diff options
| author | blmorris <bryan.morrissey@gmail.com> | 2014-07-18 16:06:22 -0400 |
|---|---|---|
| committer | blmorris <bryan.morrissey@gmail.com> | 2014-07-18 16:06:22 -0400 |
| commit | 0f4ee2e44a1e47258a8b07fb25e28286d131390c (patch) | |
| tree | 7bfb507183544d14236c0be8a232a92f4113abb1 /teensy/core/analog.c | |
| parent | 0429d35f37532d2a981e704f014a248da9b157d8 (diff) | |
| parent | 5467186b0eaa6e856b00f60f807bb988ae2ef8c5 (diff) | |
Merge https://github.com/micropython/micropython
Diffstat (limited to 'teensy/core/analog.c')
| -rw-r--r-- | teensy/core/analog.c | 463 |
1 files changed, 463 insertions, 0 deletions
diff --git a/teensy/core/analog.c b/teensy/core/analog.c new file mode 100644 index 000000000..f408ec9f1 --- /dev/null +++ b/teensy/core/analog.c @@ -0,0 +1,463 @@ +/* Teensyduino Core Library + * http://www.pjrc.com/teensy/ + * Copyright (c) 2013 PJRC.COM, LLC. + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * 1. The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * 2. If the Software is incorporated into a build system that allows + * selection among a list of target devices, then similar target + * devices manufactured by PJRC.COM must be included in the list of + * target devices and selectable in the same manner. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "core_pins.h" +//#include "HardwareSerial.h" + +static uint8_t calibrating; +static uint8_t analog_right_shift = 0; +static uint8_t analog_config_bits = 10; +static uint8_t analog_num_average = 4; +static uint8_t analog_reference_internal = 0; + +// the alternate clock is connected to OSCERCLK (16 MHz). +// datasheet says ADC clock should be 2 to 12 MHz for 16 bit mode +// datasheet says ADC clock should be 1 to 18 MHz for 8-12 bit mode + +#if F_BUS == 60000000 + #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7.5 MHz + #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz + #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz + #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz +#elif F_BUS == 56000000 + #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7 MHz + #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz + #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz + #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz +#elif F_BUS == 48000000 + #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz + #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz + #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz + #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 24 MHz +#elif F_BUS == 40000000 + #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz + #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz + #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz + #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 20 MHz +#elif F_BUS == 36000000 + #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 9 MHz + #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz + #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz + #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz +#elif F_BUS == 24000000 + #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz + #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz + #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz + #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 24 MHz +#elif F_BUS == 16000000 + #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz + #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz + #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz + #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 16 MHz +#elif F_BUS == 8000000 + #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz + #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz + #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz + #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz +#elif F_BUS == 4000000 + #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz + #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz + #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz + #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz +#elif F_BUS == 2000000 + #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz + #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz + #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz + #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz +#else +#error "F_BUS must be 60, 56, 48, 40, 36, 24, 4 or 2 MHz" +#endif + +void analog_init(void) +{ + uint32_t num; + + VREF_TRM = 0x60; + VREF_SC = 0xE1; // enable 1.2 volt ref + + if (analog_config_bits == 8) { + ADC0_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0); + ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3); + #if defined(__MK20DX256__) + ADC1_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0); + ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3); + #endif + } else if (analog_config_bits == 10) { + ADC0_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP; + ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3); + #if defined(__MK20DX256__) + ADC1_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP; + ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3); + #endif + } else if (analog_config_bits == 12) { + ADC0_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP; + ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2); + #if defined(__MK20DX256__) + ADC1_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP; + ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2); + #endif + } else { + ADC0_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP; + ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2); + #if defined(__MK20DX256__) + ADC1_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP; + ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2); + #endif + } + + if (analog_reference_internal) { + ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref + #if defined(__MK20DX256__) + ADC1_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref + #endif + } else { + ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref + #if defined(__MK20DX256__) + ADC1_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref + #endif + } + + num = analog_num_average; + if (num <= 1) { + ADC0_SC3 = ADC_SC3_CAL; // begin cal + #if defined(__MK20DX256__) + ADC1_SC3 = ADC_SC3_CAL; // begin cal + #endif + } else if (num <= 4) { + ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0); + #if defined(__MK20DX256__) + ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0); + #endif + } else if (num <= 8) { + ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1); + #if defined(__MK20DX256__) + ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1); + #endif + } else if (num <= 16) { + ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2); + #if defined(__MK20DX256__) + ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2); + #endif + } else { + ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3); + #if defined(__MK20DX256__) + ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3); + #endif + } + calibrating = 1; +} + +static void wait_for_cal(void) +{ + uint16_t sum; + + //serial_print("wait_for_cal\n"); +#if defined(__MK20DX128__) + while (ADC0_SC3 & ADC_SC3_CAL) { + // wait + } +#elif defined(__MK20DX256__) + while ((ADC0_SC3 & ADC_SC3_CAL) || (ADC1_SC3 & ADC_SC3_CAL)) { + // wait + } +#endif + __disable_irq(); + if (calibrating) { + //serial_print("\n"); + sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0; + sum = (sum / 2) | 0x8000; + ADC0_PG = sum; + //serial_print("ADC0_PG = "); + //serial_phex16(sum); + //serial_print("\n"); + sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0; + sum = (sum / 2) | 0x8000; + ADC0_MG = sum; + //serial_print("ADC0_MG = "); + //serial_phex16(sum); + //serial_print("\n"); +#if defined(__MK20DX256__) + sum = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0; + sum = (sum / 2) | 0x8000; + ADC1_PG = sum; + sum = ADC1_CLMS + ADC1_CLM4 + ADC1_CLM3 + ADC1_CLM2 + ADC1_CLM1 + ADC1_CLM0; + sum = (sum / 2) | 0x8000; + ADC1_MG = sum; +#endif + calibrating = 0; + } + __enable_irq(); +} + +// ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC. +// VREFH/VREFL - connected as the primary reference option +// 1.2 V VREF_OUT - connected as the VALT reference option + + +#define DEFAULT 0 +#define INTERNAL 2 +#define INTERNAL1V2 2 +#define INTERNAL1V1 2 +#define EXTERNAL 0 + +void analogReference(uint8_t type) +{ + if (type) { + // internal reference requested + if (!analog_reference_internal) { + analog_reference_internal = 1; + if (calibrating) { + ADC0_SC3 = 0; // cancel cal +#if defined(__MK20DX256__) + ADC1_SC3 = 0; // cancel cal +#endif + } + analog_init(); + } + } else { + // vcc or external reference requested + if (analog_reference_internal) { + analog_reference_internal = 0; + if (calibrating) { + ADC0_SC3 = 0; // cancel cal +#if defined(__MK20DX256__) + ADC1_SC3 = 0; // cancel cal +#endif + } + analog_init(); + } + } +} + + +void analogReadRes(unsigned int bits) +{ + unsigned int config; + + if (bits >= 13) { + if (bits > 16) bits = 16; + config = 16; + } else if (bits >= 11) { + config = 12; + } else if (bits >= 9) { + config = 10; + } else { + config = 8; + } + analog_right_shift = config - bits; + if (config != analog_config_bits) { + analog_config_bits = config; + if (calibrating) ADC0_SC3 = 0; // cancel cal + analog_init(); + } +} + +void analogReadAveraging(unsigned int num) +{ + + if (calibrating) wait_for_cal(); + if (num <= 1) { + num = 0; + ADC0_SC3 = 0; + } else if (num <= 4) { + num = 4; + ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0); + } else if (num <= 8) { + num = 8; + ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1); + } else if (num <= 16) { + num = 16; + ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(2); + } else { + num = 32; + ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(3); + } + analog_num_average = num; +} + +// The SC1A register is used for both software and hardware trigger modes of operation. + +#if defined(__MK20DX128__) +static const uint8_t channel2sc1a[] = { + 5, 14, 8, 9, 13, 12, 6, 7, 15, 4, + 0, 19, 3, 21, 26, 22, 23 +}; +#elif defined(__MK20DX256__) +static const uint8_t channel2sc1a[] = { + 5, 14, 8, 9, 13, 12, 6, 7, 15, 4, + 0, 19, 3, 19+128, 26, 18+128, 23, + 5+192, 5+128, 4+128, 6+128, 7+128, 4+192 +// A15 26 E1 ADC1_SE5a 5+64 +// A16 27 C9 ADC1_SE5b 5 +// A17 28 C8 ADC1_SE4b 4 +// A18 29 C10 ADC1_SE6b 6 +// A19 30 C11 ADC1_SE7b 7 +// A20 31 E0 ADC1_SE4a 4+64 +}; +#endif + + + +// TODO: perhaps this should store the NVIC priority, so it works recursively? +static volatile uint8_t analogReadBusyADC0 = 0; +#if defined(__MK20DX256__) +static volatile uint8_t analogReadBusyADC1 = 0; +#endif + +int analogRead(uint8_t pin) +{ + int result; + uint8_t index, channel; + + //serial_phex(pin); + //serial_print(" "); + + if (pin <= 13) { + index = pin; // 0-13 refer to A0-A13 + } else if (pin <= 23) { + index = pin - 14; // 14-23 are A0-A9 +#if defined(__MK20DX256__) + } else if (pin >= 26 && pin <= 31) { + index = pin - 9; // 26-31 are A15-A20 +#endif + } else if (pin >= 34 && pin <= 40) { + index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor, + // 39 is vref, 40 is unused (A14 on Teensy 3.1) + } else { + return 0; // all others are invalid + } + + //serial_phex(index); + //serial_print(" "); + + channel = channel2sc1a[index]; + //serial_phex(channel); + //serial_print(" "); + + //serial_print("analogRead"); + //return 0; + if (calibrating) wait_for_cal(); + //pin = 5; // PTD1/SE5b, pin 14, analog 0 + +#if defined(__MK20DX256__) + if (channel & 0x80) goto beginADC1; +#endif + + __disable_irq(); +startADC0: + //serial_print("startADC0\n"); + ADC0_SC1A = channel; + analogReadBusyADC0 = 1; + __enable_irq(); + while (1) { + __disable_irq(); + if ((ADC0_SC1A & ADC_SC1_COCO)) { + result = ADC0_RA; + analogReadBusyADC0 = 0; + __enable_irq(); + result >>= analog_right_shift; + return result; + } + // detect if analogRead was used from an interrupt + // if so, our analogRead got canceled, so it must + // be restarted. + if (!analogReadBusyADC0) goto startADC0; + __enable_irq(); + yield(); + } + +#if defined(__MK20DX256__) +beginADC1: + __disable_irq(); +startADC1: + //serial_print("startADC0\n"); + // ADC1_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b. + if (channel & 0x40) { + ADC1_CFG2 &= ~ADC_CFG2_MUXSEL; + } else { + ADC1_CFG2 |= ADC_CFG2_MUXSEL; + } + ADC1_SC1A = channel & 0x3F; + analogReadBusyADC1 = 1; + __enable_irq(); + while (1) { + __disable_irq(); + if ((ADC1_SC1A & ADC_SC1_COCO)) { + result = ADC1_RA; + analogReadBusyADC1 = 0; + __enable_irq(); + result >>= analog_right_shift; + return result; + } + // detect if analogRead was used from an interrupt + // if so, our analogRead got canceled, so it must + // be restarted. + if (!analogReadBusyADC1) goto startADC1; + __enable_irq(); + yield(); + } +#endif +} + + + +void analogWriteDAC0(int val) +{ +#if defined(__MK20DX256__) + SIM_SCGC2 |= SIM_SCGC2_DAC0; + if (analog_reference_internal) { + DAC0_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1 + } else { + DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2 + } + if (val < 0) val = 0; // TODO: saturate instruction? + else if (val > 4095) val = 4095; + *(int16_t *)&(DAC0_DAT0L) = val; +#endif +} + + + + + + + + + + + + + + + + + + + |
