double_lock_balance(this_rq, busiest, this_cpu, idle, nr_running);
/*
* Make sure nothing changed since we checked the
* runqueue length.
*/
if (busiest->nr_running <= nr_running + 1) {
spin_unlock(&busiest->lock);
busiest = NULL;
}
out:
return busiest;
}
/*
* Move a task from a remote runqueue to the local runqueue.
* Both runqueues must be locked.
*/
static inline void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p, runqueue_t *this_rq, int this_cpu)
{
dequeue_task(p, src_array);
src_rq->nr_running--;
set_task_cpu(p, this_cpu);
this_rq->nr_running++;
enqueue_task(p, this_rq->active);
/*
* Note that idle threads have a prio of MAX_PRIO, for this test
* to be always true for them.
*/
if (p->prio < this_rq->curr->prio)
set_need_resched();
}
/*
* Current runqueue is empty, or rebalance tick: if there is an
* inbalance (current runqueue is too short) then pull from
* busiest runqueue(s).
*
* We call this with the current runqueue locked,
* irqs disabled.
*/
static void load_balance(runqueue_t *this_rq, int idle)
{
int imbalance, idx, this_cpu = smp_processor_id();
runqueue_t *busiest;
prio_array_t *array;
list_t *head, *curr;
task_t *tmp;
busiest = find_busiest_queue(this_rq, this_cpu, idle, &imbalance);
if (!busiest)
goto out;
/*
* We first consider expired tasks. Those will likely not be
* executed in the near future, and they are most likely to
* be cache-cold, thus switching CPUs has the least effect
* on them.
*/
if (busiest->expired->nr_active)
array = busiest->expired;
else
array = busiest->active;
new_array:
/* Start searching at priority 0: */
idx = 0;
skip_bitmap:
if (!idx)
idx = sched_find_first_bit(array->bitmap);
else
idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
if (idx == MAX_PRIO) {
if (array == busiest->expired) {
array = busiest->active;
goto new_array;
}
goto out_unlock;
}
head = array->queue + idx;
curr = head->prev;
skip_queue:
tmp = list_entry(curr, task_t, run_list);
/*
* We do not migrate tasks that are:
* 1) running (obviously), or
* 2) cannot be migrated to this CPU due to cpus_allowed, or
* 3) are cache-hot on their current CPU.
*/
#define CAN_MIGRATE_TASK(p,rq,this_cpu) \
((jiffies - (p)->sleep_timestamp > cache_decay_ticks) && \
!task_running(rq, p) && \
((p)->cpus_allowed & (1UL << (this_cpu))))
curr = curr->prev;
if (!CAN_MIGRATE_TASK(tmp, busiest, this_cpu)) {
if (curr != head)
goto skip_queue;
idx++;
goto skip_bitmap;
}
pull_task(busiest, array, tmp, this_rq, this_cpu);
if (!idle && --imbalance) {
if (curr != head)
goto skip_queue;
idx++;
goto skip_bitmap;
}
out_unlock:
spin_unlock(&busiest->lock);
out:
;
}
/*
* One of the idle_cpu_tick() or the busy_cpu_tick() function will
* gets called every timer tick, on every CPU. Our balancing action
* frequency and balancing agressivity depends on whether the CPU is
* idle or not.
*
* busy-rebalance every 250 msecs. idle-rebalance every 1 msec. (or on
* systems with HZ=100, every 10 msecs.)
*/
#define BUSY_REBALANCE_TICK (HZ/4 ?: 1)
#define IDLE_REBALANCE_TICK (HZ/1000 ?: 1)
static inline void idle_tick(runqueue_t *rq)
{
if (jiffies % IDLE_REBALANCE_TICK)
return;
spin_lock(&rq->lock);
load_balance(rq, 1);
spin_unlock(&rq->lock);
}
#endif
/*
* We place interactive tasks back into the active array, if possible.
*
* To guarantee that this does not starve expired tasks we ignore the
* interactivity of a task if the first expired task had to wait more
* than a 'reasonable' amount of time. This deadline timeout is
* load-dependent, as the frequency of array switched decreases with
* increasing number of running tasks:
*/
#define EXPIRED_STARVING(rq) \
((rq)->expired_timestamp && \
(jiffies - (rq)->expired_timestamp >= \
STARVATION_LIMIT * ((rq)->nr_running) + 1))
/*
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
*/
void scheduler_tick(int user_ticks, int sys_ticks)
{
int cpu = smp_processor_id();
runqueue_t *rq = this_rq();
task_t *p = current;
if (p == rq->idle) {
/* note: this timer irq context must be accounted for as well */
if (irq_count() - HARDIRQ_OFFSET >= SOFTIRQ_OFFSET)
kstat.per_cpu_system[cpu] += sys_ticks;
#if CONFIG_SMP
idle_tick(rq);
#endif
return;
}
if (TASK_NICE(p) > 0)
kstat.per_cpu_nice[cpu] += user_ticks;
else
kstat.per_cpu_user[cpu] += user_ticks;
kstat.per_cpu_system[cpu] += sys_ticks;
/* Task might have expired already, but not scheduled off yet */
if (p->array != rq->active) {
set_tsk_need_resched(p);
return;
}
spin_lock(&rq->lock);
if (unlikely(rt_task(p))) {
/*
* RR tasks need a special form of timeslice management.
* FIFO tasks have no timeslices.
*/
if ((p->policy == SCHED_RR) && !--p->time_slice) {
p->time_slice = task_timeslice(p);
p->first_time_slice = 0;
set_tsk_need_resched(p);
/* put it at the end of the queue: */
dequeue_task(p, rq->active);
enqueue_task(p, rq->active);
}
goto out;
}
/*
* The task was running during this tick - update the
* time slice counter and the sleep average. Note: we
* do not update a process's priority until it either
* goes to sleep or uses up its timeslice. This makes
* it possible for interactive tasks to use up their
* timeslices at their highest priority levels.
*/
if (p->sleep_avg)
p->sleep_avg--;
if (!--p->time_slice) {
dequeue_task(p, rq->active);
set_tsk_need_resched(p);
p->prio = effective_prio(p);
p->time_slice = task_timeslice(p);
p->first_time_slice = 0;
if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
if (!rq->expired_timestamp)
rq->expired_timestamp = jiffies;
enqueue_task(p, rq->expired);
} else
enqueue_task(p, rq->active);
}
out:
#if CONFIG_SMP
if (!(jiffies % BUSY_REBALANCE_TICK))
load_balance(rq, 0);
#endif
spin_unlock(&rq->lock);
}
void scheduling_functions_start_here(void) { }
/*
* 'schedule()' is the main scheduler function.
*/
asmlinkage void schedule(void)
{
task_t *prev, *next;
runqueue_t *rq;
prio_array_t *array;
list_t *queue;
int idx;
if (unlikely(in_interrupt()))
BUG();
#if CONFIG_DEBUG_HIGHMEM
check_highmem_ptes();
#endif
need_resched:
preempt_disable();
prev = current;
rq = this_rq();
release_kernel_lock(prev);
prev->sleep_timestamp = jiffies;
spin_lock_irq(&rq->lock);
/*
* if entering off of a kernel preemption go straight
* to picking the next task.
*/
if (unlikely(preempt_count() & PREEMPT_ACTIVE))
goto pick_next_task;
switch (prev->state) {
case TASK_INTERRUPTIBLE:
if (unlikely(signal_pending(prev))) {
prev->state = TASK_RUNNING;
break;
}
default:
deactivate_task(prev, rq);
case TASK_RUNNING:
;
}
pick_next_task:
if (unlikely(!rq->nr_running)) {
#if CONFIG_SMP
load_balance(rq, 1);
if (rq->nr_running)
goto pick_next_task;
#endif
next = rq->idle;
rq->expired_timestamp = 0;
goto switch_tasks;
}
array = rq->active;
if (unlikely(!array->nr_active)) {
/*
* Switch the active and expired arrays.
*/
rq->active = rq->expired;
rq->expired = array;
array = rq->active;
rq->expired_timestamp = 0;
}
idx = sched_find_first_bit(array->bitmap);
queue = array->queue + idx;
next = list_entry(queue->next, task_t, run_list);
switch_tasks:
prefetch(next);
clear_tsk_need_resched(prev);
if (likely(prev != next)) {
rq->nr_switches++;
rq->curr = next;
prepare_arch_switch(rq, next);
prev = context_switch(prev, next);
barrier();
rq = this_rq();
finish_arch_switch(rq, prev);
} else
spin_unlock_irq(&rq->lock);
reacquire_kernel_lock(current);
preempt_enable_no_resched();
if (test_thread_flag(TIF_NEED_RESCHED))
goto need_resched;
}
#ifdef CONFIG_PREEMPT
/*
* this is is the entry point to schedule() from in-kernel preemption
* off of preempt_enable. Kernel preemptions off return from interrupt
* occur there and call schedule directly.
*/
asmlinkage void preempt_schedule(void)
{
struct thread_info *ti = current_thread_info();
if (unlikely(ti->preempt_count))
return;
if (unlikely(irqs_disabled())) {
preempt_disable();
printk("bad: schedule() with irqs disabled!\n");
show_stack(NULL);
preempt_enable_no_resched();
}
need_resched:
ti->preempt_count = PREEMPT_ACTIVE;
schedule();
ti->preempt_count = 0;
/* we could miss a preemption opportunity between schedule and now */
barrier();
if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
goto need_resched;
}
#endif /* CONFIG_PREEMPT */
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync)
{
task_t *p = curr->task;
return ((p->state & mode) && try_to_wake_up(p, sync));
}
/*
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
* number) then we wake all the non-exclusive tasks and one exclusive task.
*
* There are circumstances in which we can try to wake a task which has already
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
* zero in this (rare) case, and we handle it by continuing to scan the queue.
*/
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, int sync)
{
struct list_head *tmp, *next;
list_for_each_safe(tmp, next, &q->task_list) {
wait_queue_t *curr;
unsigned flags;
curr = list_entry(tmp, wait_queue_t, task_list);
flags = curr->flags;
if (curr->func(curr, mode, sync) &&
(flags & WQ_FLAG_EXCLUSIVE) &&
!--nr_exclusive)
break;
}
}
void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
unsigned long flags;
if (unlikely(!q))
return;
spin_lock_irqsave(&q->lock, flags);
__wake_up_common(q, mode, nr_exclusive, 0);
spin_unlock_irqrestore(&q->lock, flags);
}
/*
* Same as __wake_up but called with the spinlock in wait_queue_head_t held.
*/
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
__wake_up_common(q, mode, 1, 0);
}
#if CONFIG_SMP
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
unsigned long flags;
if (unlikely(!q))
return;
spin_lock_irqsave(&q->lock, flags);
if (likely(nr_exclusive))
__wake_up_common(q, mode, nr_exclusive, 1);
else
__wake_up_common(q, mode, nr_exclusive, 0);
spin_unlock_irqrestore(&q->lock, flags);
}
#endif
void complete(struct completion *x)
{
unsigned long flags;
spin_lock_irqsave(&x->wait.lock, flags);
x->done++;
__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1, 0);
spin_unlock_irqrestore(&x->wait.lock, flags);
}
void wait_for_completion(struct completion *x)
{
spin_lock_irq(&x->wait.lock);
if (!x->done) {
DECLARE_WAITQUEUE(wait, current);
wait.flags |= WQ_FLAG_EXCLUSIVE;
__add_wait_queue_tail(&x->wait, &wait);
do {
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&x->wait.lock);
schedule();
spin_lock_irq(&x->wait.lock);
} while (!x->done);
__remove_wait_queue(&x->wait, &wait);
}
x->done--;
spin_unlock_irq(&x->wait.lock);
}
#define SLEEP_ON_VAR \
unsigned long flags; \
wait_queue_t wait; \
init_waitqueue_entry(&wait, current);
#define SLEEP_ON_HEAD \
spin_lock_irqsave(&q->lock,flags); \
__add_wait_queue(q, &wait); \
spin_unlock(&q->lock);
#define SLEEP_ON_TAIL \
spin_lock_irq(&q->lock); \
__remove_wait_queue(q, &wait); \
spin_unlock_irqrestore(&q->lock, flags);
void interruptible_sleep_on(wait_queue_head_t *q)
{
SLEEP_ON_VAR
current->state = TASK_INTERRUPTIBLE;
SLEEP_ON_HEAD
schedule();
SLEEP_ON_TAIL
}
long interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
SLEEP_ON_VAR
current->state = TASK_INTERRUPTIBLE;
SLEEP_ON_HEAD
timeout = schedule_timeout(timeout);
SLEEP_ON_TAIL
return timeout;
}
void sleep_on(wait_queue_head_t *q)
{
SLEEP_ON_VAR
current->state = TASK_UNINTERRUPTIBLE;
SLEEP_ON_HEAD
schedule();
SLEEP_ON_TAIL
}
long sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
SLEEP_ON_VAR
current->state = TASK_UNINTERRUPTIBLE;
SLEEP_ON_HEAD
timeout = schedule_timeout(timeout);
SLEEP_ON_TAIL
return timeout;
}
void scheduling_functions_end_here(void) { }
void set_user_nice(task_t *p, long nice)
{
unsigned long flags;
prio_array_t *array;
runqueue_t *rq;
if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
return;
/*
* We have to be careful, if called from sys_setpriority(),
* the task might be in the middle of scheduling on another CPU.
*/
rq = task_rq_lock(p, &flags);
if (rt_task(p)) {
p->static_prio = NICE_TO_PRIO(nice);
goto out_unlock;
}
array = p->array;
if (array)
dequeue_task(p, array);
p->static_prio = NICE_TO_PRIO(nice);
p->prio = NICE_TO_PRIO(nice);
if (array) {
enqueue_task(p, array);
/*
* If the task is running and lowered its priority,
* or increased its priority then reschedule its CPU:
*/
if ((NICE_TO_PRIO(nice) < p->static_prio) ||
task_running(rq, p))
resched_task(rq->curr);
}
out_unlock:
task_rq_unlock(rq, &flags);
}
#ifndef __alpha__
/*
* This has been replaced by sys_setpriority. Maybe it should be
* moved into the arch dependent tree for those ports that require
* it for backward compatibility?
*/
asmlinkage long sys_nice(int increment)
{
int retval;
long nice;
/*
* Setpriority might change our priority at the same moment.
* We don't have to worry. Conceptually one call occurs first
* and we have a single winner.
*/
if (increment < 0) {
if (!capable(CAP_SYS_NICE))
return -EPERM;
if (increment < -40)
increment = -40;
}
if (increment > 40)
increment = 40;
nice = PRIO_TO_NICE(current->static_prio) + increment;
if (nice < -20)
nice = -20;
if (nice > 19)
nice = 19;
retval = security_ops->task_setnice(current, nice);
if (retval)
return retval;
set_user_nice(current, nice);
return 0;
}
#endif
/*
* This is the priority value as seen by users in /proc
*
* RT tasks are offset by -200. Normal tasks are centered
* around 0, value goes from -16 to +15.
*/
int task_prio(task_t *p)
{
return p->prio - MAX_USER_RT_PRIO;
}
int task_nice(task_t *p)
{
return TASK_NICE(p);
}
int idle_cpu(int cpu)
{
return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}
static inline task_t *find_process_by_pid(pid_t pid)
{
return pid ? find_task_by_pid(pid) : current;
}
static int setscheduler(pid_t pid, int policy, struct sched_param *param)
{
struct sched_param lp;
int retval = -EINVAL;
prio_array_t *array;
unsigned long flags;
runqueue_t *rq;
task_t *p;
if (!param || pid < 0)
goto out_nounlock;
retval = -EFAULT;
if (copy_from_user(&lp, param, sizeof(struct sched_param)))
goto out_nounlock;
/*
* We play safe to avoid deadlocks.
*/
read_lock_irq(&tasklist_lock);
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock_tasklist;
/*
* To be able to change p->policy safely, the apropriate
* runqueue lock must be held.
*/
rq = task_rq_lock(p, &flags);
if (policy < 0)
policy = p->policy;
else {
retval = -EINVAL;
if (policy != SCHED_FIFO && policy != SCHED_RR &&
policy != SCHED_NORMAL)
goto out_unlock;
}
/*
* Valid priorities for SCHED_FIFO and SCHED_RR are
* 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
*/
retval = -EINVAL;
if (lp.sched_priority < 0 || lp.sched_priority > MAX_USER_RT_PRIO-1)
goto out_unlock;
if ((policy == SCHED_NORMAL) != (lp.sched_priority == 0))
goto out_unlock;
retval = -EPERM;
if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
if ((current->euid != p->euid) && (current->euid != p->uid) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
retval = security_ops->task_setscheduler(p, policy, &lp);
if (retval)
goto out_unlock;
array = p->array;
if (array)
deactivate_task(p, task_rq(p));
retval = 0;
p->policy = policy;
p->rt_priority = lp.sched_priority;
if (policy != SCHED_NORMAL)
p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
else
p->prio = p->static_prio;
if (array)
activate_task(p, task_rq(p));
out_unlock:
task_rq_unlock(rq, &flags);
out_unlock_tasklist:
read_unlock_irq(&tasklist_lock);
out_nounlock:
return retval;
}
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
struct sched_param *param)
{
return setscheduler(pid, policy, param);
}
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param)
{
return setscheduler(pid, -1, param);
}
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
int retval = -EINVAL;
task_t *p;
if (pid < 0)
goto out_nounlock;
retval = -ESRCH;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (p) {
retval = security_ops->task_getscheduler(p);
if (!retval)
retval = p->policy;
}
read_unlock(&tasklist_lock);
out_nounlock:
return retval;
}
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param)
{
struct sched_param lp;
int retval = -EINVAL;
task_t *p;
if (!param || pid < 0)
goto out_nounlock;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock;
retval = security_ops->task_getscheduler(p);
if (retval)
goto out_unlock;
lp.sched_priority = p->rt_priority;
read_unlock(&tasklist_lock);
/*
* This one might sleep, we cannot do it with a spinlock held ...
*/
retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
out_nounlock:
return retval;
out_unlock:
read_unlock(&tasklist_lock);
return retval;
}
/**
* sys_sched_setaffinity - set the cpu affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
* @user_mask_ptr: user-space pointer to the new cpu mask
*/
asmlinkage int sys_sched_setaffinity(pid_t pid, unsigned int len,
unsigned long *user_mask_ptr)
{
unsigned long new_mask;
int retval;
task_t *p;
if (len < sizeof(new_mask))
return -EINVAL;
if (copy_from_user(&new_mask, user_mask_ptr, sizeof(new_mask)))
return -EFAULT;
new_mask &= cpu_online_map;
if (!new_mask)
return -EINVAL;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (!p) {
read_unlock(&tasklist_lock);
return -ESRCH;
}
/*
* It is not safe to call set_cpus_allowed with the
* tasklist_lock held. We will bump the task_struct's
* usage count and then drop tasklist_lock.
*/
get_task_struct(p);
read_unlock(&tasklist_lock);
retval = -EPERM;
if ((current->euid != p->euid) && (current->euid != p->uid) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
retval = 0;
set_cpus_allowed(p, new_mask);
out_unlock:
put_task_struct(p);
return retval;
}
/**
* sys_sched_getaffinity - get the cpu affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
* @user_mask_ptr: user-space pointer to hold the current cpu mask
*/
asmlinkage int sys_sched_getaffinity(pid_t pid, unsigned int len,
unsigned long *user_mask_ptr)
{
unsigned int real_len;
unsigned long mask;
int retval;
task_t *p;
real_len = sizeof(mask);
if (len < real_len)
return -EINVAL;
read_lock(&tasklist_lock);
retval = -ESRCH;
p = find_process_by_pid(pid);
if (!p)
goto out_unlock;
retval = 0;
mask = p->cpus_allowed & cpu_online_map;
out_unlock:
read_unlock(&tasklist_lock);
if (retval)
return retval;
if (copy_to_user(user_mask_ptr, &mask, real_len))
return -EFAULT;
return real_len;
}
asmlinkage long sys_sched_yield(void)
{
runqueue_t *rq = this_rq_lock();
prio_array_t *array = current->array;
/*
* We implement yielding by moving the task into the expired
* queue.
*
* (special rule: RT tasks will just roundrobin in the active
* array.)
*/
if (likely(!rt_task(current))) {
dequeue_task(current, array);
enqueue_task(current, rq->expired);
} else {
list_del(¤t->run_list);
list_add_tail(¤t->run_list, array->queue + current->prio);
}
/*
* Since we are going to call schedule() anyway, there's
* no need to preempt:
*/
_raw_spin_unlock(&rq->lock);
preempt_enable_no_resched();
schedule();
return 0;
}
void __cond_resched(void)
{
set_current_state(TASK_RUNNING);
schedule();
}
void yield(void)
{
set_current_state(TASK_RUNNING);
sys_sched_yield();
}
asmlinkage long sys_sched_get_priority_max(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = MAX_USER_RT_PRIO-1;
break;
case SCHED_NORMAL:
ret = 0;
break;
}
return ret;
}
asmlinkage long sys_sched_get_priority_min(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = 1;
break;
case SCHED_NORMAL:
ret = 0;
}
return ret;
}
asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
{
int retval = -EINVAL;
struct timespec t;
task_t *p;
if (pid < 0)
goto out_nounlock;
retval = -ESRCH;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (!p)
goto out_unlock;
retval = security_ops->task_getscheduler(p);
if (retval)
goto out_unlock;
jiffies_to_timespec(p->policy & SCHED_FIFO ?
0 : task_timeslice(p), &t);
read_unlock(&tasklist_lock);
retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
return retval;
out_unlock:
read_unlock(&tasklist_lock);
return retval;
}
static void show_task(task_t * p)
{
unsigned long free = 0;
task_t *relative;
int state;
static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
printk("%-13.13s ", p->comm);
state = p->state ? __ffs(p->state) + 1 : 0;
if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
printk(stat_nam[state]);
else
printk(" ");
#if (BITS_PER_LONG == 32)
if (p == current)
printk(" current ");
else
printk(" %08lX ", thread_saved_pc(p));
#else
if (p == current)
printk(" current task ");
else
printk(" %016lx ", thread_saved_pc(p));
#endif
{
unsigned long * n = (unsigned long *) (p+1);
while (!*n)
n++;
free = (unsigned long) n - (unsigned long)(p+1);
}
printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
if ((relative = eldest_child(p)))
printk("%5d ", relative->pid);
else
printk(" ");
if ((relative = younger_sibling(p)))
printk("%7d", relative->pid);
else
printk(" ");
if ((relative = older_sibling(p)))
printk(" %5d", relative->pid);
else
printk(" ");
if (!p->mm)
printk(" (L-TLB)\n");
else
printk(" (NOTLB)\n");
{
extern void show_trace_task(task_t *tsk);
show_trace_task(p);
}
}
char * render_sigset_t(sigset_t *set, char *buffer)
{
int i = _NSIG, x;
do {
i -= 4, x = 0;
if (sigismember(set, i+1)) x |= 1;
if (sigismember(set, i+2)) x |= 2;
if (sigismember(set, i+3)) x |= 4;
if (sigismember(set, i+4)) x |= 8;
*buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
} while (i >= 4);
*buffer = 0;
return buffer;
}
void show_state(void)
{
task_t *p;
#if (BITS_PER_LONG == 32)
printk("\n"
" free sibling\n");
printk(" task PC stack pid father child younger older\n");
#else
printk("\n"
" free sibling\n");
printk(" task PC stack pid father child younger older\n");
#endif
read_lock(&tasklist_lock);
for_each_task(p) {
/*
* reset the NMI-timeout, listing all files on a slow
* console might take alot of time:
*/
touch_nmi_watchdog();
show_task(p);
}
read_unlock(&tasklist_lock);
}
void __init init_idle(task_t *idle, int cpu)
{
runqueue_t *idle_rq = cpu_rq(cpu), *rq = cpu_rq(task_cpu(idle));
unsigned long flags;
local_irq_save(flags);
double_rq_lock(idle_rq, rq);
idle_rq->curr = idle_rq->idle = idle;
deactivate_task(idle, rq);
idle->array = NULL;
idle->prio = MAX_PRIO;
idle->state = TASK_RUNNING;
set_task_cpu(idle, cpu);
double_rq_unlock(idle_rq, rq);
set_tsk_need_resched(idle);
local_irq_restore(flags);
/* Set the preempt count _outside_ the spinlocks! */
#if CONFIG_PREEMPT
idle->thread_info->preempt_count = (idle->lock_depth >= 0);
#else
idle->thread_info->preempt_count = 0;
#endif
}
#if CONFIG_SMP
/*
* This is how migration works:
*
* 1) we queue a migration_req_t structure in the source CPU's
* runqueue and wake up that CPU's migration thread.
* 2) we down() the locked semaphore => thread blocks.
* 3) migration thread wakes up (implicitly it forces the migrated
* thread off the CPU)
* 4) it gets the migration request and checks whether the migrated
* task is still in the wrong runqueue.
* 5) if it's in the wrong runqueue then the migration thread removes
* it and puts it into the right queue.
* 6) migration thread up()s the semaphore.
* 7) we wake up and the migration is done.
*/
typedef struct {
list_t list;
task_t *task;
struct semaphore sem;
} migration_req_t;
/*
* Change a given task's CPU affinity. Migrate the process to a
* proper CPU and schedule it away if the CPU it's executing on
* is removed from the allowed bitmask.
*
* NOTE: the caller must have a valid reference to the task, the
* task must not exit() & deallocate itself prematurely. The
* call is not atomic; no spinlocks may be held.
*/
void set_cpus_allowed(task_t *p, unsigned long new_mask)
{
unsigned long flags;
migration_req_t req;
runqueue_t *rq;
new_mask &= cpu_online_map;
if (!new_mask)
BUG();
preempt_disable();
rq = task_rq_lock(p, &flags);
p->cpus_allowed = new_mask;
/*
* Can the task run on the task's current CPU? If not then
* migrate the process off to a proper CPU.
*/
if (new_mask & (1UL << task_cpu(p))) {
task_rq_unlock(rq, &flags);
goto out;
}
/*
* If the task is not on a runqueue (and not running), then
* it is sufficient to simply update the task's cpu field.
*/
if (!p->array && !task_running(rq, p)) {
set_task_cpu(p, __ffs(p->cpus_allowed));
task_rq_unlock(rq, &flags);
goto out;
}
init_MUTEX_LOCKED(&req.sem);
req.task = p;
list_add(&req.list, &rq->migration_queue);
task_rq_unlock(rq, &flags);
wake_up_process(rq->migration_thread);
down(&req.sem);
out:
preempt_enable();
}
static __initdata int master_migration_thread;
static int migration_thread(void * bind_cpu)
{
int cpu = (int) (long) bind_cpu;
struct sched_param param = { sched_priority: MAX_RT_PRIO-1 };
runqueue_t *rq;
int ret;
daemonize();
sigfillset(¤t->blocked);
set_fs(KERNEL_DS);
/*
* The first migration thread is started on the boot CPU, it
* migrates the other migration threads to their destination CPUs.
*/
if (cpu != master_migration_thread) {
while (!cpu_rq(master_migration_thread)->migration_thread)
yield();
set_cpus_allowed(current, 1UL << cpu);
}
printk("migration_task %d on cpu=%d\n", cpu, smp_processor_id());
ret = setscheduler(0, SCHED_FIFO, ¶m);
rq = this_rq();
rq->migration_thread = current;
sprintf(current->comm, "migration_CPU%d", smp_processor_id());
for (;;) {
runqueue_t *rq_src, *rq_dest;
struct list_head *head;
int cpu_src, cpu_dest;
migration_req_t *req;
unsigned long flags;
task_t *p;
spin_lock_irqsave(&rq->lock, flags);
head = &rq->migration_queue;
current->state = TASK_INTERRUPTIBLE;
if (list_empty(head)) {
spin_unlock_irqrestore(&rq->lock, flags);
schedule();
continue;
}
req = list_entry(head->next, migration_req_t, list);
list_del_init(head->next);
spin_unlock_irqrestore(&rq->lock, flags);
p = req->task;
cpu_dest = __ffs(p->cpus_allowed);
rq_dest = cpu_rq(cpu_dest);
repeat:
cpu_src = task_cpu(p);
rq_src = cpu_rq(cpu_src);
local_irq_save(flags);
double_rq_lock(rq_src, rq_dest);
if (task_cpu(p) != cpu_src) {
double_rq_unlock(rq_src, rq_dest);
local_irq_restore(flags);
goto repeat;
}
if (rq_src == rq) {
set_task_cpu(p, cpu_dest);
if (p->array) {
deactivate_task(p, rq_src);
activate_task(p, rq_dest);
}
}
double_rq_unlock(rq_src, rq_dest);
local_irq_restore(flags);
up(&req->sem);
}
}
void __init migration_init(void)
{
int cpu;
master_migration_thread = smp_processor_id();
current->cpus_allowed = 1UL << master_migration_thread;
for (cpu = 0; cpu < NR_CPUS; cpu++) {
if (!cpu_online(cpu))
continue;
if (kernel_thread(migration_thread, (void *) (long) cpu,
CLONE_FS | CLONE_FILES | CLONE_SIGNAL) < 0)
BUG();
}
current->cpus_allowed = -1L;
for (cpu = 0; cpu < NR_CPUS; cpu++) {
if (!cpu_online(cpu))
continue;
while (!cpu_rq(cpu)->migration_thread)
schedule_timeout(2);
}
}
#endif
extern void init_timervecs(void);
extern void timer_bh(void);
extern void tqueue_bh(void);
extern void immediate_bh(void);
void __init sched_init(void)
{
runqueue_t *rq;
int i, j, k;
for (i = 0; i < NR_CPUS; i++) {
prio_array_t *array;
rq = cpu_rq(i);
rq->active = rq->arrays;
rq->expired = rq->arrays + 1;
spin_lock_init(&rq->lock);
INIT_LIST_HEAD(&rq->migration_queue);
for (j = 0; j < 2; j++) {
array = rq->arrays + j;
for (k = 0; k < MAX_PRIO; k++) {
INIT_LIST_HEAD(array->queue + k);
__clear_bit(k, array->bitmap);
}
// delimiter for bitsearch
__set_bit(MAX_PRIO, array->bitmap);
}
}
/*
* We have to do a little magic to get the first
* process right in SMP mode.
*/
rq = this_rq();
rq->curr = current;
rq->idle = current;
set_task_cpu(current, smp_processor_id());
wake_up_process(current);
init_timervecs();
init_bh(TIMER_BH, timer_bh);
init_bh(TQUEUE_BH, tqueue_bh);
init_bh(IMMEDIATE_BH, immediate_bh);
/*
* The boot idle thread does lazy MMU switching as well:
*/
atomic_inc(&init_mm.mm_count);
enter_lazy_tlb(&init_mm, current, smp_processor_id());
}
|