summaryrefslogtreecommitdiff
path: root/docs/zephyr/quickref.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/zephyr/quickref.rst')
-rw-r--r--docs/zephyr/quickref.rst157
1 files changed, 157 insertions, 0 deletions
diff --git a/docs/zephyr/quickref.rst b/docs/zephyr/quickref.rst
new file mode 100644
index 000000000..783621316
--- /dev/null
+++ b/docs/zephyr/quickref.rst
@@ -0,0 +1,157 @@
+.. _zephyr_quickref:
+
+Quick reference for the Zephyr port
+===================================
+
+Below is a quick reference for the Zephyr port. If it is your first time working with this port please consider reading the following sections first:
+
+.. toctree::
+ :maxdepth: 1
+
+ general.rst
+ tutorial/index.rst
+
+Running MicroPython
+-------------------
+
+See the corresponding section of the tutorial: :ref:`intro`.
+
+Delay and timing
+----------------
+
+Use the :mod:`time <utime>` module::
+
+ import time
+
+ time.sleep(1) # sleep for 1 second
+ time.sleep_ms(500) # sleep for 500 milliseconds
+ time.sleep_us(10) # sleep for 10 microseconds
+ start = time.ticks_ms() # get millisecond counter
+ delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference
+
+Pins and GPIO
+-------------
+
+Use the :ref:`machine.Pin <machine.Pin>` class::
+
+ from machine import Pin
+
+ pin = Pin(("GPIO_1", 21), Pin.IN) # create input pin on GPIO1
+ print(pin) # print pin port and number
+
+ pin.init(Pin.OUT, Pin.PULL_UP, value=1) # reinitialize pin
+
+ pin.value(1) # set pin to high
+ pin.value(0) # set pin to low
+
+ pin.on() # set pin to high
+ pin.off() # set pin to low
+
+ pin = Pin(("GPIO_1", 21), Pin.IN) # create input pin on GPIO1
+
+ pin = Pin(("GPIO_1", 21), Pin.OUT, value=1) # set pin high on creation
+
+ pin = Pin(("GPIO_1", 21), Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
+
+ switch = Pin(("GPIO_2", 6), Pin.IN) # create input pin for a switch
+ switch.irq(lambda t: print("SW2 changed")) # enable an interrupt when switch state is changed
+
+Hardware I2C bus
+----------------
+
+Hardware I2C is accessed via the :ref:`machine.I2C <machine.I2C>` class::
+
+ from machine import I2C
+
+ i2c = I2C("I2C_0") # construct an i2c bus
+ print(i2c) # print device name
+
+ i2c.scan() # scan the device for available I2C slaves
+
+ i2c.readfrom(0x1D, 4) # read 4 bytes from slave 0x1D
+ i2c.readfrom_mem(0x1D, 0x0D, 1) # read 1 byte from slave 0x1D at slave memory 0x0D
+
+ i2c.writeto(0x1D, b'abcd') # write to slave with address 0x1D
+ i2c.writeto_mem(0x1D, 0x0D, b'ab') # write to slave 0x1D at slave memory 0x0D
+
+ buf = bytearray(8) # create buffer of size 8
+ i2c.writeto(0x1D, b'abcd') # write buf to slave 0x1D
+
+Hardware SPI bus
+----------------
+
+Hardware SPI is accessed via the :ref:`machine.SPI <machine.SPI>` class::
+
+ from machine import SPI
+
+ spi = SPI("SPI_0") # construct a spi bus with default configuration
+ spi.init(baudrate=100000, polarity=0, phase=0, bits=8, firstbit=SPI.MSB) # set configuration
+
+ # equivalently, construct spi bus and set configuration at the same time
+ spi = SPI("SPI_0", baudrate=100000, polarity=0, phase=0, bits=8, firstbit=SPI.MSB)
+ print(spi) # print device name and bus configuration
+
+ spi.read(4) # read 4 bytes on MISO
+ spi.read(4, write=0xF) # read 4 bytes while writing 0xF on MOSI
+
+ buf = bytearray(8) # create a buffer of size 8
+ spi.readinto(buf) # read into the buffer (reads number of bytes equal to the buffer size)
+ spi.readinto(buf, 0xF) # read into the buffer while writing 0xF on MOSI
+
+ spi.write(b'abcd') # write 4 bytes on MOSI
+
+ buf = bytearray(4) # create buffer of size 8
+ spi.write_readinto(b'abcd', buf) # write to MOSI and read from MISO into the buffer
+ spi.write_readinto(buf, buf) # write buf to MOSI and read back into the buf
+
+Disk Access
+-----------
+
+Use the :ref:`zephyr.DiskAccess <zephyr.DiskAccess>` class to support filesystem::
+
+ import os
+ from zephyr import DiskAccess
+
+ block_dev = DiskAccess('SDHC') # create a block device object for an SD card
+ os.VfsFat.mkfs(block_dev) # create FAT filesystem object using the disk storage block
+ os.mount(block_dev, '/sd') # mount the filesystem at the SD card subdirectory
+
+ # with the filesystem mounted, files can be manipulated as normal
+ with open('/sd/hello.txt','w') as f: # open a new file in the directory
+ f.write('Hello world') # write to the file
+ print(open('/sd/hello.txt').read()) # print contents of the file
+
+Flash Area
+----------
+
+Use the :ref:`zephyr.FlashArea <zephyr.FlashArea>` class to support filesystem::
+
+ import os
+ from zephyr import FlashArea
+
+ block_dev = FlashArea(4, 4096) # creates a block device object in the frdm-k64f flash scratch partition
+ os.VfsLfs2.mkfs(block_dev) # create filesystem in lfs2 format using the flash block device
+ os.mount(block_dev, '/flash') # mount the filesystem at the flash subdirectory
+
+ # with the filesystem mounted, files can be manipulated as normal
+ with open('/flash/hello.txt','w') as f: # open a new file in the directory
+ f.write('Hello world') # write to the file
+ print(open('/flash/hello.txt').read()) # print contents of the file
+
+Sensor
+------
+
+Use the :ref:`zsensor.Sensor <zsensor.Sensor>` class to access sensor data::
+
+ import zsensor
+ from zsensor import Sensor
+
+ accel = Sensor("FXOX8700") # create sensor object for the accelerometer
+
+ accel.measure() # obtain a measurement reading from the accelerometer
+
+ # each of these prints the value taken by measure()
+ accel.float(zsensor.ACCEL_X) # print measurement value for accelerometer X-axis sensor channel as float
+ accel.millis(zsensor.ACCEL_Y) # print measurement value for accelerometer Y-axis sensor channel in millionths
+ accel.micro(zsensor.ACCEL_Z) # print measurement value for accelerometer Z-axis sensor channel in thousandths
+ accel.int(zsensor.ACCEL_X) # print measurement integer value only for accelerometer X-axis sensor channel