diff options
author | Yoctopuce dev <dev@yoctopuce.com> | 2025-06-06 14:55:21 +0200 |
---|---|---|
committer | Damien George <damien@micropython.org> | 2025-08-01 00:47:33 +1000 |
commit | dbbaa959c85c04dbbcde5908b5d0775b574e44e7 (patch) | |
tree | 050bd1670b061788d291c0d88af22a6aad722f64 /py/parsenum.c | |
parent | e4e1c9f4132f839dac0291557d9b992f67577fd3 (diff) |
py/formatfloat: Improve accuracy of float formatting code.
Following discussions in PR #16666, this commit updates the float
formatting code to improve the `repr` reversibility, i.e. the percentage of
valid floating point numbers that do parse back to the same number when
formatted by `repr` (in CPython it's 100%).
This new code offers a choice of 3 float conversion methods, depending on
the desired tradeoff between code size and conversion precision:
- BASIC method is the smallest code footprint
- APPROX method uses an iterative method to approximate the exact
representation, which is a bit slower but but does not have a big impact
on code size. It provides `repr` reversibility on >99.8% of the cases in
double precision, and on >98.5% in single precision (except with REPR_C,
where reversibility is 100% as the last two bits are not taken into
account).
- EXACT method uses higher-precision floats during conversion, which
provides perfect results but has a higher impact on code size. It is
faster than APPROX method, and faster than the CPython equivalent
implementation. It is however not available on all compilers when using
FLOAT_IMPL_DOUBLE.
Here is the table comparing the impact of the three conversion methods on
code footprint on PYBV10 (using single-precision floats) and reversibility
rate for both single-precision and double-precision floats. The table
includes current situation as a baseline for the comparison:
PYBV10 REPR_C FLOAT DOUBLE
current = 364688 12.9% 27.6% 37.9%
basic = 364812 85.6% 60.5% 85.7%
approx = 365080 100.0% 98.5% 99.8%
exact = 366408 100.0% 100.0% 100.0%
Signed-off-by: Yoctopuce dev <dev@yoctopuce.com>
Diffstat (limited to 'py/parsenum.c')
-rw-r--r-- | py/parsenum.c | 50 |
1 files changed, 43 insertions, 7 deletions
diff --git a/py/parsenum.c b/py/parsenum.c index 019491b51..e18002306 100644 --- a/py/parsenum.c +++ b/py/parsenum.c @@ -210,7 +210,7 @@ typedef enum { } parse_dec_in_t; // MANTISSA_MAX is used to retain precision while not overflowing mantissa -#define MANTISSA_MAX (sizeof(mp_float_uint_t) == 8 ? 0x1999999999999998ULL : 0x19999998U) +#define MANTISSA_MAX (sizeof(mp_large_float_uint_t) == 8 ? 0x1999999999999998ULL : 0x19999998U) // MAX_EXACT_POWER_OF_5 is the largest value of x so that 5^x can be stored exactly in a float #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT @@ -220,11 +220,45 @@ typedef enum { #endif // Helper to compute `num * (10.0 ** dec_exp)` -mp_float_t mp_decimal_exp(mp_float_t num, int dec_exp) { - - if (dec_exp == 0 || num == MICROPY_FLOAT_CONST(0.0)) { +mp_large_float_t mp_decimal_exp(mp_large_float_t num, int dec_exp) { + if (dec_exp == 0 || num == (mp_large_float_t)(0.0)) { return num; } + + #if MICROPY_FLOAT_FORMAT_IMPL == MICROPY_FLOAT_FORMAT_IMPL_EXACT + + // If the assert below fails, it means you have chosen MICROPY_FLOAT_FORMAT_IMPL_EXACT + // manually on a platform where `larger floats` are not supported, which would + // result in inexact conversions. To fix this issue, change your `mpconfigport.h` + // and select MICROPY_FLOAT_FORMAT_IMPL_APPROX instead + assert(sizeof(mp_large_float_t) > sizeof(mp_float_t)); + + // Perform power using simple multiplications, to avoid + // dependency to higher-precision pow() function + int neg_exp = (dec_exp < 0); + if (neg_exp) { + dec_exp = -dec_exp; + } + mp_large_float_t res = num; + mp_large_float_t expo = (mp_large_float_t)10.0; + while (dec_exp) { + if (dec_exp & 1) { + if (neg_exp) { + res /= expo; + } else { + res *= expo; + } + } + dec_exp >>= 1; + if (dec_exp) { + expo *= expo; + } + } + return res; + + #else + // MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_EXACT + mp_float_union_t res = {num}; // Multiply first by (2.0 ** dec_exp) via the exponent // - this will ensure that the result of `pow()` is always in mp_float_t range @@ -238,12 +272,14 @@ mp_float_t mp_decimal_exp(mp_float_t num, int dec_exp) { } else { res.f *= MICROPY_FLOAT_C_FUN(pow)(5, dec_exp); } - return (mp_float_t)res.f; + return (mp_large_float_t)res.f; + + #endif } // Break out inner digit accumulation routine to ease trailing zero deferral. -static mp_float_uint_t accept_digit(mp_float_uint_t p_mantissa, unsigned int dig, int *p_exp_extra, int in) { +static mp_large_float_uint_t accept_digit(mp_large_float_uint_t p_mantissa, unsigned int dig, int *p_exp_extra, int in) { // Core routine to ingest an additional digit. if (p_mantissa < MANTISSA_MAX) { // dec_val won't overflow so keep accumulating @@ -267,7 +303,7 @@ const char *mp_parse_float_internal(const char *str, size_t len, mp_float_t *res parse_dec_in_t in = PARSE_DEC_IN_INTG; bool exp_neg = false; - mp_float_uint_t mantissa = 0; + mp_large_float_uint_t mantissa = 0; int exp_val = 0; int exp_extra = 0; int trailing_zeros_intg = 0, trailing_zeros_frac = 0; |