summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--py/formatfloat.c154
-rw-r--r--tests/float/float_format_ftoe.py4
-rw-r--r--tests/float/float_format_ftoe.py.exp1
-rw-r--r--tests/float/float_format_ints.py31
-rw-r--r--tests/float/float_format_ints_doubleprec.py15
-rwxr-xr-xtests/run-tests.py1
-rwxr-xr-xtools/tinytest-codegen.py1
7 files changed, 153 insertions, 54 deletions
diff --git a/py/formatfloat.c b/py/formatfloat.c
index 9d28b2317..357b73ace 100644
--- a/py/formatfloat.c
+++ b/py/formatfloat.c
@@ -25,6 +25,7 @@
*/
#include "py/mpconfig.h"
+#include "py/misc.h"
#if MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_NONE
#include <assert.h>
@@ -96,7 +97,16 @@ static inline int fp_isless1(float x) {
#define fp_iszero(x) (x == 0)
#define fp_isless1(x) (x < 1.0)
-#endif
+#endif // MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT/DOUBLE
+
+static inline int fp_ge_eps(FPTYPE x, FPTYPE y) {
+ mp_float_union_t fb_y = {y};
+ // Back off 2 eps.
+ // This is valid for almost all values, but in practice
+ // it's only used when y = 1eX for X>=0.
+ fb_y.i -= 2;
+ return x >= fb_y.f;
+}
static const FPTYPE g_pos_pow[] = {
#if FPDECEXP > 32
@@ -173,6 +183,7 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
int num_digits = 0;
const FPTYPE *pos_pow = g_pos_pow;
const FPTYPE *neg_pow = g_neg_pow;
+ int signed_e = 0;
if (fp_iszero(f)) {
e = 0;
@@ -192,31 +203,24 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
}
}
} else if (fp_isless1(f)) {
- // We need to figure out what an integer digit will be used
- // in case 'f' is used (or we revert other format to it below).
- // As we just tested number to be <1, this is obviously 0,
- // but we can round it up to 1 below.
- char first_dig = '0';
- if (f >= FPROUND_TO_ONE) {
- first_dig = '1';
- }
-
+ FPTYPE f_mod = f;
// Build negative exponent
for (e = 0, e1 = FPDECEXP; e1; e1 >>= 1, pos_pow++, neg_pow++) {
- if (*neg_pow > f) {
+ if (*neg_pow > f_mod) {
e += e1;
- f *= *pos_pow;
+ f_mod *= *pos_pow;
}
}
+
char e_sign_char = '-';
- if (fp_isless1(f) && f >= FPROUND_TO_ONE) {
- f = FPCONST(1.0);
+ if (fp_isless1(f_mod) && f_mod >= FPROUND_TO_ONE) {
+ f_mod = FPCONST(1.0);
if (e == 0) {
e_sign_char = '+';
}
- } else if (fp_isless1(f)) {
+ } else if (fp_isless1(f_mod)) {
e++;
- f *= FPCONST(10.0);
+ f_mod *= FPCONST(10.0);
}
// If the user specified 'g' format, and e is <= 4, then we'll switch
@@ -224,8 +228,7 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
if (fmt == 'f' || (fmt == 'g' && e <= 4)) {
fmt = 'f';
- dec = -1;
- *s++ = first_dig;
+ dec = 0;
if (org_fmt == 'g') {
prec += (e - 1);
@@ -237,13 +240,8 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
}
num_digits = prec;
- if (num_digits) {
- *s++ = '.';
- while (--e && num_digits) {
- *s++ = '0';
- num_digits--;
- }
- }
+ signed_e = 0;
+ ++num_digits;
} else {
// For e & g formats, we'll be printing the exponent, so set the
// sign.
@@ -256,22 +254,29 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
prec++;
}
}
+ signed_e = -e;
}
} else {
- // Build positive exponent
- for (e = 0, e1 = FPDECEXP; e1; e1 >>= 1, pos_pow++, neg_pow++) {
- if (*pos_pow <= f) {
+ // Build positive exponent.
+ // We don't modify f at this point to avoid innaccuracies from
+ // scaling it. Instead, we find the product of powers of 10
+ // that is not greater than it, and use that to start the
+ // mantissa.
+ FPTYPE u_base = FPCONST(1.0);
+ for (e = 0, e1 = FPDECEXP; e1; e1 >>= 1, pos_pow++) {
+ FPTYPE next_u = u_base * *pos_pow;
+ // fp_ge_eps performs "f >= (next_u - 2eps)" so that if, for
+ // numerical reasons, f is very close to a power of ten but
+ // not strictly equal, we still treat it as that power of 10.
+ // The comparison was failing for maybe 10% of 1eX values, but
+ // although rounding fixed many of them, there were still some
+ // rendering as 9.99999998e(X-1).
+ if (fp_ge_eps(f, next_u)) {
+ u_base = next_u;
e += e1;
- f *= *neg_pow;
}
}
- // It can be that f was right on the edge of an entry in pos_pow needs to be reduced
- if ((int)f >= 10) {
- e += 1;
- f *= FPCONST(0.1);
- }
-
// If the user specified fixed format (fmt == 'f') and e makes the
// number too big to fit into the available buffer, then we'll
// switch to the 'e' format.
@@ -310,15 +315,15 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
} else {
e_sign = '+';
}
+ signed_e = e;
}
if (prec < 0) {
// This can happen when the prec is trimmed to prevent buffer overflow
prec = 0;
}
- // We now have num.f as a floating point number between >= 1 and < 10
- // (or equal to zero), and e contains the absolute value of the power of
- // 10 exponent. and (dec + 1) == the number of dgits before the decimal.
+ // At this point e contains the absolute value of the power of 10 exponent.
+ // (dec + 1) == the number of dgits before the decimal.
// For e, prec is # digits after the decimal
// For f, prec is # digits after the decimal
@@ -336,25 +341,63 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
num_digits = prec;
}
- // Print the digits of the mantissa
- for (int i = 0; i < num_digits; ++i, --dec) {
- int32_t d = (int32_t)f;
- if (d < 0) {
- *s++ = '0';
- } else {
+ if (signed_e < 0) {
+ // The algorithm below treats numbers smaller than 1 by scaling them
+ // repeatedly by 10 to bring the new digit to the top. Our input number
+ // was smaller than 1, so scale it up to be 1 <= f < 10.
+ FPTYPE u_base = FPCONST(1.0);
+ const FPTYPE *pow_u = g_pos_pow;
+ for (int m = FPDECEXP; m; m >>= 1, pow_u++) {
+ if (m & e) {
+ u_base *= *pow_u;
+ }
+ }
+ f *= u_base;
+ }
+
+ int d = 0;
+ int num_digits_left = num_digits;
+ for (int digit_index = signed_e; num_digits_left >= 0; --digit_index) {
+ FPTYPE u_base = FPCONST(1.0);
+ if (digit_index > 0) {
+ // Generate 10^digit_index for positive digit_index.
+ const FPTYPE *pow_u = g_pos_pow;
+ int target_index = digit_index;
+ for (int m = FPDECEXP; m; m >>= 1, pow_u++) {
+ if (m & target_index) {
+ u_base *= *pow_u;
+ }
+ }
+ }
+ for (d = 0; d < 9; ++d) {
+ // This is essentially "if (f < u_base)", but with 2eps margin
+ // so that if f is just a tiny bit smaller, we treat it as
+ // equal (and accept the additional digit value).
+ if (!fp_ge_eps(f, u_base)) {
+ break;
+ }
+ f -= u_base;
+ }
+ // We calculate one more digit than we display, to use in rounding
+ // below. So only emit the digit if it's one that we display.
+ if (num_digits_left > 0) {
+ // Emit this number (the leading digit).
*s++ = '0' + d;
+ if (dec == 0 && prec > 0) {
+ *s++ = '.';
+ }
}
- if (dec == 0 && prec > 0) {
- *s++ = '.';
+ --dec;
+ --num_digits_left;
+ if (digit_index <= 0) {
+ // Once we get below 1.0, we scale up f instead of calculting
+ // negative powers of 10 in u_base. This provides better
+ // renditions of exact decimals like 1/16 etc.
+ f *= FPCONST(10.0);
}
- f -= (FPTYPE)d;
- f *= FPCONST(10.0);
}
-
- // Round
- // If we print non-exponential format (i.e. 'f'), but a digit we're going
- // to round by (e) is too far away, then there's nothing to round.
- if ((org_fmt != 'f' || e <= num_digits) && f >= FPCONST(5.0)) {
+ // Rounding. If the next digit to print is >= 5, round up.
+ if (d >= 5) {
char *rs = s;
rs--;
while (1) {
@@ -394,7 +437,10 @@ int mp_format_float(FPTYPE f, char *buf, size_t buf_size, char fmt, int prec, ch
}
} else {
// Need at extra digit at the end to make room for the leading '1'
- s++;
+ // but if we're at the buffer size limit, just drop the final digit.
+ if ((size_t)(s + 1 - buf) < buf_size) {
+ s++;
+ }
}
char *ss = s;
while (ss > rs) {
diff --git a/tests/float/float_format_ftoe.py b/tests/float/float_format_ftoe.py
new file mode 100644
index 000000000..bc4e5a4a5
--- /dev/null
+++ b/tests/float/float_format_ftoe.py
@@ -0,0 +1,4 @@
+# check a case where rounding was suppressed inappropriately when "f" was
+# promoted to "e" for large numbers.
+v = 8.888e32
+print("%.2f" % v) # '%.2f' format with e32 becomes '%.2e', expect 8.89e+32.
diff --git a/tests/float/float_format_ftoe.py.exp b/tests/float/float_format_ftoe.py.exp
new file mode 100644
index 000000000..f8b1deb3e
--- /dev/null
+++ b/tests/float/float_format_ftoe.py.exp
@@ -0,0 +1 @@
+8.89e+32
diff --git a/tests/float/float_format_ints.py b/tests/float/float_format_ints.py
new file mode 100644
index 000000000..0bf4baf12
--- /dev/null
+++ b/tests/float/float_format_ints.py
@@ -0,0 +1,31 @@
+# Test that integers format to exact values.
+
+for b in [13, 123, 457, 23456]:
+ for r in range(1, 10):
+ e_fmt = "{:." + str(r) + "e}"
+ f_fmt = "{:." + str(r) + "f}"
+ g_fmt = "{:." + str(r) + "g}"
+ for e in range(0, 5):
+ f = b * (10**e)
+ title = str(b) + " x 10^" + str(e)
+ print(title, "with format", e_fmt, "gives", e_fmt.format(f))
+ print(title, "with format", f_fmt, "gives", f_fmt.format(f))
+ print(title, "with format", g_fmt, "gives", g_fmt.format(f))
+
+# Check that powers of 10 (that fit in float32) format correctly.
+for i in range(31):
+ # It works to 12 digits on all platforms *except* qemu-arm, where
+ # 10^11 comes out as 10000000820 or something.
+ print("{:.7g}".format(float("1e" + str(i))))
+
+# 16777215 is 2^24 - 1, the largest integer that can be completely held
+# in a float32.
+print("{:f}".format(16777215))
+# 4294967040 = 16777215 * 128 is the largest integer that is exactly
+# represented by a float32 and that will also fit within a (signed) int32.
+# The upper bound of our integer-handling code is actually double this,
+# but that constant might cause trouble on systems using 32 bit ints.
+print("{:f}".format(2147483520))
+# Very large positive integers can be a test for precision and resolution.
+# This is a weird way to represent 1e38 (largest power of 10 for float32).
+print("{:.6e}".format(float("9" * 30 + "e8")))
diff --git a/tests/float/float_format_ints_doubleprec.py b/tests/float/float_format_ints_doubleprec.py
new file mode 100644
index 000000000..57899d6d6
--- /dev/null
+++ b/tests/float/float_format_ints_doubleprec.py
@@ -0,0 +1,15 @@
+# Test formatting of very large ints.
+# Relies on double-precision floats.
+
+import array
+import sys
+
+# Challenging way to express 1e200 and 1e100.
+print("{:.12e}".format(float("9" * 400 + "e-200")))
+print("{:.12e}".format(float("9" * 400 + "e-300")))
+
+# These correspond to the binary representation of 1e200 in float64s:
+v1 = 0x54B249AD2594C37D # 1e100
+v2 = 0x6974E718D7D7625A # 1e200
+print("{:.12e}".format(array.array("d", v1.to_bytes(8, sys.byteorder))[0]))
+print("{:.12e}".format(array.array("d", v2.to_bytes(8, sys.byteorder))[0]))
diff --git a/tests/run-tests.py b/tests/run-tests.py
index baab7bdd4..2745ee139 100755
--- a/tests/run-tests.py
+++ b/tests/run-tests.py
@@ -516,6 +516,7 @@ def run_tests(pyb, tests, args, result_dir, num_threads=1):
if upy_float_precision < 64:
skip_tests.add("float/float_divmod.py") # tested by float/float_divmod_relaxed.py instead
skip_tests.add("float/float2int_doubleprec_intbig.py")
+ skip_tests.add("float/float_format_ints_doubleprec.py")
skip_tests.add("float/float_parse_doubleprec.py")
if not has_complex:
diff --git a/tools/tinytest-codegen.py b/tools/tinytest-codegen.py
index f1169a34d..feda75f28 100755
--- a/tools/tinytest-codegen.py
+++ b/tools/tinytest-codegen.py
@@ -79,6 +79,7 @@ exclude_tests = (
"float/float_divmod.py",
# requires double precision floating point to work
"float/float2int_doubleprec_intbig.py",
+ "float/float_format_ints_doubleprec.py",
"float/float_parse_doubleprec.py",
# inline asm FP tests (require Cortex-M4)
"inlineasm/asmfpaddsub.py",