summaryrefslogtreecommitdiff
path: root/rust/kernel/bitmap.rs
blob: f459156944542f93d397a73977e3299d532212ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// SPDX-License-Identifier: GPL-2.0

// Copyright (C) 2025 Google LLC.

//! Rust API for bitmap.
//!
//! C headers: [`include/linux/bitmap.h`](srctree/include/linux/bitmap.h).

use crate::alloc::{AllocError, Flags};
use crate::bindings;
#[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
use crate::pr_err;
use core::ptr::NonNull;

const BITS_PER_LONG: usize = bindings::BITS_PER_LONG as usize;

/// Represents a C bitmap. Wraps underlying C bitmap API.
///
/// # Invariants
///
/// Must reference a `[c_ulong]` long enough to fit `data.len()` bits.
#[cfg_attr(CONFIG_64BIT, repr(align(8)))]
#[cfg_attr(not(CONFIG_64BIT), repr(align(4)))]
pub struct Bitmap {
    data: [()],
}

impl Bitmap {
    /// Borrows a C bitmap.
    ///
    /// # Safety
    ///
    /// * `ptr` holds a non-null address of an initialized array of `unsigned long`
    ///   that is large enough to hold `nbits` bits.
    /// * the array must not be freed for the lifetime of this [`Bitmap`]
    /// * concurrent access only happens through atomic operations
    pub unsafe fn from_raw<'a>(ptr: *const usize, nbits: usize) -> &'a Bitmap {
        let data: *const [()] = core::ptr::slice_from_raw_parts(ptr.cast(), nbits);
        // INVARIANT: `data` references an initialized array that can hold `nbits` bits.
        // SAFETY:
        // The caller guarantees that `data` (derived from `ptr` and `nbits`)
        // points to a valid, initialized, and appropriately sized memory region
        // that will not be freed for the lifetime 'a.
        // We are casting `*const [()]` to `*const Bitmap`. The `Bitmap`
        // struct is a ZST with a `data: [()]` field. This means its layout
        // is compatible with a slice of `()`, and effectively it's a "thin pointer"
        // (its size is 0 and alignment is 1). The `slice_from_raw_parts`
        // function correctly encodes the length (number of bits, not elements)
        // into the metadata of the fat pointer. Therefore, dereferencing this
        // pointer as `&Bitmap` is safe given the caller's guarantees.
        unsafe { &*(data as *const Bitmap) }
    }

    /// Borrows a C bitmap exclusively.
    ///
    /// # Safety
    ///
    /// * `ptr` holds a non-null address of an initialized array of `unsigned long`
    ///   that is large enough to hold `nbits` bits.
    /// * the array must not be freed for the lifetime of this [`Bitmap`]
    /// * no concurrent access may happen.
    pub unsafe fn from_raw_mut<'a>(ptr: *mut usize, nbits: usize) -> &'a mut Bitmap {
        let data: *mut [()] = core::ptr::slice_from_raw_parts_mut(ptr.cast(), nbits);
        // INVARIANT: `data` references an initialized array that can hold `nbits` bits.
        // SAFETY:
        // The caller guarantees that `data` (derived from `ptr` and `nbits`)
        // points to a valid, initialized, and appropriately sized memory region
        // that will not be freed for the lifetime 'a.
        // Furthermore, the caller guarantees no concurrent access will happen,
        // which upholds the exclusivity requirement for a mutable reference.
        // Similar to `from_raw`, casting `*mut [()]` to `*mut Bitmap` is
        // safe because `Bitmap` is a ZST with a `data: [()]` field,
        // making its layout compatible with a slice of `()`.
        unsafe { &mut *(data as *mut Bitmap) }
    }

    /// Returns a raw pointer to the backing [`Bitmap`].
    pub fn as_ptr(&self) -> *const usize {
        core::ptr::from_ref::<Bitmap>(self).cast::<usize>()
    }

    /// Returns a mutable raw pointer to the backing [`Bitmap`].
    pub fn as_mut_ptr(&mut self) -> *mut usize {
        core::ptr::from_mut::<Bitmap>(self).cast::<usize>()
    }

    /// Returns length of this [`Bitmap`].
    #[expect(clippy::len_without_is_empty)]
    pub fn len(&self) -> usize {
        self.data.len()
    }
}

/// Holds either a pointer to array of `unsigned long` or a small bitmap.
#[repr(C)]
union BitmapRepr {
    bitmap: usize,
    ptr: NonNull<usize>,
}

macro_rules! bitmap_assert {
    ($cond:expr, $($arg:tt)+) => {
        #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
        assert!($cond, $($arg)*);
    }
}

macro_rules! bitmap_assert_return {
    ($cond:expr, $($arg:tt)+) => {
        #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
        assert!($cond, $($arg)*);

        #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
        if !($cond) {
            pr_err!($($arg)*);
            return
        }
    }
}

/// Represents an owned bitmap.
///
/// Wraps underlying C bitmap API. See [`Bitmap`] for available
/// methods.
///
/// # Examples
///
/// Basic usage
///
/// ```
/// use kernel::alloc::flags::GFP_KERNEL;
/// use kernel::bitmap::BitmapVec;
///
/// let mut b = BitmapVec::new(16, GFP_KERNEL)?;
///
/// assert_eq!(16, b.len());
/// for i in 0..16 {
///     if i % 4 == 0 {
///       b.set_bit(i);
///     }
/// }
/// assert_eq!(Some(0), b.next_bit(0));
/// assert_eq!(Some(1), b.next_zero_bit(0));
/// assert_eq!(Some(4), b.next_bit(1));
/// assert_eq!(Some(5), b.next_zero_bit(4));
/// assert_eq!(Some(12), b.last_bit());
/// # Ok::<(), Error>(())
/// ```
///
/// # Invariants
///
/// * `nbits` is `<= i32::MAX` and never changes.
/// * if `nbits <= bindings::BITS_PER_LONG`, then `repr` is a `usize`.
/// * otherwise, `repr` holds a non-null pointer to an initialized
///   array of `unsigned long` that is large enough to hold `nbits` bits.
pub struct BitmapVec {
    /// Representation of bitmap.
    repr: BitmapRepr,
    /// Length of this bitmap. Must be `<= i32::MAX`.
    nbits: usize,
}

impl core::ops::Deref for BitmapVec {
    type Target = Bitmap;

    fn deref(&self) -> &Bitmap {
        let ptr = if self.nbits <= BITS_PER_LONG {
            // SAFETY: Bitmap is represented inline.
            unsafe { core::ptr::addr_of!(self.repr.bitmap) }
        } else {
            // SAFETY: Bitmap is represented as array of `unsigned long`.
            unsafe { self.repr.ptr.as_ptr() }
        };

        // SAFETY: We got the right pointer and invariants of [`Bitmap`] hold.
        // An inline bitmap is treated like an array with single element.
        unsafe { Bitmap::from_raw(ptr, self.nbits) }
    }
}

impl core::ops::DerefMut for BitmapVec {
    fn deref_mut(&mut self) -> &mut Bitmap {
        let ptr = if self.nbits <= BITS_PER_LONG {
            // SAFETY: Bitmap is represented inline.
            unsafe { core::ptr::addr_of_mut!(self.repr.bitmap) }
        } else {
            // SAFETY: Bitmap is represented as array of `unsigned long`.
            unsafe { self.repr.ptr.as_ptr() }
        };

        // SAFETY: We got the right pointer and invariants of [`BitmapVec`] hold.
        // An inline bitmap is treated like an array with single element.
        unsafe { Bitmap::from_raw_mut(ptr, self.nbits) }
    }
}

/// Enable ownership transfer to other threads.
///
/// SAFETY: We own the underlying bitmap representation.
unsafe impl Send for BitmapVec {}

/// Enable unsynchronized concurrent access to [`BitmapVec`] through shared references.
///
/// SAFETY: `deref()` will return a reference to a [`Bitmap`]. Its methods
/// take immutable references are either atomic or read-only.
unsafe impl Sync for BitmapVec {}

impl Drop for BitmapVec {
    fn drop(&mut self) {
        if self.nbits <= BITS_PER_LONG {
            return;
        }
        // SAFETY: `self.ptr` was returned by the C `bitmap_zalloc`.
        //
        // INVARIANT: there is no other use of the `self.ptr` after this
        // call and the value is being dropped so the broken invariant is
        // not observable on function exit.
        unsafe { bindings::bitmap_free(self.repr.ptr.as_ptr()) };
    }
}

impl BitmapVec {
    /// Constructs a new [`BitmapVec`].
    ///
    /// Fails with [`AllocError`] when the [`BitmapVec`] could not be allocated. This
    /// includes the case when `nbits` is greater than `i32::MAX`.
    #[inline]
    pub fn new(nbits: usize, flags: Flags) -> Result<Self, AllocError> {
        if nbits <= BITS_PER_LONG {
            return Ok(BitmapVec {
                repr: BitmapRepr { bitmap: 0 },
                nbits,
            });
        }
        if nbits > i32::MAX.try_into().unwrap() {
            return Err(AllocError);
        }
        let nbits_u32 = u32::try_from(nbits).unwrap();
        // SAFETY: `BITS_PER_LONG < nbits` and `nbits <= i32::MAX`.
        let ptr = unsafe { bindings::bitmap_zalloc(nbits_u32, flags.as_raw()) };
        let ptr = NonNull::new(ptr).ok_or(AllocError)?;
        // INVARIANT: `ptr` returned by C `bitmap_zalloc` and `nbits` checked.
        Ok(BitmapVec {
            repr: BitmapRepr { ptr },
            nbits,
        })
    }

    /// Returns length of this [`Bitmap`].
    #[allow(clippy::len_without_is_empty)]
    #[inline]
    pub fn len(&self) -> usize {
        self.nbits
    }

    /// Fills this `Bitmap` with random bits.
    #[cfg(CONFIG_FIND_BIT_BENCHMARK_RUST)]
    pub fn fill_random(&mut self) {
        // SAFETY: `self.as_mut_ptr` points to either an array of the
        // appropriate length or one usize.
        unsafe {
            bindings::get_random_bytes(
                self.as_mut_ptr().cast::<ffi::c_void>(),
                usize::div_ceil(self.nbits, bindings::BITS_PER_LONG as usize)
                    * bindings::BITS_PER_LONG as usize
                    / 8,
            );
        }
    }
}

impl Bitmap {
    /// Set bit with index `index`.
    ///
    /// ATTENTION: `set_bit` is non-atomic, which differs from the naming
    /// convention in C code. The corresponding C function is `__set_bit`.
    ///
    /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
    /// or equal to `self.nbits`, does nothing.
    ///
    /// # Panics
    ///
    /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
    /// or equal to `self.nbits`.
    #[inline]
    pub fn set_bit(&mut self, index: usize) {
        bitmap_assert_return!(
            index < self.len(),
            "Bit `index` must be < {}, was {}",
            self.len(),
            index
        );
        // SAFETY: Bit `index` is within bounds.
        unsafe { bindings::__set_bit(index, self.as_mut_ptr()) };
    }

    /// Set bit with index `index`, atomically.
    ///
    /// This is a relaxed atomic operation (no implied memory barriers).
    ///
    /// ATTENTION: The naming convention differs from C, where the corresponding
    /// function is called `set_bit`.
    ///
    /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
    /// or equal to `self.len()`, does nothing.
    ///
    /// # Panics
    ///
    /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
    /// or equal to `self.len()`.
    #[inline]
    pub fn set_bit_atomic(&self, index: usize) {
        bitmap_assert_return!(
            index < self.len(),
            "Bit `index` must be < {}, was {}",
            self.len(),
            index
        );
        // SAFETY: `index` is within bounds and the caller has ensured that
        // there is no mix of non-atomic and atomic operations.
        unsafe { bindings::set_bit(index, self.as_ptr().cast_mut()) };
    }

    /// Clear `index` bit.
    ///
    /// ATTENTION: `clear_bit` is non-atomic, which differs from the naming
    /// convention in C code. The corresponding C function is `__clear_bit`.
    ///
    /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
    /// or equal to `self.len()`, does nothing.
    ///
    /// # Panics
    ///
    /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
    /// or equal to `self.len()`.
    #[inline]
    pub fn clear_bit(&mut self, index: usize) {
        bitmap_assert_return!(
            index < self.len(),
            "Bit `index` must be < {}, was {}",
            self.len(),
            index
        );
        // SAFETY: `index` is within bounds.
        unsafe { bindings::__clear_bit(index, self.as_mut_ptr()) };
    }

    /// Clear `index` bit, atomically.
    ///
    /// This is a relaxed atomic operation (no implied memory barriers).
    ///
    /// ATTENTION: The naming convention differs from C, where the corresponding
    /// function is called `clear_bit`.
    ///
    /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
    /// or equal to `self.len()`, does nothing.
    ///
    /// # Panics
    ///
    /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
    /// or equal to `self.len()`.
    #[inline]
    pub fn clear_bit_atomic(&self, index: usize) {
        bitmap_assert_return!(
            index < self.len(),
            "Bit `index` must be < {}, was {}",
            self.len(),
            index
        );
        // SAFETY: `index` is within bounds and the caller has ensured that
        // there is no mix of non-atomic and atomic operations.
        unsafe { bindings::clear_bit(index, self.as_ptr().cast_mut()) };
    }

    /// Copy `src` into this [`Bitmap`] and set any remaining bits to zero.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
    /// use kernel::bitmap::BitmapVec;
    ///
    /// let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?;
    ///
    /// assert_eq!(None, long_bitmap.last_bit());
    ///
    /// let mut short_bitmap = BitmapVec::new(16, GFP_KERNEL)?;
    ///
    /// short_bitmap.set_bit(7);
    /// long_bitmap.copy_and_extend(&short_bitmap);
    /// assert_eq!(Some(7), long_bitmap.last_bit());
    ///
    /// # Ok::<(), AllocError>(())
    /// ```
    #[inline]
    pub fn copy_and_extend(&mut self, src: &Bitmap) {
        let len = core::cmp::min(src.len(), self.len());
        // SAFETY: access to `self` and `src` is within bounds.
        unsafe {
            bindings::bitmap_copy_and_extend(
                self.as_mut_ptr(),
                src.as_ptr(),
                len as u32,
                self.len() as u32,
            )
        };
    }

    /// Finds last set bit.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
    /// use kernel::bitmap::BitmapVec;
    ///
    /// let bitmap = BitmapVec::new(64, GFP_KERNEL)?;
    ///
    /// match bitmap.last_bit() {
    ///     Some(idx) => {
    ///         pr_info!("The last bit has index {idx}.\n");
    ///     }
    ///     None => {
    ///         pr_info!("All bits in this bitmap are 0.\n");
    ///     }
    /// }
    /// # Ok::<(), AllocError>(())
    /// ```
    #[inline]
    pub fn last_bit(&self) -> Option<usize> {
        // SAFETY: `_find_next_bit` access is within bounds due to invariant.
        let index = unsafe { bindings::_find_last_bit(self.as_ptr(), self.len()) };
        if index >= self.len() {
            None
        } else {
            Some(index)
        }
    }

    /// Finds next set bit, starting from `start`.
    ///
    /// Returns `None` if `start` is greater or equal to `self.nbits`.
    #[inline]
    pub fn next_bit(&self, start: usize) -> Option<usize> {
        bitmap_assert!(
            start < self.len(),
            "`start` must be < {} was {}",
            self.len(),
            start
        );
        // SAFETY: `_find_next_bit` tolerates out-of-bounds arguments and returns a
        // value larger than or equal to `self.len()` in that case.
        let index = unsafe { bindings::_find_next_bit(self.as_ptr(), self.len(), start) };
        if index >= self.len() {
            None
        } else {
            Some(index)
        }
    }

    /// Finds next zero bit, starting from `start`.
    /// Returns `None` if `start` is greater than or equal to `self.len()`.
    #[inline]
    pub fn next_zero_bit(&self, start: usize) -> Option<usize> {
        bitmap_assert!(
            start < self.len(),
            "`start` must be < {} was {}",
            self.len(),
            start
        );
        // SAFETY: `_find_next_zero_bit` tolerates out-of-bounds arguments and returns a
        // value larger than or equal to `self.len()` in that case.
        let index = unsafe { bindings::_find_next_zero_bit(self.as_ptr(), self.len(), start) };
        if index >= self.len() {
            None
        } else {
            Some(index)
        }
    }
}

use macros::kunit_tests;

#[kunit_tests(rust_kernel_bitmap)]
mod tests {
    use super::*;
    use kernel::alloc::flags::GFP_KERNEL;

    #[test]
    fn bitmap_borrow() {
        let fake_bitmap: [usize; 2] = [0, 0];
        // SAFETY: `fake_c_bitmap` is an array of expected length.
        let b = unsafe { Bitmap::from_raw(fake_bitmap.as_ptr(), 2 * BITS_PER_LONG) };
        assert_eq!(2 * BITS_PER_LONG, b.len());
        assert_eq!(None, b.next_bit(0));
    }

    #[test]
    fn bitmap_copy() {
        let fake_bitmap: usize = 0xFF;
        // SAFETY: `fake_c_bitmap` can be used as one-element array of expected length.
        let b = unsafe { Bitmap::from_raw(core::ptr::addr_of!(fake_bitmap), 8) };
        assert_eq!(8, b.len());
        assert_eq!(None, b.next_zero_bit(0));
    }

    #[test]
    fn bitmap_vec_new() -> Result<(), AllocError> {
        let b = BitmapVec::new(0, GFP_KERNEL)?;
        assert_eq!(0, b.len());

        let b = BitmapVec::new(3, GFP_KERNEL)?;
        assert_eq!(3, b.len());

        let b = BitmapVec::new(1024, GFP_KERNEL)?;
        assert_eq!(1024, b.len());

        // Requesting too large values results in [`AllocError`].
        let res = BitmapVec::new(1 << 31, GFP_KERNEL);
        assert!(res.is_err());
        Ok(())
    }

    #[test]
    fn bitmap_set_clear_find() -> Result<(), AllocError> {
        let mut b = BitmapVec::new(128, GFP_KERNEL)?;

        // Zero-initialized
        assert_eq!(None, b.next_bit(0));
        assert_eq!(Some(0), b.next_zero_bit(0));
        assert_eq!(None, b.last_bit());

        b.set_bit(17);

        assert_eq!(Some(17), b.next_bit(0));
        assert_eq!(Some(17), b.next_bit(17));
        assert_eq!(None, b.next_bit(18));
        assert_eq!(Some(17), b.last_bit());

        b.set_bit(107);

        assert_eq!(Some(17), b.next_bit(0));
        assert_eq!(Some(17), b.next_bit(17));
        assert_eq!(Some(107), b.next_bit(18));
        assert_eq!(Some(107), b.last_bit());

        b.clear_bit(17);

        assert_eq!(Some(107), b.next_bit(0));
        assert_eq!(Some(107), b.last_bit());
        Ok(())
    }

    #[test]
    fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> {
        // TODO: Kunit #[test]s do not support `cfg` yet,
        // so we add it here in the body.
        #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
        {
            let mut b = BitmapVec::new(128, GFP_KERNEL)?;
            b.set_bit(2048);
            b.set_bit_atomic(2048);
            b.clear_bit(2048);
            b.clear_bit_atomic(2048);
            assert_eq!(None, b.next_bit(2048));
            assert_eq!(None, b.next_zero_bit(2048));
            assert_eq!(None, b.last_bit());
        }
        Ok(())
    }

    // TODO: uncomment once kunit supports [should_panic] and `cfg`.
    // #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
    // #[test]
    // #[should_panic]
    // fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> {
    //     let mut b = BitmapVec::new(128, GFP_KERNEL)?;
    //
    //     b.set_bit(2048);
    // }

    #[test]
    fn bitmap_copy_and_extend() -> Result<(), AllocError> {
        let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?;

        long_bitmap.set_bit(3);
        long_bitmap.set_bit(200);

        let mut short_bitmap = BitmapVec::new(32, GFP_KERNEL)?;

        short_bitmap.set_bit(17);

        long_bitmap.copy_and_extend(&short_bitmap);

        // Previous bits have been cleared.
        assert_eq!(Some(17), long_bitmap.next_bit(0));
        assert_eq!(Some(17), long_bitmap.last_bit());
        Ok(())
    }
}