diff options
author | Damien George <damien.p.george@gmail.com> | 2015-08-14 12:24:11 +0100 |
---|---|---|
committer | Damien George <damien.p.george@gmail.com> | 2015-08-17 12:51:26 +0100 |
commit | 65dc960e3b22a8426e369607e47c19b380ce30ea (patch) | |
tree | 5e55ec2861df54e14fdb0eac1d030b34f684743b /tests/bytecode/pylib-tests/_threading_local.py | |
parent | 0e978349a5e7696aa44a0faf5d046081a0616ca5 (diff) |
unix-cpy: Remove unix-cpy. It's no longer needed.
unix-cpy was originally written to get semantic equivalent with CPython
without writing functional tests. When writing the initial
implementation of uPy it was a long way between lexer and functional
tests, so the half-way test was to make sure that the bytecode was
correct. The idea was that if the uPy bytecode matched CPython 1-1 then
uPy would be proper Python if the bytecodes acted correctly. And having
matching bytecode meant that it was less likely to miss some deep
subtlety in the Python semantics that would require an architectural
change later on.
But that is all history and it no longer makes sense to retain the
ability to output CPython bytecode, because:
1. It outputs CPython 3.3 compatible bytecode. CPython's bytecode
changes from version to version, and seems to have changed quite a bit
in 3.5. There's no point in changing the bytecode output to match
CPython anymore.
2. uPy and CPy do different optimisations to the bytecode which makes it
harder to match.
3. The bytecode tests are not run. They were never part of Travis and
are not run locally anymore.
4. The EMIT_CPYTHON option needs a lot of extra source code which adds
heaps of noise, especially in compile.c.
5. Now that there is an extensive test suite (which tests functionality)
there is no need to match the bytecode. Some very subtle behaviour is
tested with the test suite and passing these tests is a much better
way to stay Python-language compliant, rather than trying to match
CPy bytecode.
Diffstat (limited to 'tests/bytecode/pylib-tests/_threading_local.py')
-rw-r--r-- | tests/bytecode/pylib-tests/_threading_local.py | 246 |
1 files changed, 0 insertions, 246 deletions
diff --git a/tests/bytecode/pylib-tests/_threading_local.py b/tests/bytecode/pylib-tests/_threading_local.py deleted file mode 100644 index 4ec482814..000000000 --- a/tests/bytecode/pylib-tests/_threading_local.py +++ /dev/null @@ -1,246 +0,0 @@ -"""Thread-local objects. - -(Note that this module provides a Python version of the threading.local - class. Depending on the version of Python you're using, there may be a - faster one available. You should always import the `local` class from - `threading`.) - -Thread-local objects support the management of thread-local data. -If you have data that you want to be local to a thread, simply create -a thread-local object and use its attributes: - - >>> mydata = local() - >>> mydata.number = 42 - >>> mydata.number - 42 - -You can also access the local-object's dictionary: - - >>> mydata.__dict__ - {'number': 42} - >>> mydata.__dict__.setdefault('widgets', []) - [] - >>> mydata.widgets - [] - -What's important about thread-local objects is that their data are -local to a thread. If we access the data in a different thread: - - >>> log = [] - >>> def f(): - ... items = sorted(mydata.__dict__.items()) - ... log.append(items) - ... mydata.number = 11 - ... log.append(mydata.number) - - >>> import threading - >>> thread = threading.Thread(target=f) - >>> thread.start() - >>> thread.join() - >>> log - [[], 11] - -we get different data. Furthermore, changes made in the other thread -don't affect data seen in this thread: - - >>> mydata.number - 42 - -Of course, values you get from a local object, including a __dict__ -attribute, are for whatever thread was current at the time the -attribute was read. For that reason, you generally don't want to save -these values across threads, as they apply only to the thread they -came from. - -You can create custom local objects by subclassing the local class: - - >>> class MyLocal(local): - ... number = 2 - ... initialized = False - ... def __init__(self, **kw): - ... if self.initialized: - ... raise SystemError('__init__ called too many times') - ... self.initialized = True - ... self.__dict__.update(kw) - ... def squared(self): - ... return self.number ** 2 - -This can be useful to support default values, methods and -initialization. Note that if you define an __init__ method, it will be -called each time the local object is used in a separate thread. This -is necessary to initialize each thread's dictionary. - -Now if we create a local object: - - >>> mydata = MyLocal(color='red') - -Now we have a default number: - - >>> mydata.number - 2 - -an initial color: - - >>> mydata.color - 'red' - >>> del mydata.color - -And a method that operates on the data: - - >>> mydata.squared() - 4 - -As before, we can access the data in a separate thread: - - >>> log = [] - >>> thread = threading.Thread(target=f) - >>> thread.start() - >>> thread.join() - >>> log - [[('color', 'red'), ('initialized', True)], 11] - -without affecting this thread's data: - - >>> mydata.number - 2 - >>> mydata.color - Traceback (most recent call last): - ... - AttributeError: 'MyLocal' object has no attribute 'color' - -Note that subclasses can define slots, but they are not thread -local. They are shared across threads: - - >>> class MyLocal(local): - ... __slots__ = 'number' - - >>> mydata = MyLocal() - >>> mydata.number = 42 - >>> mydata.color = 'red' - -So, the separate thread: - - >>> thread = threading.Thread(target=f) - >>> thread.start() - >>> thread.join() - -affects what we see: - - >>> mydata.number - 11 - ->>> del mydata -""" - -from weakref import ref -from contextlib import contextmanager - -__all__ = ["local"] - -# We need to use objects from the threading module, but the threading -# module may also want to use our `local` class, if support for locals -# isn't compiled in to the `thread` module. This creates potential problems -# with circular imports. For that reason, we don't import `threading` -# until the bottom of this file (a hack sufficient to worm around the -# potential problems). Note that all platforms on CPython do have support -# for locals in the `thread` module, and there is no circular import problem -# then, so problems introduced by fiddling the order of imports here won't -# manifest. - -class _localimpl: - """A class managing thread-local dicts""" - __slots__ = 'key', 'dicts', 'localargs', 'locallock', '__weakref__' - - def __init__(self): - # The key used in the Thread objects' attribute dicts. - # We keep it a string for speed but make it unlikely to clash with - # a "real" attribute. - self.key = '_threading_local._localimpl.' + str(id(self)) - # { id(Thread) -> (ref(Thread), thread-local dict) } - self.dicts = {} - - def get_dict(self): - """Return the dict for the current thread. Raises KeyError if none - defined.""" - thread = current_thread() - return self.dicts[id(thread)][1] - - def create_dict(self): - """Create a new dict for the current thread, and return it.""" - localdict = {} - key = self.key - thread = current_thread() - idt = id(thread) - def local_deleted(_, key=key): - # When the localimpl is deleted, remove the thread attribute. - thread = wrthread() - if thread is not None: - del thread.__dict__[key] - def thread_deleted(_, idt=idt): - # When the thread is deleted, remove the local dict. - # Note that this is suboptimal if the thread object gets - # caught in a reference loop. We would like to be called - # as soon as the OS-level thread ends instead. - local = wrlocal() - if local is not None: - dct = local.dicts.pop(idt) - wrlocal = ref(self, local_deleted) - wrthread = ref(thread, thread_deleted) - thread.__dict__[key] = wrlocal - self.dicts[idt] = wrthread, localdict - return localdict - - -@contextmanager -def _patch(self): - impl = object.__getattribute__(self, '_local__impl') - try: - dct = impl.get_dict() - except KeyError: - dct = impl.create_dict() - args, kw = impl.localargs - self.__init__(*args, **kw) - with impl.locallock: - object.__setattr__(self, '__dict__', dct) - yield - - -class local: - __slots__ = '_local__impl', '__dict__' - - def __new__(cls, *args, **kw): - if (args or kw) and (cls.__init__ is object.__init__): - raise TypeError("Initialization arguments are not supported") - self = object.__new__(cls) - impl = _localimpl() - impl.localargs = (args, kw) - impl.locallock = RLock() - object.__setattr__(self, '_local__impl', impl) - # We need to create the thread dict in anticipation of - # __init__ being called, to make sure we don't call it - # again ourselves. - impl.create_dict() - return self - - def __getattribute__(self, name): - with _patch(self): - return object.__getattribute__(self, name) - - def __setattr__(self, name, value): - if name == '__dict__': - raise AttributeError( - "%r object attribute '__dict__' is read-only" - % self.__class__.__name__) - with _patch(self): - return object.__setattr__(self, name, value) - - def __delattr__(self, name): - if name == '__dict__': - raise AttributeError( - "%r object attribute '__dict__' is read-only" - % self.__class__.__name__) - with _patch(self): - return object.__delattr__(self, name) - - -from threading import current_thread, RLock |