summaryrefslogtreecommitdiff
path: root/py/runtime_utils.c
diff options
context:
space:
mode:
authorJeff Epler <jepler@gmail.com>2025-07-23 16:14:22 -0500
committerDamien George <damien@micropython.org>2025-10-01 09:23:05 +1000
commita80913292153a14424b29bdb9ca8847e8d35cf73 (patch)
tree9d073ab5c9c1773d30daa89d3062c3ee1bbed380 /py/runtime_utils.c
parent3dd8073c290c077f17ffdee17a019763ad82604d (diff)
py: Add MICROPY_USE_GCC_MUL_OVERFLOW_INTRINSIC.
Most MCUs apart from Cortex-M0 with Thumb 1 have an instruction for computing the "high part" of a multiplication (e.g., the upper 32 bits of a 32x32 multiply). When they do, gcc uses this to implement a small and fast overflow check using the __builtin_mul_overflow intrinsic, which is preferable to the guard division method previously used in smallint.c. However, in contrast to the previous mp_small_int_mul_overflow routine, which checks that the result fits not only within mp_int_t but is SMALL_INT_FITS(), __builtin_mul_overflow only checks for overflow of the C type. As a result, a slight change in the code flow is needed for MP_BINARY_OP_MULTIPLY. Other sites using mp_small_int_mul_overflow already had the result value flow through to a SMALL_INT_FITS check so they didn't need any additional changes. Do similarly for the _ll and _ull multiply overflows checks. Signed-off-by: Jeff Epler <jepler@gmail.com>
Diffstat (limited to 'py/runtime_utils.c')
-rw-r--r--py/runtime_utils.c60
1 files changed, 60 insertions, 0 deletions
diff --git a/py/runtime_utils.c b/py/runtime_utils.c
index b92c6bd76..50526b210 100644
--- a/py/runtime_utils.c
+++ b/py/runtime_utils.c
@@ -50,3 +50,63 @@ mp_obj_t mp_call_function_2_protected(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2
return MP_OBJ_NULL;
}
}
+
+#if !MICROPY_USE_GCC_MUL_OVERFLOW_INTRINSIC
+bool mp_mul_ll_overflow(long long int x, long long int y, long long int *res) {
+ bool overflow;
+
+ // Check for multiply overflow; see CERT INT32-C
+ if (x > 0) { // x is positive
+ if (y > 0) { // x and y are positive
+ overflow = (x > (LLONG_MAX / y));
+ } else { // x positive, y nonpositive
+ overflow = (y < (LLONG_MIN / x));
+ } // x positive, y nonpositive
+ } else { // x is nonpositive
+ if (y > 0) { // x is nonpositive, y is positive
+ overflow = (x < (LLONG_MIN / y));
+ } else { // x and y are nonpositive
+ overflow = (x != 0 && y < (LLONG_MAX / x));
+ } // End if x and y are nonpositive
+ } // End if x is nonpositive
+
+ if (!overflow) {
+ *res = x * y;
+ }
+
+ return overflow;
+}
+
+#define MP_UINT_MAX (~(mp_uint_t)0)
+#define MP_INT_MAX ((mp_int_t)(MP_UINT_MAX >> 1))
+#define MP_INT_MIN (-MP_INT_MAX - 1)
+
+bool mp_mul_mp_int_t_overflow(mp_int_t x, mp_int_t y, mp_int_t *res) {
+ // Check for multiply overflow; see CERT INT32-C
+ if (x > 0) { // x is positive
+ if (y > 0) { // x and y are positive
+ if (x > (MP_INT_MAX / y)) {
+ return true;
+ }
+ } else { // x positive, y nonpositive
+ if (y < (MP_INT_MIN / x)) {
+ return true;
+ }
+ } // x positive, y nonpositive
+ } else { // x is nonpositive
+ if (y > 0) { // x is nonpositive, y is positive
+ if (x < (MP_INT_MIN / y)) {
+ return true;
+ }
+ } else { // x and y are nonpositive
+ if (x != 0 && y < (MP_INT_MAX / x)) {
+ return true;
+ }
+ } // End if x and y are nonpositive
+ } // End if x is nonpositive
+
+ // Result doesn't overflow
+ *res = x * y;
+ return false;
+}
+#endif