summaryrefslogtreecommitdiff
path: root/py/parsenum.c
diff options
context:
space:
mode:
authorYoctopuce dev <dev@yoctopuce.com>2025-06-06 14:55:21 +0200
committerDamien George <damien@micropython.org>2025-08-01 00:47:33 +1000
commitdbbaa959c85c04dbbcde5908b5d0775b574e44e7 (patch)
tree050bd1670b061788d291c0d88af22a6aad722f64 /py/parsenum.c
parente4e1c9f4132f839dac0291557d9b992f67577fd3 (diff)
py/formatfloat: Improve accuracy of float formatting code.
Following discussions in PR #16666, this commit updates the float formatting code to improve the `repr` reversibility, i.e. the percentage of valid floating point numbers that do parse back to the same number when formatted by `repr` (in CPython it's 100%). This new code offers a choice of 3 float conversion methods, depending on the desired tradeoff between code size and conversion precision: - BASIC method is the smallest code footprint - APPROX method uses an iterative method to approximate the exact representation, which is a bit slower but but does not have a big impact on code size. It provides `repr` reversibility on >99.8% of the cases in double precision, and on >98.5% in single precision (except with REPR_C, where reversibility is 100% as the last two bits are not taken into account). - EXACT method uses higher-precision floats during conversion, which provides perfect results but has a higher impact on code size. It is faster than APPROX method, and faster than the CPython equivalent implementation. It is however not available on all compilers when using FLOAT_IMPL_DOUBLE. Here is the table comparing the impact of the three conversion methods on code footprint on PYBV10 (using single-precision floats) and reversibility rate for both single-precision and double-precision floats. The table includes current situation as a baseline for the comparison: PYBV10 REPR_C FLOAT DOUBLE current = 364688 12.9% 27.6% 37.9% basic = 364812 85.6% 60.5% 85.7% approx = 365080 100.0% 98.5% 99.8% exact = 366408 100.0% 100.0% 100.0% Signed-off-by: Yoctopuce dev <dev@yoctopuce.com>
Diffstat (limited to 'py/parsenum.c')
-rw-r--r--py/parsenum.c50
1 files changed, 43 insertions, 7 deletions
diff --git a/py/parsenum.c b/py/parsenum.c
index 019491b51..e18002306 100644
--- a/py/parsenum.c
+++ b/py/parsenum.c
@@ -210,7 +210,7 @@ typedef enum {
} parse_dec_in_t;
// MANTISSA_MAX is used to retain precision while not overflowing mantissa
-#define MANTISSA_MAX (sizeof(mp_float_uint_t) == 8 ? 0x1999999999999998ULL : 0x19999998U)
+#define MANTISSA_MAX (sizeof(mp_large_float_uint_t) == 8 ? 0x1999999999999998ULL : 0x19999998U)
// MAX_EXACT_POWER_OF_5 is the largest value of x so that 5^x can be stored exactly in a float
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
@@ -220,11 +220,45 @@ typedef enum {
#endif
// Helper to compute `num * (10.0 ** dec_exp)`
-mp_float_t mp_decimal_exp(mp_float_t num, int dec_exp) {
-
- if (dec_exp == 0 || num == MICROPY_FLOAT_CONST(0.0)) {
+mp_large_float_t mp_decimal_exp(mp_large_float_t num, int dec_exp) {
+ if (dec_exp == 0 || num == (mp_large_float_t)(0.0)) {
return num;
}
+
+ #if MICROPY_FLOAT_FORMAT_IMPL == MICROPY_FLOAT_FORMAT_IMPL_EXACT
+
+ // If the assert below fails, it means you have chosen MICROPY_FLOAT_FORMAT_IMPL_EXACT
+ // manually on a platform where `larger floats` are not supported, which would
+ // result in inexact conversions. To fix this issue, change your `mpconfigport.h`
+ // and select MICROPY_FLOAT_FORMAT_IMPL_APPROX instead
+ assert(sizeof(mp_large_float_t) > sizeof(mp_float_t));
+
+ // Perform power using simple multiplications, to avoid
+ // dependency to higher-precision pow() function
+ int neg_exp = (dec_exp < 0);
+ if (neg_exp) {
+ dec_exp = -dec_exp;
+ }
+ mp_large_float_t res = num;
+ mp_large_float_t expo = (mp_large_float_t)10.0;
+ while (dec_exp) {
+ if (dec_exp & 1) {
+ if (neg_exp) {
+ res /= expo;
+ } else {
+ res *= expo;
+ }
+ }
+ dec_exp >>= 1;
+ if (dec_exp) {
+ expo *= expo;
+ }
+ }
+ return res;
+
+ #else
+ // MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_EXACT
+
mp_float_union_t res = {num};
// Multiply first by (2.0 ** dec_exp) via the exponent
// - this will ensure that the result of `pow()` is always in mp_float_t range
@@ -238,12 +272,14 @@ mp_float_t mp_decimal_exp(mp_float_t num, int dec_exp) {
} else {
res.f *= MICROPY_FLOAT_C_FUN(pow)(5, dec_exp);
}
- return (mp_float_t)res.f;
+ return (mp_large_float_t)res.f;
+
+ #endif
}
// Break out inner digit accumulation routine to ease trailing zero deferral.
-static mp_float_uint_t accept_digit(mp_float_uint_t p_mantissa, unsigned int dig, int *p_exp_extra, int in) {
+static mp_large_float_uint_t accept_digit(mp_large_float_uint_t p_mantissa, unsigned int dig, int *p_exp_extra, int in) {
// Core routine to ingest an additional digit.
if (p_mantissa < MANTISSA_MAX) {
// dec_val won't overflow so keep accumulating
@@ -267,7 +303,7 @@ const char *mp_parse_float_internal(const char *str, size_t len, mp_float_t *res
parse_dec_in_t in = PARSE_DEC_IN_INTG;
bool exp_neg = false;
- mp_float_uint_t mantissa = 0;
+ mp_large_float_uint_t mantissa = 0;
int exp_val = 0;
int exp_extra = 0;
int trailing_zeros_intg = 0, trailing_zeros_frac = 0;