summaryrefslogtreecommitdiff
path: root/teensy/core/analog.c
diff options
context:
space:
mode:
authorblmorris <bryan.morrissey@gmail.com>2014-07-18 16:06:22 -0400
committerblmorris <bryan.morrissey@gmail.com>2014-07-18 16:06:22 -0400
commit0f4ee2e44a1e47258a8b07fb25e28286d131390c (patch)
tree7bfb507183544d14236c0be8a232a92f4113abb1 /teensy/core/analog.c
parent0429d35f37532d2a981e704f014a248da9b157d8 (diff)
parent5467186b0eaa6e856b00f60f807bb988ae2ef8c5 (diff)
Merge https://github.com/micropython/micropython
Diffstat (limited to 'teensy/core/analog.c')
-rw-r--r--teensy/core/analog.c463
1 files changed, 463 insertions, 0 deletions
diff --git a/teensy/core/analog.c b/teensy/core/analog.c
new file mode 100644
index 000000000..f408ec9f1
--- /dev/null
+++ b/teensy/core/analog.c
@@ -0,0 +1,463 @@
+/* Teensyduino Core Library
+ * http://www.pjrc.com/teensy/
+ * Copyright (c) 2013 PJRC.COM, LLC.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * 1. The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * 2. If the Software is incorporated into a build system that allows
+ * selection among a list of target devices, then similar target
+ * devices manufactured by PJRC.COM must be included in the list of
+ * target devices and selectable in the same manner.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "core_pins.h"
+//#include "HardwareSerial.h"
+
+static uint8_t calibrating;
+static uint8_t analog_right_shift = 0;
+static uint8_t analog_config_bits = 10;
+static uint8_t analog_num_average = 4;
+static uint8_t analog_reference_internal = 0;
+
+// the alternate clock is connected to OSCERCLK (16 MHz).
+// datasheet says ADC clock should be 2 to 12 MHz for 16 bit mode
+// datasheet says ADC clock should be 1 to 18 MHz for 8-12 bit mode
+
+#if F_BUS == 60000000
+ #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7.5 MHz
+ #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
+ #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
+ #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 15 MHz
+#elif F_BUS == 56000000
+ #define ADC_CFG1_16BIT ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1) // 7 MHz
+ #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
+ #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
+ #define ADC_CFG1_8BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 14 MHz
+#elif F_BUS == 48000000
+ #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
+ #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
+ #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 12 MHz
+ #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 24 MHz
+#elif F_BUS == 40000000
+ #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
+ #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
+ #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 10 MHz
+ #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 20 MHz
+#elif F_BUS == 36000000
+ #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1) // 9 MHz
+ #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
+ #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
+ #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1) // 18 MHz
+#elif F_BUS == 24000000
+ #define ADC_CFG1_16BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
+ #define ADC_CFG1_12BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
+ #define ADC_CFG1_10BIT ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0) // 12 MHz
+ #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 24 MHz
+#elif F_BUS == 16000000
+ #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
+ #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
+ #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
+ #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 16 MHz
+#elif F_BUS == 8000000
+ #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
+ #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
+ #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
+ #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 8 MHz
+#elif F_BUS == 4000000
+ #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
+ #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
+ #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
+ #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 4 MHz
+#elif F_BUS == 2000000
+ #define ADC_CFG1_16BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
+ #define ADC_CFG1_12BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
+ #define ADC_CFG1_10BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
+ #define ADC_CFG1_8BIT ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0) // 2 MHz
+#else
+#error "F_BUS must be 60, 56, 48, 40, 36, 24, 4 or 2 MHz"
+#endif
+
+void analog_init(void)
+{
+ uint32_t num;
+
+ VREF_TRM = 0x60;
+ VREF_SC = 0xE1; // enable 1.2 volt ref
+
+ if (analog_config_bits == 8) {
+ ADC0_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0);
+ ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
+ #if defined(__MK20DX256__)
+ ADC1_CFG1 = ADC_CFG1_8BIT + ADC_CFG1_MODE(0);
+ ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
+ #endif
+ } else if (analog_config_bits == 10) {
+ ADC0_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
+ ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
+ #if defined(__MK20DX256__)
+ ADC1_CFG1 = ADC_CFG1_10BIT + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
+ ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
+ #endif
+ } else if (analog_config_bits == 12) {
+ ADC0_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
+ ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
+ #if defined(__MK20DX256__)
+ ADC1_CFG1 = ADC_CFG1_12BIT + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
+ ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
+ #endif
+ } else {
+ ADC0_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
+ ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
+ #if defined(__MK20DX256__)
+ ADC1_CFG1 = ADC_CFG1_16BIT + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
+ ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
+ #endif
+ }
+
+ if (analog_reference_internal) {
+ ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
+ #if defined(__MK20DX256__)
+ ADC1_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
+ #endif
+ } else {
+ ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
+ #if defined(__MK20DX256__)
+ ADC1_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
+ #endif
+ }
+
+ num = analog_num_average;
+ if (num <= 1) {
+ ADC0_SC3 = ADC_SC3_CAL; // begin cal
+ #if defined(__MK20DX256__)
+ ADC1_SC3 = ADC_SC3_CAL; // begin cal
+ #endif
+ } else if (num <= 4) {
+ ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
+ #if defined(__MK20DX256__)
+ ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
+ #endif
+ } else if (num <= 8) {
+ ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
+ #if defined(__MK20DX256__)
+ ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
+ #endif
+ } else if (num <= 16) {
+ ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
+ #if defined(__MK20DX256__)
+ ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
+ #endif
+ } else {
+ ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
+ #if defined(__MK20DX256__)
+ ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
+ #endif
+ }
+ calibrating = 1;
+}
+
+static void wait_for_cal(void)
+{
+ uint16_t sum;
+
+ //serial_print("wait_for_cal\n");
+#if defined(__MK20DX128__)
+ while (ADC0_SC3 & ADC_SC3_CAL) {
+ // wait
+ }
+#elif defined(__MK20DX256__)
+ while ((ADC0_SC3 & ADC_SC3_CAL) || (ADC1_SC3 & ADC_SC3_CAL)) {
+ // wait
+ }
+#endif
+ __disable_irq();
+ if (calibrating) {
+ //serial_print("\n");
+ sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0;
+ sum = (sum / 2) | 0x8000;
+ ADC0_PG = sum;
+ //serial_print("ADC0_PG = ");
+ //serial_phex16(sum);
+ //serial_print("\n");
+ sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0;
+ sum = (sum / 2) | 0x8000;
+ ADC0_MG = sum;
+ //serial_print("ADC0_MG = ");
+ //serial_phex16(sum);
+ //serial_print("\n");
+#if defined(__MK20DX256__)
+ sum = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0;
+ sum = (sum / 2) | 0x8000;
+ ADC1_PG = sum;
+ sum = ADC1_CLMS + ADC1_CLM4 + ADC1_CLM3 + ADC1_CLM2 + ADC1_CLM1 + ADC1_CLM0;
+ sum = (sum / 2) | 0x8000;
+ ADC1_MG = sum;
+#endif
+ calibrating = 0;
+ }
+ __enable_irq();
+}
+
+// ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC.
+// VREFH/VREFL - connected as the primary reference option
+// 1.2 V VREF_OUT - connected as the VALT reference option
+
+
+#define DEFAULT 0
+#define INTERNAL 2
+#define INTERNAL1V2 2
+#define INTERNAL1V1 2
+#define EXTERNAL 0
+
+void analogReference(uint8_t type)
+{
+ if (type) {
+ // internal reference requested
+ if (!analog_reference_internal) {
+ analog_reference_internal = 1;
+ if (calibrating) {
+ ADC0_SC3 = 0; // cancel cal
+#if defined(__MK20DX256__)
+ ADC1_SC3 = 0; // cancel cal
+#endif
+ }
+ analog_init();
+ }
+ } else {
+ // vcc or external reference requested
+ if (analog_reference_internal) {
+ analog_reference_internal = 0;
+ if (calibrating) {
+ ADC0_SC3 = 0; // cancel cal
+#if defined(__MK20DX256__)
+ ADC1_SC3 = 0; // cancel cal
+#endif
+ }
+ analog_init();
+ }
+ }
+}
+
+
+void analogReadRes(unsigned int bits)
+{
+ unsigned int config;
+
+ if (bits >= 13) {
+ if (bits > 16) bits = 16;
+ config = 16;
+ } else if (bits >= 11) {
+ config = 12;
+ } else if (bits >= 9) {
+ config = 10;
+ } else {
+ config = 8;
+ }
+ analog_right_shift = config - bits;
+ if (config != analog_config_bits) {
+ analog_config_bits = config;
+ if (calibrating) ADC0_SC3 = 0; // cancel cal
+ analog_init();
+ }
+}
+
+void analogReadAveraging(unsigned int num)
+{
+
+ if (calibrating) wait_for_cal();
+ if (num <= 1) {
+ num = 0;
+ ADC0_SC3 = 0;
+ } else if (num <= 4) {
+ num = 4;
+ ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0);
+ } else if (num <= 8) {
+ num = 8;
+ ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1);
+ } else if (num <= 16) {
+ num = 16;
+ ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(2);
+ } else {
+ num = 32;
+ ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(3);
+ }
+ analog_num_average = num;
+}
+
+// The SC1A register is used for both software and hardware trigger modes of operation.
+
+#if defined(__MK20DX128__)
+static const uint8_t channel2sc1a[] = {
+ 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
+ 0, 19, 3, 21, 26, 22, 23
+};
+#elif defined(__MK20DX256__)
+static const uint8_t channel2sc1a[] = {
+ 5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
+ 0, 19, 3, 19+128, 26, 18+128, 23,
+ 5+192, 5+128, 4+128, 6+128, 7+128, 4+192
+// A15 26 E1 ADC1_SE5a 5+64
+// A16 27 C9 ADC1_SE5b 5
+// A17 28 C8 ADC1_SE4b 4
+// A18 29 C10 ADC1_SE6b 6
+// A19 30 C11 ADC1_SE7b 7
+// A20 31 E0 ADC1_SE4a 4+64
+};
+#endif
+
+
+
+// TODO: perhaps this should store the NVIC priority, so it works recursively?
+static volatile uint8_t analogReadBusyADC0 = 0;
+#if defined(__MK20DX256__)
+static volatile uint8_t analogReadBusyADC1 = 0;
+#endif
+
+int analogRead(uint8_t pin)
+{
+ int result;
+ uint8_t index, channel;
+
+ //serial_phex(pin);
+ //serial_print(" ");
+
+ if (pin <= 13) {
+ index = pin; // 0-13 refer to A0-A13
+ } else if (pin <= 23) {
+ index = pin - 14; // 14-23 are A0-A9
+#if defined(__MK20DX256__)
+ } else if (pin >= 26 && pin <= 31) {
+ index = pin - 9; // 26-31 are A15-A20
+#endif
+ } else if (pin >= 34 && pin <= 40) {
+ index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor,
+ // 39 is vref, 40 is unused (A14 on Teensy 3.1)
+ } else {
+ return 0; // all others are invalid
+ }
+
+ //serial_phex(index);
+ //serial_print(" ");
+
+ channel = channel2sc1a[index];
+ //serial_phex(channel);
+ //serial_print(" ");
+
+ //serial_print("analogRead");
+ //return 0;
+ if (calibrating) wait_for_cal();
+ //pin = 5; // PTD1/SE5b, pin 14, analog 0
+
+#if defined(__MK20DX256__)
+ if (channel & 0x80) goto beginADC1;
+#endif
+
+ __disable_irq();
+startADC0:
+ //serial_print("startADC0\n");
+ ADC0_SC1A = channel;
+ analogReadBusyADC0 = 1;
+ __enable_irq();
+ while (1) {
+ __disable_irq();
+ if ((ADC0_SC1A & ADC_SC1_COCO)) {
+ result = ADC0_RA;
+ analogReadBusyADC0 = 0;
+ __enable_irq();
+ result >>= analog_right_shift;
+ return result;
+ }
+ // detect if analogRead was used from an interrupt
+ // if so, our analogRead got canceled, so it must
+ // be restarted.
+ if (!analogReadBusyADC0) goto startADC0;
+ __enable_irq();
+ yield();
+ }
+
+#if defined(__MK20DX256__)
+beginADC1:
+ __disable_irq();
+startADC1:
+ //serial_print("startADC0\n");
+ // ADC1_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b.
+ if (channel & 0x40) {
+ ADC1_CFG2 &= ~ADC_CFG2_MUXSEL;
+ } else {
+ ADC1_CFG2 |= ADC_CFG2_MUXSEL;
+ }
+ ADC1_SC1A = channel & 0x3F;
+ analogReadBusyADC1 = 1;
+ __enable_irq();
+ while (1) {
+ __disable_irq();
+ if ((ADC1_SC1A & ADC_SC1_COCO)) {
+ result = ADC1_RA;
+ analogReadBusyADC1 = 0;
+ __enable_irq();
+ result >>= analog_right_shift;
+ return result;
+ }
+ // detect if analogRead was used from an interrupt
+ // if so, our analogRead got canceled, so it must
+ // be restarted.
+ if (!analogReadBusyADC1) goto startADC1;
+ __enable_irq();
+ yield();
+ }
+#endif
+}
+
+
+
+void analogWriteDAC0(int val)
+{
+#if defined(__MK20DX256__)
+ SIM_SCGC2 |= SIM_SCGC2_DAC0;
+ if (analog_reference_internal) {
+ DAC0_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1
+ } else {
+ DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
+ }
+ if (val < 0) val = 0; // TODO: saturate instruction?
+ else if (val > 4095) val = 4095;
+ *(int16_t *)&(DAC0_DAT0L) = val;
+#endif
+}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+