diff options
Diffstat (limited to 'tests/float/float_format_accuracy.py')
-rw-r--r-- | tests/float/float_format_accuracy.py | 73 |
1 files changed, 73 insertions, 0 deletions
diff --git a/tests/float/float_format_accuracy.py b/tests/float/float_format_accuracy.py new file mode 100644 index 000000000..f9467f9c0 --- /dev/null +++ b/tests/float/float_format_accuracy.py @@ -0,0 +1,73 @@ +# Test accuracy of `repr` conversions. +# This test also increases code coverage for corner cases. + +try: + import array, math, random +except ImportError: + print("SKIP") + raise SystemExit + +# The largest errors come from seldom used very small numbers, near the +# limit of the representation. So we keep them out of this test to keep +# the max relative error display useful. +if float("1e-100") == 0.0: + # single-precision + float_type = "f" + float_size = 4 + # testing range + min_expo = -96 # i.e. not smaller than 1.0e-29 + # Expected results (given >=50'000 samples): + # - MICROPY_FLTCONV_IMPL_EXACT: 100% exact conversions + # - MICROPY_FLTCONV_IMPL_APPROX: >=98.53% exact conversions, max relative error <= 1.01e-7 + min_success = 0.980 # with only 1200 samples, the success rate is lower + max_rel_err = 1.1e-7 + # REPR_C is typically used with FORMAT_IMPL_BASIC, which has a larger error + is_REPR_C = float("1.0000001") == float("1.0") + if is_REPR_C: # REPR_C + min_success = 0.83 + max_rel_err = 5.75e-07 +else: + # double-precision + float_type = "d" + float_size = 8 + # testing range + min_expo = -845 # i.e. not smaller than 1.0e-254 + # Expected results (given >=200'000 samples): + # - MICROPY_FLTCONV_IMPL_EXACT: 100% exact conversions + # - MICROPY_FLTCONV_IMPL_APPROX: >=99.83% exact conversions, max relative error <= 2.7e-16 + min_success = 0.997 # with only 1200 samples, the success rate is lower + max_rel_err = 2.7e-16 + + +# Deterministic pseudorandom generator. Designed to be uniform +# on mantissa values and exponents, not on the represented number +def pseudo_randfloat(): + rnd_buff = bytearray(float_size) + for _ in range(float_size): + rnd_buff[_] = random.getrandbits(8) + return array.array(float_type, rnd_buff)[0] + + +random.seed(42) +stats = 0 +N = 1200 +max_err = 0 +for _ in range(N): + f = pseudo_randfloat() + while type(f) is not float or math.isinf(f) or math.isnan(f) or math.frexp(f)[1] <= min_expo: + f = pseudo_randfloat() + + str_f = repr(f) + f2 = float(str_f) + if f2 == f: + stats += 1 + else: + error = abs((f2 - f) / f) + if max_err < error: + max_err = error + +print(N, "values converted") +if stats / N >= min_success and max_err <= max_rel_err: + print("float format accuracy OK") +else: + print("FAILED: repr rate=%.3f%% max_err=%.3e" % (100 * stats / N, max_err)) |