summaryrefslogtreecommitdiff
path: root/lib/crypto/polyval.c
blob: 5796275f574ae657910ac1392c06a3bbec5bd7bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * POLYVAL library functions
 *
 * Copyright 2025 Google LLC
 */

#include <crypto/polyval.h>
#include <linux/export.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/unaligned.h>

/*
 * POLYVAL is an almost-XOR-universal hash function.  Similar to GHASH, POLYVAL
 * interprets the message as the coefficients of a polynomial in GF(2^128) and
 * evaluates that polynomial at a secret point.  POLYVAL has a simple
 * mathematical relationship with GHASH, but it uses a better field convention
 * which makes it easier and faster to implement.
 *
 * POLYVAL is not a cryptographic hash function, and it should be used only by
 * algorithms that are specifically designed to use it.
 *
 * POLYVAL is specified by "AES-GCM-SIV: Nonce Misuse-Resistant Authenticated
 * Encryption" (https://datatracker.ietf.org/doc/html/rfc8452)
 *
 * POLYVAL is also used by HCTR2.  See "Length-preserving encryption with HCTR2"
 * (https://eprint.iacr.org/2021/1441.pdf).
 *
 * This file provides a library API for POLYVAL.  This API can delegate to
 * either a generic implementation or an architecture-optimized implementation.
 *
 * For the generic implementation, we don't use the traditional table approach
 * to GF(2^128) multiplication.  That approach is not constant-time and requires
 * a lot of memory.  Instead, we use a different approach which emulates
 * carryless multiplication using standard multiplications by spreading the data
 * bits apart using "holes".  This allows the carries to spill harmlessly.  This
 * approach is borrowed from BoringSSL, which in turn credits BearSSL's
 * documentation (https://bearssl.org/constanttime.html#ghash-for-gcm) for the
 * "holes" trick and a presentation by Shay Gueron
 * (https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf) for the
 * 256-bit => 128-bit reduction algorithm.
 */

#ifdef CONFIG_ARCH_SUPPORTS_INT128

/* Do a 64 x 64 => 128 bit carryless multiplication. */
static void clmul64(u64 a, u64 b, u64 *out_lo, u64 *out_hi)
{
	/*
	 * With 64-bit multiplicands and one term every 4 bits, there would be
	 * up to 64 / 4 = 16 one bits per column when each multiplication is
	 * written out as a series of additions in the schoolbook manner.
	 * Unfortunately, that doesn't work since the value 16 is 1 too large to
	 * fit in 4 bits.  Carries would sometimes overflow into the next term.
	 *
	 * Using one term every 5 bits would work.  However, that would cost
	 * 5 x 5 = 25 multiplications instead of 4 x 4 = 16.
	 *
	 * Instead, mask off 4 bits from one multiplicand, giving a max of 15
	 * one bits per column.  Then handle those 4 bits separately.
	 */
	u64 a0 = a & 0x1111111111111110;
	u64 a1 = a & 0x2222222222222220;
	u64 a2 = a & 0x4444444444444440;
	u64 a3 = a & 0x8888888888888880;

	u64 b0 = b & 0x1111111111111111;
	u64 b1 = b & 0x2222222222222222;
	u64 b2 = b & 0x4444444444444444;
	u64 b3 = b & 0x8888888888888888;

	/* Multiply the high 60 bits of @a by @b. */
	u128 c0 = (a0 * (u128)b0) ^ (a1 * (u128)b3) ^
		  (a2 * (u128)b2) ^ (a3 * (u128)b1);
	u128 c1 = (a0 * (u128)b1) ^ (a1 * (u128)b0) ^
		  (a2 * (u128)b3) ^ (a3 * (u128)b2);
	u128 c2 = (a0 * (u128)b2) ^ (a1 * (u128)b1) ^
		  (a2 * (u128)b0) ^ (a3 * (u128)b3);
	u128 c3 = (a0 * (u128)b3) ^ (a1 * (u128)b2) ^
		  (a2 * (u128)b1) ^ (a3 * (u128)b0);

	/* Multiply the low 4 bits of @a by @b. */
	u64 e0 = -(a & 1) & b;
	u64 e1 = -((a >> 1) & 1) & b;
	u64 e2 = -((a >> 2) & 1) & b;
	u64 e3 = -((a >> 3) & 1) & b;
	u64 extra_lo = e0 ^ (e1 << 1) ^ (e2 << 2) ^ (e3 << 3);
	u64 extra_hi = (e1 >> 63) ^ (e2 >> 62) ^ (e3 >> 61);

	/* Add all the intermediate products together. */
	*out_lo = (((u64)c0) & 0x1111111111111111) ^
		  (((u64)c1) & 0x2222222222222222) ^
		  (((u64)c2) & 0x4444444444444444) ^
		  (((u64)c3) & 0x8888888888888888) ^ extra_lo;
	*out_hi = (((u64)(c0 >> 64)) & 0x1111111111111111) ^
		  (((u64)(c1 >> 64)) & 0x2222222222222222) ^
		  (((u64)(c2 >> 64)) & 0x4444444444444444) ^
		  (((u64)(c3 >> 64)) & 0x8888888888888888) ^ extra_hi;
}

#else /* CONFIG_ARCH_SUPPORTS_INT128 */

/* Do a 32 x 32 => 64 bit carryless multiplication. */
static u64 clmul32(u32 a, u32 b)
{
	/*
	 * With 32-bit multiplicands and one term every 4 bits, there are up to
	 * 32 / 4 = 8 one bits per column when each multiplication is written
	 * out as a series of additions in the schoolbook manner.  The value 8
	 * fits in 4 bits, so the carries don't overflow into the next term.
	 */
	u32 a0 = a & 0x11111111;
	u32 a1 = a & 0x22222222;
	u32 a2 = a & 0x44444444;
	u32 a3 = a & 0x88888888;

	u32 b0 = b & 0x11111111;
	u32 b1 = b & 0x22222222;
	u32 b2 = b & 0x44444444;
	u32 b3 = b & 0x88888888;

	u64 c0 = (a0 * (u64)b0) ^ (a1 * (u64)b3) ^
		 (a2 * (u64)b2) ^ (a3 * (u64)b1);
	u64 c1 = (a0 * (u64)b1) ^ (a1 * (u64)b0) ^
		 (a2 * (u64)b3) ^ (a3 * (u64)b2);
	u64 c2 = (a0 * (u64)b2) ^ (a1 * (u64)b1) ^
		 (a2 * (u64)b0) ^ (a3 * (u64)b3);
	u64 c3 = (a0 * (u64)b3) ^ (a1 * (u64)b2) ^
		 (a2 * (u64)b1) ^ (a3 * (u64)b0);

	/* Add all the intermediate products together. */
	return (c0 & 0x1111111111111111) ^
	       (c1 & 0x2222222222222222) ^
	       (c2 & 0x4444444444444444) ^
	       (c3 & 0x8888888888888888);
}

/* Do a 64 x 64 => 128 bit carryless multiplication. */
static void clmul64(u64 a, u64 b, u64 *out_lo, u64 *out_hi)
{
	u32 a_lo = (u32)a;
	u32 a_hi = a >> 32;
	u32 b_lo = (u32)b;
	u32 b_hi = b >> 32;

	/* Karatsuba multiplication */
	u64 lo = clmul32(a_lo, b_lo);
	u64 hi = clmul32(a_hi, b_hi);
	u64 mi = clmul32(a_lo ^ a_hi, b_lo ^ b_hi) ^ lo ^ hi;

	*out_lo = lo ^ (mi << 32);
	*out_hi = hi ^ (mi >> 32);
}
#endif /* !CONFIG_ARCH_SUPPORTS_INT128 */

/* Compute @a = @a * @b * x^-128 in the POLYVAL field. */
static void __maybe_unused
polyval_mul_generic(struct polyval_elem *a, const struct polyval_elem *b)
{
	u64 c0, c1, c2, c3, mi0, mi1;

	/*
	 * Carryless-multiply @a by @b using Karatsuba multiplication.  Store
	 * the 256-bit product in @c0 (low) through @c3 (high).
	 */
	clmul64(le64_to_cpu(a->lo), le64_to_cpu(b->lo), &c0, &c1);
	clmul64(le64_to_cpu(a->hi), le64_to_cpu(b->hi), &c2, &c3);
	clmul64(le64_to_cpu(a->lo ^ a->hi), le64_to_cpu(b->lo ^ b->hi),
		&mi0, &mi1);
	mi0 ^= c0 ^ c2;
	mi1 ^= c1 ^ c3;
	c1 ^= mi0;
	c2 ^= mi1;

	/*
	 * Cancel out the low 128 bits of the product by adding multiples of
	 * G(x) = x^128 + x^127 + x^126 + x^121 + 1.  Do this in two steps, each
	 * of which cancels out 64 bits.  Note that we break G(x) into three
	 * parts: 1, x^64 * (x^63 + x^62 + x^57), and x^128 * 1.
	 */

	/*
	 * First, add G(x) times c0 as follows:
	 *
	 * (c0, c1, c2) = (0,
	 *                 c1 + (c0 * (x^63 + x^62 + x^57) mod x^64),
	 *		   c2 + c0 + floor((c0 * (x^63 + x^62 + x^57)) / x^64))
	 */
	c1 ^= (c0 << 63) ^ (c0 << 62) ^ (c0 << 57);
	c2 ^= c0 ^ (c0 >> 1) ^ (c0 >> 2) ^ (c0 >> 7);

	/*
	 * Second, add G(x) times the new c1:
	 *
	 * (c1, c2, c3) = (0,
	 *                 c2 + (c1 * (x^63 + x^62 + x^57) mod x^64),
	 *		   c3 + c1 + floor((c1 * (x^63 + x^62 + x^57)) / x^64))
	 */
	c2 ^= (c1 << 63) ^ (c1 << 62) ^ (c1 << 57);
	c3 ^= c1 ^ (c1 >> 1) ^ (c1 >> 2) ^ (c1 >> 7);

	/* Return (c2, c3).  This implicitly multiplies by x^-128. */
	a->lo = cpu_to_le64(c2);
	a->hi = cpu_to_le64(c3);
}

static void __maybe_unused
polyval_blocks_generic(struct polyval_elem *acc, const struct polyval_elem *key,
		       const u8 *data, size_t nblocks)
{
	do {
		acc->lo ^= get_unaligned((__le64 *)data);
		acc->hi ^= get_unaligned((__le64 *)(data + 8));
		polyval_mul_generic(acc, key);
		data += POLYVAL_BLOCK_SIZE;
	} while (--nblocks);
}

/* Include the arch-optimized implementation of POLYVAL, if one is available. */
#ifdef CONFIG_CRYPTO_LIB_POLYVAL_ARCH
#include "polyval.h" /* $(SRCARCH)/polyval.h */
void polyval_preparekey(struct polyval_key *key,
			const u8 raw_key[POLYVAL_BLOCK_SIZE])
{
	polyval_preparekey_arch(key, raw_key);
}
EXPORT_SYMBOL_GPL(polyval_preparekey);
#endif /* Else, polyval_preparekey() is an inline function. */

/*
 * polyval_mul_generic() and polyval_blocks_generic() take the key as a
 * polyval_elem rather than a polyval_key, so that arch-optimized
 * implementations with a different key format can use it as a fallback (if they
 * have H^1 stored somewhere in their struct).  Thus, the following dispatch
 * code is needed to pass the appropriate key argument.
 */

static void polyval_mul(struct polyval_ctx *ctx)
{
#ifdef CONFIG_CRYPTO_LIB_POLYVAL_ARCH
	polyval_mul_arch(&ctx->acc, ctx->key);
#else
	polyval_mul_generic(&ctx->acc, &ctx->key->h);
#endif
}

static void polyval_blocks(struct polyval_ctx *ctx,
			   const u8 *data, size_t nblocks)
{
#ifdef CONFIG_CRYPTO_LIB_POLYVAL_ARCH
	polyval_blocks_arch(&ctx->acc, ctx->key, data, nblocks);
#else
	polyval_blocks_generic(&ctx->acc, &ctx->key->h, data, nblocks);
#endif
}

void polyval_update(struct polyval_ctx *ctx, const u8 *data, size_t len)
{
	if (unlikely(ctx->partial)) {
		size_t n = min(len, POLYVAL_BLOCK_SIZE - ctx->partial);

		len -= n;
		while (n--)
			ctx->acc.bytes[ctx->partial++] ^= *data++;
		if (ctx->partial < POLYVAL_BLOCK_SIZE)
			return;
		polyval_mul(ctx);
	}
	if (len >= POLYVAL_BLOCK_SIZE) {
		size_t nblocks = len / POLYVAL_BLOCK_SIZE;

		polyval_blocks(ctx, data, nblocks);
		data += len & ~(POLYVAL_BLOCK_SIZE - 1);
		len &= POLYVAL_BLOCK_SIZE - 1;
	}
	for (size_t i = 0; i < len; i++)
		ctx->acc.bytes[i] ^= data[i];
	ctx->partial = len;
}
EXPORT_SYMBOL_GPL(polyval_update);

void polyval_final(struct polyval_ctx *ctx, u8 out[POLYVAL_BLOCK_SIZE])
{
	if (unlikely(ctx->partial))
		polyval_mul(ctx);
	memcpy(out, &ctx->acc, POLYVAL_BLOCK_SIZE);
	memzero_explicit(ctx, sizeof(*ctx));
}
EXPORT_SYMBOL_GPL(polyval_final);

#ifdef polyval_mod_init_arch
static int __init polyval_mod_init(void)
{
	polyval_mod_init_arch();
	return 0;
}
subsys_initcall(polyval_mod_init);

static void __exit polyval_mod_exit(void)
{
}
module_exit(polyval_mod_exit);
#endif

MODULE_DESCRIPTION("POLYVAL almost-XOR-universal hash function");
MODULE_LICENSE("GPL");