summaryrefslogtreecommitdiff
path: root/stm/main.c
diff options
context:
space:
mode:
authorDamien <damien.p.george@gmail.com>2013-10-13 00:42:20 +0100
committerDamien <damien.p.george@gmail.com>2013-10-13 00:42:20 +0100
commited65605edc5c1376947a34723b9c750400b5a028 (patch)
treed0317e867c4286ec7c889fc9ed18591a1d9990dd /stm/main.c
parent3ef4abb446dfcbdbc426a0921a33e0883607e677 (diff)
Inital commit of stm32f4xx framework.
Diffstat (limited to 'stm/main.c')
-rw-r--r--stm/main.c829
1 files changed, 829 insertions, 0 deletions
diff --git a/stm/main.c b/stm/main.c
new file mode 100644
index 000000000..2e7f2ec90
--- /dev/null
+++ b/stm/main.c
@@ -0,0 +1,829 @@
+#include <stm32f4xx.h>
+#include <stm32f4xx_rcc.h>
+#include "std.h"
+
+#include "font_petme128_8x8.h"
+
+void delay_ms(int ms);
+
+void impl02_c_version() {
+ int x = 0;
+ while (x < 400) {
+ int y = 0;
+ while (y < 400) {
+ volatile int z = 0;
+ while (z < 400) {
+ z = z + 1;
+ }
+ y = y + 1;
+ }
+ x = x + 1;
+ }
+}
+
+void set_bits(__IO uint32_t *addr, uint32_t shift, uint32_t mask, uint32_t value) {
+ uint32_t x = *addr;
+ x &= ~(mask << shift);
+ x |= (value << shift);
+ *addr = x;
+}
+
+void gpio_init() {
+ RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOAEN;
+}
+
+#define PYB_LEDR_PORT (GPIOA)
+#define PYB_LEDR1_PORT_NUM (8)
+#define PYB_LEDR2_PORT_NUM (10)
+#define PYB_LEDG_PORT (GPIOC)
+#define PYB_LEDG1_PORT_NUM (4)
+#define PYB_LEDG2_PORT_NUM (5)
+
+void gpio_pin_init(GPIO_TypeDef *gpio, uint32_t pin, uint32_t moder, uint32_t otyper, uint32_t ospeedr, uint32_t pupdr) {
+ set_bits(&gpio->MODER, 2 * pin, 3, moder);
+ set_bits(&gpio->OTYPER, pin, 1, otyper);
+ set_bits(&gpio->OSPEEDR, 2 * pin, 3, ospeedr);
+ set_bits(&gpio->PUPDR, 2 * pin, 3, pupdr);
+}
+
+void gpio_pin_af(GPIO_TypeDef *gpio, uint32_t pin, uint32_t af) {
+ // set the AF bits for the given pin
+ // pins 0-7 use low word of AFR, pins 8-15 use high word
+ set_bits(&gpio->AFR[pin >> 3], 4 * (pin & 0x07), 0xf, af);
+}
+
+void mma_init() {
+ RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // enable I2C1
+ gpio_pin_init(GPIOB, 6 /* B6 is SCL */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
+ gpio_pin_init(GPIOB, 7 /* B7 is SDA */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
+ gpio_pin_af(GPIOB, 6, 4 /* AF 4 for I2C1 */);
+ gpio_pin_af(GPIOB, 7, 4 /* AF 4 for I2C1 */);
+
+ // get clock speeds
+ RCC_ClocksTypeDef rcc_clocks;
+ RCC_GetClocksFreq(&rcc_clocks);
+
+ // disable the I2C peripheral before we configure it
+ I2C1->CR1 &= ~I2C_CR1_PE;
+
+ // program peripheral input clock
+ I2C1->CR2 = 4; // no interrupts; 4 MHz (hopefully!) (could go up to 42MHz)
+
+ // configure clock control reg
+ uint32_t freq = rcc_clocks.PCLK1_Frequency / (100000 << 1); // want 100kHz, this is the formula for freq
+ I2C1->CCR = freq; // standard mode (speed), freq calculated as above
+
+ // configure rise time reg
+ I2C1->TRISE = (rcc_clocks.PCLK1_Frequency / 1000000) + 1; // formula for trise, gives maximum rise time
+
+ // enable the I2C peripheral
+ I2C1->CR1 |= I2C_CR1_PE;
+
+ // set START bit in CR1 to generate a start cond!
+}
+
+uint32_t i2c_get_sr() {
+ // must read SR1 first, then SR2, as the read can clear some flags
+ uint32_t sr1 = I2C1->SR1;
+ uint32_t sr2 = I2C1->SR2;
+ return (sr2 << 16) | sr1;
+}
+
+void mma_restart(uint8_t addr, int write) {
+ // send start condition
+ I2C1->CR1 |= I2C_CR1_START;
+
+ // wait for BUSY, MSL and SB --> Slave has acknowledged start condition
+ while ((i2c_get_sr() & 0x00030001) != 0x00030001) {
+ }
+
+ if (write) {
+ // send address and write bit
+ I2C1->DR = (addr << 1) | 0;
+ // wait for BUSY, MSL, ADDR, TXE and TRA
+ while ((i2c_get_sr() & 0x00070082) != 0x00070082) {
+ }
+ } else {
+ // send address and read bit
+ I2C1->DR = (addr << 1) | 1;
+ // wait for BUSY, MSL and ADDR flags
+ while ((i2c_get_sr() & 0x00030002) != 0x00030002) {
+ }
+ }
+}
+
+void mma_start(uint8_t addr, int write) {
+ // wait until I2C is not busy
+ while (I2C1->SR2 & I2C_SR2_BUSY) {
+ }
+
+ // do rest of start
+ mma_restart(addr, write);
+}
+
+void mma_send_byte(uint8_t data) {
+ // send byte
+ I2C1->DR = data;
+ // wait for TRA, BUSY, MSL, TXE and BTF (byte transmitted)
+ int timeout = 1000000;
+ while ((i2c_get_sr() & 0x00070084) != 0x00070084) {
+ if (timeout-- <= 0) {
+ printf("mma_send_byte timed out!\n");
+ break;
+ }
+ }
+}
+
+uint8_t mma_read_ack() {
+ // enable ACK of received byte
+ I2C1->CR1 |= I2C_CR1_ACK;
+ // wait for BUSY, MSL and RXNE (byte received)
+ while ((i2c_get_sr() & 0x00030040) != 0x00030040) {
+ }
+ // read and return data
+ uint8_t data = I2C1->DR;
+ return data;
+}
+
+uint8_t mma_read_nack() {
+ // disable ACK of received byte (to indicate end of receiving)
+ I2C1->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_ACK);
+ // last byte should apparently also generate a stop condition
+ I2C1->CR1 |= I2C_CR1_STOP;
+ // wait for BUSY, MSL and RXNE (byte received)
+ while ((i2c_get_sr() & 0x00030040) != 0x00030040) {
+ }
+ // read and return data
+ uint8_t data = I2C1->DR;
+ return data;
+}
+
+void mma_stop() {
+ // send stop condition
+ I2C1->CR1 |= I2C_CR1_STOP;
+}
+
+void led_init() {
+ // set the output high (so LED is off)
+ PYB_LEDR_PORT->BSRRL = 1 << PYB_LEDR1_PORT_NUM;
+ PYB_LEDR_PORT->BSRRL = 1 << PYB_LEDR2_PORT_NUM;
+ PYB_LEDG_PORT->BSRRL = 1 << PYB_LEDG1_PORT_NUM;
+ PYB_LEDG_PORT->BSRRL = 1 << PYB_LEDG2_PORT_NUM;
+ // make it an open drain output
+ gpio_pin_init(PYB_LEDR_PORT, PYB_LEDR1_PORT_NUM, 1, 1, 0, 0);
+ gpio_pin_init(PYB_LEDR_PORT, PYB_LEDR2_PORT_NUM, 1, 1, 0, 0);
+ gpio_pin_init(PYB_LEDG_PORT, PYB_LEDG1_PORT_NUM, 1, 1, 0, 0);
+ gpio_pin_init(PYB_LEDG_PORT, PYB_LEDG2_PORT_NUM, 1, 1, 0, 0);
+}
+
+static void led_state(uint32_t led_port, int s) {
+ if (s == 0) {
+ // LED off, output is high
+ if (led_port == PYB_LEDR1_PORT_NUM || led_port == PYB_LEDR2_PORT_NUM) {
+ PYB_LEDR_PORT->BSRRL = 1 << led_port;
+ } else {
+ PYB_LEDG_PORT->BSRRL = 1 << led_port;
+ }
+ } else {
+ // LED on, output is low
+ if (led_port == PYB_LEDR1_PORT_NUM || led_port == PYB_LEDR2_PORT_NUM) {
+ PYB_LEDR_PORT->BSRRH = 1 << led_port;
+ } else {
+ PYB_LEDG_PORT->BSRRH = 1 << led_port;
+ }
+ }
+}
+
+#define PYB_USRSW_PORT (GPIOA)
+#define PYB_USRSW_PORT_NUM (13)
+
+void sw_init() {
+ // make it an input with pull-up
+ gpio_pin_init(PYB_USRSW_PORT, PYB_USRSW_PORT_NUM, 0, 0, 0, 1);
+}
+
+int sw_get() {
+ if (PYB_USRSW_PORT->IDR & (1 << PYB_USRSW_PORT_NUM)) {
+ // pulled high, so switch is not pressed
+ return 0;
+ } else {
+ // pulled low, so switch is pressed
+ return 1;
+ }
+}
+
+#define PYB_LCD_PORT (GPIOA)
+#define PYB_LCD_CS1_PIN (0)
+#define PYB_LCD_RST_PIN (1)
+#define PYB_LCD_A0_PIN (2)
+#define PYB_LCD_SCL_PIN (3)
+#define PYB_LCD_SI_PIN (4)
+
+static void lcd_comm_out(uint8_t i) {
+ delay_ms(0);
+ PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_CS1_PIN; // CS=0; enable
+ PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_A0_PIN; // A0=0; select instr reg
+ // send byte bigendian, latches on rising clock
+ for (uint32_t n = 0; n < 8; n++) {
+ delay_ms(0);
+ PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SCL_PIN; // SCL=0
+ if ((i & 0x80) == 0) {
+ PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SI_PIN; // SI=0
+ } else {
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN; // SI=1
+ }
+ i <<= 1;
+ delay_ms(0);
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN; // SCL=1
+ }
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN; // CS=1; disable
+
+ /*
+ in Python, native types:
+ CS1_PIN(const) = 0
+ n = int(0)
+ delay_ms(0)
+ PORT[word:BSRRH] = 1 << CS1_PIN
+ for n in range(0, 8):
+ delay_ms(0)
+ PORT[word:BSRRH] = 1 << SCL_PIN
+ if i & 0x80 == 0:
+ PORT[word:BSRRH] = 1 << SI_PIN
+ else:
+ PORT[word:BSRRL] = 1 << SI_PIN
+ i <<= 1
+ delay_ms(0)
+ PORT[word:BSRRL] = 1 << SCL_PIN
+ */
+}
+
+static void lcd_data_out(uint8_t i) {
+ delay_ms(0);
+ PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_CS1_PIN; // CS=0; enable
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_A0_PIN; // A0=1; select data reg
+ // send byte bigendian, latches on rising clock
+ for (uint32_t n = 0; n < 8; n++) {
+ delay_ms(0);
+ PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SCL_PIN; // SCL=0
+ if ((i & 0x80) == 0) {
+ PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SI_PIN; // SI=0
+ } else {
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN; // SI=1
+ }
+ i <<= 1;
+ delay_ms(0);
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN; // SCL=1
+ }
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN; // CS=1; disable
+}
+
+#define LCD_BUF_W (16)
+#define LCD_BUF_H (4)
+char lcd_buffer[LCD_BUF_W * LCD_BUF_H];
+int lcd_line;
+int lcd_column;
+int lcd_next_line;
+
+void lcd_print_strn(const char *str, unsigned int len) {
+ int redraw_min = lcd_line * LCD_BUF_W + lcd_column;
+ int redraw_max = redraw_min;
+ int did_new_line = 0;
+ for (; len > 0; len--, str++) {
+ // move to next line if needed
+ if (lcd_next_line) {
+ if (lcd_line + 1 < LCD_BUF_H) {
+ lcd_line += 1;
+ } else {
+ lcd_line = LCD_BUF_H - 1;
+ for (int i = 0; i < LCD_BUF_W * (LCD_BUF_H - 1); i++) {
+ lcd_buffer[i] = lcd_buffer[i + LCD_BUF_W];
+ }
+ for (int i = 0; i < LCD_BUF_W; i++) {
+ lcd_buffer[LCD_BUF_W * (LCD_BUF_H - 1) + i] = ' ';
+ }
+ redraw_min = 0;
+ redraw_max = LCD_BUF_W * LCD_BUF_H;
+ }
+ lcd_next_line = 0;
+ lcd_column = 0;
+ did_new_line = 1;
+ }
+ if (*str == '\n') {
+ lcd_next_line = 1;
+ } else if (lcd_column >= LCD_BUF_W) {
+ lcd_next_line = 1;
+ str -= 1;
+ len += 1;
+ } else {
+ lcd_buffer[lcd_line * LCD_BUF_W + lcd_column] = *str;
+ lcd_column += 1;
+ int max = lcd_line * LCD_BUF_W + lcd_column;
+ if (max > redraw_max) {
+ redraw_max = max;
+ }
+ }
+ }
+
+ int last_page = -1;
+ for (int i = redraw_min; i < redraw_max; i++) {
+ int page = i / LCD_BUF_W;
+ if (page != last_page) {
+ int offset = 8 * (i - (page * LCD_BUF_W));
+ lcd_comm_out(0xb0 | page); // page address set
+ lcd_comm_out(0x10 | ((offset >> 4) & 0x0f)); // column address set upper
+ lcd_comm_out(0x00 | (offset & 0x0f)); // column address set lower
+ last_page = page;
+ }
+ int chr = lcd_buffer[i];
+ if (chr < 32 || chr > 126) {
+ chr = 127;
+ }
+ const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
+ for (int i = 0; i < 8; i++) {
+ lcd_data_out(chr_data[i]);
+ }
+ }
+
+ if (did_new_line) {
+ delay_ms(200);
+ }
+}
+
+static void lcd_init() {
+ // set the outputs high
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN;
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_RST_PIN;
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_A0_PIN;
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN;
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN;
+ // make them push/pull outputs
+ gpio_pin_init(PYB_LCD_PORT, PYB_LCD_CS1_PIN, 1, 0, 0, 0);
+ gpio_pin_init(PYB_LCD_PORT, PYB_LCD_RST_PIN, 1, 0, 0, 0);
+ gpio_pin_init(PYB_LCD_PORT, PYB_LCD_A0_PIN, 1, 0, 0, 0);
+ gpio_pin_init(PYB_LCD_PORT, PYB_LCD_SCL_PIN, 1, 0, 0, 0);
+ gpio_pin_init(PYB_LCD_PORT, PYB_LCD_SI_PIN, 1, 0, 0, 0);
+
+ // init the LCD
+ delay_ms(1); // wait a bit
+ PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_RST_PIN; // RST=0; reset
+ delay_ms(1); // wait for reset; 2us min
+ PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_RST_PIN; // RST=1; enable
+ delay_ms(1); // wait for reset; 2us min
+ lcd_comm_out(0xa0); // ADC select, normal
+ lcd_comm_out(0xc8); // common output mode select, reverse
+ lcd_comm_out(0xa2); // LCD bias set, 1/9 bias
+ lcd_comm_out(0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on)
+ lcd_comm_out(0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small
+ lcd_comm_out(0x81); // electronic volume mode set
+ lcd_comm_out(0x34); // electronic volume register set, 0b110100
+ lcd_comm_out(0x40); // display start line set, 0
+ lcd_comm_out(0xaf); // LCD display, on
+
+ // clear display
+ for (int page = 0; page < 4; page++) {
+ lcd_comm_out(0xb0 | page); // page address set
+ lcd_comm_out(0x10); // column address set upper
+ lcd_comm_out(0x00); // column address set lower
+ for (int i = 0; i < 128; i++) {
+ lcd_data_out(0x00);
+ }
+ }
+
+ for (int i = 0; i < LCD_BUF_H * LCD_BUF_W; i++) {
+ lcd_buffer[i] = ' ';
+ }
+ lcd_line = 0;
+ lcd_column = 0;
+ lcd_next_line = 0;
+}
+
+void __fatal_error(const char *msg) {
+ lcd_print_strn("\nFATAL ERROR:\n", 14);
+ lcd_print_strn(msg, strlen(msg));
+
+ for (;;) {
+ led_state(PYB_LEDR1_PORT_NUM, 1);
+ led_state(PYB_LEDR2_PORT_NUM, 0);
+ delay_ms(150);
+ led_state(PYB_LEDR1_PORT_NUM, 0);
+ led_state(PYB_LEDR2_PORT_NUM, 1);
+ delay_ms(150);
+ }
+}
+
+#include "misc.h"
+#include "lexer.h"
+#include "mpyconfig.h"
+#include "parse.h"
+#include "compile.h"
+#include "runtime.h"
+
+/*
+py_obj_t pyb_delay(py_obj_t count) {
+ delay_ms(rt_get_int(count));
+ return py_const_none;
+}
+
+py_obj_t pyb_led(py_obj_t state) {
+ led_state(PYB_LEDG1_PORT_NUM, rt_is_true(state));
+ return state;
+}
+
+py_obj_t pyb_sw() {
+ if (sw_get()) {
+ return py_const_true;
+ } else {
+ return py_const_false;
+ }
+}
+*/
+
+#include "asmthumb.h"
+typedef void (*fun_t)();
+
+#include "ff.h"
+FATFS fatfs0;
+
+int main() {
+ // should disable JTAG
+
+ //qstr_init();
+ //rt_init();
+
+ gpio_init();
+ led_init();
+ sw_init();
+ lcd_init();
+
+ // print a message
+ printf(" micro py board\n");
+
+ // flash to indicate we are alive!
+ for (int i = 0; i < 2; i++) {
+ led_state(PYB_LEDR1_PORT_NUM, 1);
+ led_state(PYB_LEDR2_PORT_NUM, 0);
+ delay_ms(200);
+ led_state(PYB_LEDR1_PORT_NUM, 0);
+ led_state(PYB_LEDR2_PORT_NUM, 1);
+ delay_ms(200);
+ }
+
+ led_state(PYB_LEDR1_PORT_NUM, 0);
+ led_state(PYB_LEDR2_PORT_NUM, 0);
+ led_state(PYB_LEDG1_PORT_NUM, 0);
+ led_state(PYB_LEDG2_PORT_NUM, 0);
+
+ // get and print clock speeds
+ // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
+ /*
+ {
+ RCC_ClocksTypeDef rcc_clocks;
+ RCC_GetClocksFreq(&rcc_clocks);
+ printf("S=%lu H=%lu P1=%lu P2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
+ delay_ms(1000);
+ }
+ */
+
+ /*
+ extern int _sidata;
+ extern int _sdata;
+ extern int _edata;
+ extern int _sbss;
+ extern int _ebss;
+ delay_ms(2000);
+ printf("_sidata=%04x\n", _sidata);
+ printf("_sdata=%04x\n", _sdata);
+ printf("_edata=%04x\n", _edata);
+ printf("_sbss=%04x\n", _sbss);
+ printf("_ebss=%04x\n", _ebss);
+ //printf("sizeof(int)=%d\n", sizeof(int)); // 4
+ delay_ms(2000);
+ */
+
+ //printf("init;al=%u\n", m_get_total_bytes_allocated()); // 1600, due to qstr_init
+ //delay_ms(1000);
+
+ #if 0
+ // Python!
+ if (0) {
+ //const char *pysrc = "def f():\n x=x+1\nprint(42)\n";
+ const char *pysrc =
+ // impl01.py
+ /*
+ "x = 0\n"
+ "while x < 400:\n"
+ " y = 0\n"
+ " while y < 400:\n"
+ " z = 0\n"
+ " while z < 400:\n"
+ " z = z + 1\n"
+ " y = y + 1\n"
+ " x = x + 1\n";
+ */
+ // impl02.py
+ "#@micropython.native\n"
+ "def f():\n"
+ " x = 0\n"
+ " while x < 400:\n"
+ " y = 0\n"
+ " while y < 400:\n"
+ " z = 0\n"
+ " while z < 400:\n"
+ " z = z + 1\n"
+ " y = y + 1\n"
+ " x = x + 1\n"
+ "f()\n";
+ /*
+ "print('in python!')\n"
+ "x = 0\n"
+ "while x < 4:\n"
+ " pyb_led(True)\n"
+ " pyb_delay(201)\n"
+ " pyb_led(False)\n"
+ " pyb_delay(201)\n"
+ " x = x + 1\n"
+ "print('press me!')\n"
+ "while True:\n"
+ " pyb_led(pyb_sw())\n";
+ */
+ /*
+ // impl16.py
+ "@micropython.asm_thumb\n"
+ "def delay(r0):\n"
+ " b(loop_entry)\n"
+ " label(loop1)\n"
+ " movw(r1, 55999)\n"
+ " label(loop2)\n"
+ " subs(r1, r1, 1)\n"
+ " cmp(r1, 0)\n"
+ " bgt(loop2)\n"
+ " subs(r0, r0, 1)\n"
+ " label(loop_entry)\n"
+ " cmp(r0, 0)\n"
+ " bgt(loop1)\n"
+ "print('in python!')\n"
+ "@micropython.native\n"
+ "def flash(n):\n"
+ " x = 0\n"
+ " while x < n:\n"
+ " pyb_led(True)\n"
+ " delay(249)\n"
+ " pyb_led(False)\n"
+ " delay(249)\n"
+ " x = x + 1\n"
+ "flash(20)\n";
+ */
+
+ py_lexer_t *lex = py_lexer_from_str_len("<>", pysrc, strlen(pysrc), false);
+
+ if (0) {
+ while (!py_lexer_is_kind(lex, PY_TOKEN_END)) {
+ py_token_show(py_lexer_cur(lex));
+ py_lexer_to_next(lex);
+ delay_ms(1000);
+ }
+ } else {
+ // nalloc=1740;6340;6836 -> 140;4600;496 bytes for lexer, parser, compiler
+ printf("lex; al=%u\n", m_get_total_bytes_allocated());
+ delay_ms(1000);
+ py_parse_node_t pn = py_parse(lex, 0);
+ //printf("----------------\n");
+ printf("pars;al=%u\n", m_get_total_bytes_allocated());
+ delay_ms(1000);
+ //parse_node_show(pn, 0);
+ py_compile(pn);
+ printf("comp;al=%u\n", m_get_total_bytes_allocated());
+ delay_ms(1000);
+
+ if (1) {
+ // execute it!
+
+ // add some functions to the python namespace
+ rt_store_name(qstr_from_str_static("pyb_delay"), rt_make_function_1(pyb_delay));
+ rt_store_name(qstr_from_str_static("pyb_led"), rt_make_function_1(pyb_led));
+ rt_store_name(qstr_from_str_static("pyb_sw"), rt_make_function_0(pyb_sw));
+
+ py_obj_t module_fun = rt_make_function_from_id(1);
+
+ led_state(PYB_LEDG1_PORT_NUM, 1);
+ delay_ms(100);
+ led_state(PYB_LEDG1_PORT_NUM, 0);
+ py_obj_t ret = rt_call_function_0(module_fun);
+ led_state(PYB_LEDG1_PORT_NUM, 1);
+ delay_ms(100);
+ led_state(PYB_LEDG1_PORT_NUM, 0);
+
+ printf("done! got: ");
+ py_obj_print(ret);
+ printf("\n");
+ delay_ms(1000);
+ printf("nalloc=%u\n", m_get_total_bytes_allocated());
+ delay_ms(1000);
+ }
+ }
+ }
+ #endif
+
+ // benchmark C version of impl02.py
+ if (0) {
+ led_state(PYB_LEDG1_PORT_NUM, 1);
+ delay_ms(100);
+ led_state(PYB_LEDG1_PORT_NUM, 0);
+ impl02_c_version();
+ led_state(PYB_LEDG1_PORT_NUM, 1);
+ delay_ms(100);
+ led_state(PYB_LEDG1_PORT_NUM, 0);
+ }
+
+ // MMA testing
+ if (0) {
+ printf("1");
+ mma_init();
+ printf("2");
+ mma_start(0x4c, 1);
+ printf("3");
+ mma_send_byte(0);
+ printf("4");
+ mma_stop();
+ printf("5");
+ mma_start(0x4c, 1);
+ printf("6");
+ mma_send_byte(0);
+ printf("7");
+ mma_restart(0x4c, 0);
+ for (int i = 0; i <= 0xa; i++) {
+ int data;
+ if (i == 0xa) {
+ data = mma_read_nack();
+ } else {
+ data = mma_read_ack();
+ }
+ printf(" %02x", data);
+ }
+ printf("\n");
+
+ mma_start(0x4c, 1);
+ mma_send_byte(7); // mode
+ mma_send_byte(1); // active mode
+ mma_stop();
+
+ for (;;) {
+ delay_ms(500);
+
+ mma_start(0x4c, 1);
+ mma_send_byte(0);
+ mma_restart(0x4c, 0);
+ for (int i = 0; i <= 3; i++) {
+ int data;
+ if (i == 3) {
+ data = mma_read_nack();
+ printf(" %02x\n", data);
+ } else {
+ data = mma_read_ack() & 0x3f;
+ if (data & 0x20) {
+ data |= 0xc0;
+ }
+ printf(" % 2d", data);
+ }
+ }
+ }
+ }
+
+ // fatfs testing
+ if (1) {
+ FRESULT res = f_mount(&fatfs0, "0:", 1);
+ if (res == FR_OK) {
+ printf("mount success\n");
+ } else if (res == FR_NO_FILESYSTEM) {
+ res = f_mkfs("0:", 0, 0);
+ if (res == FR_OK) {
+ printf("mkfs success\n");
+ } else {
+ printf("mkfs fail %d\n", res);
+ }
+ } else {
+ printf("mount fail %d\n", res);
+ }
+
+ // write a file
+ if (0) {
+ FIL fp;
+ f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
+ UINT n;
+ f_write(&fp, "# this is boot.py\n", 18, &n);
+ printf("wrote %d\n", n);
+ f_close(&fp);
+ }
+
+ // read a file
+ if (1) {
+ FIL fp;
+ f_open(&fp, "0:/boot.py", FA_READ);
+ UINT n;
+ char buf[20];
+ f_read(&fp, buf, 18, &n);
+ buf[n + 1] = 0;
+ printf("read %d\n%s", n, buf);
+ f_close(&fp);
+ }
+
+ DWORD nclst;
+ FATFS *fatfs;
+ f_getfree("0:", &nclst, &fatfs);
+ printf("free=%d\n", nclst * fatfs->csize * 512);
+
+ }
+
+ // SD card testing
+ if (0) {
+ //sdio_init();
+ }
+
+ // USB VCP testing
+ if (0) {
+ //usb_vcp_init();
+ }
+
+ // USB MSC testing
+ if (1) {
+ void usb_msc_init();
+ usb_msc_init();
+ }
+
+ int i = 0;
+ int n = 0;
+
+ for (;;) {
+ delay_ms(10);
+ if (sw_get()) {
+ led_state(PYB_LEDR1_PORT_NUM, 1);
+ led_state(PYB_LEDG1_PORT_NUM, 0);
+ i = 1 - i;
+ if (i) {
+ printf(" angel %05x.\n", n);
+ //usb_vcp_send("hello!\r\n", 8);
+ } else {
+ printf(" mishka %4u.\n", n);
+ //usb_vcp_send("angel!\r\n", 8);
+ }
+ n += 1;
+ } else {
+ led_state(PYB_LEDR1_PORT_NUM, 0);
+ led_state(PYB_LEDG1_PORT_NUM, 1);
+ }
+ }
+
+ return 0;
+}
+
+/*
+void testf() {
+ testf(1, 2, 3);
+ testf(1, 2, 3, 4);
+ testf(1, 2, 3, 4, 5);
+ testf(1, 2, 3, 4, 5, 6);
+ testf(1, 2, 3, 4, 5, 6, 7);
+}
+
+int testg(int a, int b, int c, int d, int e) {
+ return a + b + c + d + testh(e);
+}
+
+int testh(int x, byte *y) {
+ return x + (y[-2] << 2);
+}
+*/
+
+/*
+void print_int(int x, int y, int z, int zz) {
+ printf("I %x %x %x %x", x, y, z, zz);
+ byte* ptr = (byte*)z;
+ printf("\nP %02x %02x %02x %02x", ptr[-4], ptr[-3], ptr[-2], ptr[-1]);
+ for (;;) {
+ }
+}
+void print_int_0(int x) { printf("P0 %x", x); }
+void print_int_1(int x) { printf("P1 %x", x); }
+void print_int_2(int x) { printf("P2 %x", x); }
+void print_int_3(int x) { printf("P3 %x", x); }
+void print_int_4(int x) { printf("P4 %x", x); }
+
+typedef struct _b_t {
+ void (*m1)(void*, int);
+ void (*m2)(void*, int);
+} b_t;
+typedef struct _a_t {
+ b_t *b;
+} a_t;
+void b_m1(b_t*, int);
+void b_m2(b_t*, int);
+void f1(a_t *a) {
+ a->b->m1(a->b, 2);
+ a->b->m2(a->b, 4);
+ b_m1(a->b, 2);
+ b_m2(a->b, 4);
+}
+void b_m1(b_t *b, int x) {
+ b->m1(b, x);
+}
+*/