1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
|
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2021 Damien P. George
* Copyright (c) 2018 Alan Dragomirecky
* Copyright (c) 2020 Antoine Aubert
* Copyright (c) 2021, 2023-2025 Ihor Nehrutsa
* Copyright (c) 2024 Yoann Darche
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_pwm.c via MICROPY_PY_MACHINE_PWM_INCLUDEFILE.
#include <math.h>
#include "py/mphal.h"
#include "esp_err.h"
#include "driver/ledc.h"
#include "soc/ledc_periph.h"
#include "soc/gpio_sig_map.h"
#include "esp_clk_tree.h"
#include "py/mpprint.h"
#define debug_printf(...) mp_printf(&mp_plat_print, __VA_ARGS__); mp_printf(&mp_plat_print, " | %d at %s\n", __LINE__, __FILE__);
#define FADE 0
// 10-bit user interface resolution compatible with esp8266 PWM.duty()
#define UI_RES_10_BIT (10)
#define DUTY_10 UI_RES_10_BIT
// Maximum duty value on 10-bit resolution is 1024 but reduced to 1023 in UI
#define MAX_10_DUTY (1U << UI_RES_10_BIT)
// 16-bit user interface resolution used in PWM.duty_u16()
#define UI_RES_16_BIT (16)
#define DUTY_16 UI_RES_16_BIT
// Maximum duty value on 16-bit resolution is 65536 but reduced to 65535 in UI
#define MAX_16_DUTY (1U << UI_RES_16_BIT)
// ns user interface used in PWM.duty_ns()
#define DUTY_NS (1)
// 5khz is default frequency
#define PWM_FREQ (5000)
// default duty 50%
#define PWM_DUTY ((1U << UI_RES_16_BIT) / 2)
// All chips except esp32 and esp32s2 do not have timer-specific clock sources, which means clock source for all timers must be the same one.
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
// If the PWM frequency is less than EMPIRIC_FREQ, then LEDC_REF_CLK_HZ(1 MHz) source is used, else LEDC_APB_CLK_HZ(80 MHz) source is used
#define EMPIRIC_FREQ (10) // Hz
#endif
// Config of timer upon which we run all PWM'ed GPIO pins
static bool pwm_inited = false;
// MicroPython PWM object struct
typedef struct _machine_pwm_obj_t {
mp_obj_base_t base;
int8_t pin;
int8_t mode;
int8_t channel;
int8_t timer;
bool lightsleep;
int32_t freq;
int8_t duty_scale; // DUTY_10 if duty(), DUTY_16 if duty_u16(), DUTY_NS if duty_ns()
int duty_ui; // saved values of UI duty
int channel_duty; // saved values of UI duty, calculated to raw channel->duty
bool output_invert;
bool output_invert_prev;
} machine_pwm_obj_t;
typedef struct _chans_t {
int8_t pin; // Which channel has which GPIO pin assigned? (-1 if not assigned)
int8_t timer; // Which channel has which timer assigned? (-1 if not assigned)
bool lightsleep; // Is light sleep enable has been set for this pin
} chans_t;
// List of PWM channels
static chans_t chans[LEDC_SPEED_MODE_MAX][LEDC_CHANNEL_MAX];
typedef struct _timers_t {
int32_t freq;
int8_t duty_resolution;
ledc_clk_cfg_t clk_cfg;
} timers_t;
// List of PWM timers
static timers_t timers[LEDC_SPEED_MODE_MAX][LEDC_TIMER_MAX];
// register-unregister channel
static void register_channel(int mode, int channel, int pin, int timer) {
chans[mode][channel].pin = pin;
chans[mode][channel].timer = timer;
}
static void unregister_channel(int mode, int channel) {
register_channel(mode, channel, -1, -1);
chans[mode][channel].lightsleep = false;
}
static void unregister_timer(int mode, int timer) {
timers[mode][timer].freq = -1; // unused timer freq is -1
timers[mode][timer].duty_resolution = 0;
timers[mode][timer].clk_cfg = LEDC_AUTO_CLK;
}
static void pwm_init(void) {
for (int mode = 0; mode < LEDC_SPEED_MODE_MAX; ++mode) {
// Initial condition: no channels assigned
for (int channel = 0; channel < LEDC_CHANNEL_MAX; ++channel) {
unregister_channel(mode, channel);
}
// Initial condition: no timers assigned
for (int timer = 0; timer < LEDC_TIMER_MAX; ++timer) {
unregister_timer(mode, timer);
}
}
}
// Returns true if the timer is in use in addition to current channel
static bool is_timer_in_use(int mode, int current_channel, int timer) {
for (int channel = 0; channel < LEDC_CHANNEL_MAX; ++channel) {
if ((channel != current_channel) && (chans[mode][channel].timer == timer) && (chans[mode][channel].pin >= 0)) {
return true;
}
}
return false;
}
// Deinit channel and timer if the timer is unused
static void pwm_deinit(int mode, int channel, int level) {
// Is valid channel?
if ((mode >= 0) && (mode < LEDC_SPEED_MODE_MAX) && (channel >= 0) && (channel < LEDC_CHANNEL_MAX)) {
// Clean up timer if necessary
int timer = chans[mode][channel].timer;
if (timer >= 0) {
if (!is_timer_in_use(mode, channel, timer)) {
check_esp_err(ledc_timer_pause(mode, timer));
ledc_timer_config_t ledc_timer = {
.deconfigure = true,
.speed_mode = mode,
.timer_num = timer,
};
ledc_timer_config(&ledc_timer);
unregister_timer(mode, timer);
}
}
int pin = chans[mode][channel].pin;
if (pin >= 0) {
// Disable LEDC output, and set idle level
check_esp_err(ledc_stop(mode, channel, level));
if (chans[mode][channel].lightsleep) {
// Enable SLP_SEL to change GPIO status automantically in lightsleep.
check_esp_err(gpio_sleep_sel_en(pin));
chans[mode][channel].lightsleep = false;
}
}
unregister_channel(mode, channel);
}
}
// This called from Ctrl-D soft reboot
void machine_pwm_deinit_all(void) {
if (pwm_inited) {
for (int mode = 0; mode < LEDC_SPEED_MODE_MAX; ++mode) {
for (int channel = 0; channel < LEDC_CHANNEL_MAX; ++channel) {
pwm_deinit(mode, channel, 0);
}
}
#if FADE
ledc_fade_func_uninstall();
#endif
pwm_inited = false;
}
}
static void pwm_is_active(machine_pwm_obj_t *self) {
if (self->timer < 0) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("PWM is inactive"));
}
}
// Calculate the duty parameters based on an ns value
static int ns_to_duty(machine_pwm_obj_t *self, int ns) {
pwm_is_active(self);
int64_t duty = ((int64_t)ns * (int64_t)MAX_16_DUTY * self->freq + 500000000LL) / 1000000000LL;
if ((ns > 0) && (duty == 0)) {
duty = 1;
} else if (duty > MAX_16_DUTY) {
duty = MAX_16_DUTY;
}
return duty;
}
static int duty_to_ns(machine_pwm_obj_t *self, int duty) {
pwm_is_active(self);
return ((int64_t)duty * 1000000000LL + (int64_t)self->freq * (int64_t)(MAX_16_DUTY / 2)) / ((int64_t)self->freq * (int64_t)MAX_16_DUTY);
}
// Reconfigure PWM pin output as input/output.
static void reconfigure_pin(machine_pwm_obj_t *self) {
#if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(5, 4, 0)
// This allows to read the pin level.
gpio_set_direction(self->pin, GPIO_MODE_INPUT_OUTPUT);
#endif
esp_rom_gpio_connect_out_signal(self->pin, ledc_periph_signal[self->mode].sig_out0_idx + self->channel, self->output_invert, 0);
}
static void apply_duty(machine_pwm_obj_t *self) {
pwm_is_active(self);
int duty = 0;
if (self->duty_scale == DUTY_16) {
duty = self->duty_ui;
} else if (self->duty_scale == DUTY_10) {
duty = self->duty_ui << (UI_RES_16_BIT - UI_RES_10_BIT);
} else if (self->duty_scale == DUTY_NS) {
duty = ns_to_duty(self, self->duty_ui);
}
self->channel_duty = duty >> (UI_RES_16_BIT - timers[self->mode][self->timer].duty_resolution);
if ((chans[self->mode][self->channel].pin == -1) || (self->output_invert_prev != self->output_invert)) {
self->output_invert_prev = self->output_invert;
// New PWM assignment
ledc_channel_config_t cfg = {
.channel = self->channel,
.duty = self->channel_duty,
.gpio_num = self->pin,
.intr_type = LEDC_INTR_DISABLE,
.speed_mode = self->mode,
.timer_sel = self->timer,
.hpoint = 0,
.flags.output_invert = self->output_invert,
};
check_esp_err(ledc_channel_config(&cfg));
reconfigure_pin(self);
} else {
#if FADE
check_esp_err(ledc_set_duty_and_update(self->mode, self->channel, self->channel_duty, 0));
#else
check_esp_err(ledc_set_duty(self->mode, self->channel, self->channel_duty));
check_esp_err(ledc_update_duty(self->mode, self->channel));
#endif
}
if (self->lightsleep) {
// Disable SLP_SEL to change GPIO status automantically in lightsleep.
check_esp_err(gpio_sleep_sel_dis(self->pin));
chans[self->mode][self->channel].lightsleep = true;
}
register_channel(self->mode, self->channel, self->pin, self->timer);
}
static uint32_t find_suitable_duty_resolution(uint32_t src_clk_freq, uint32_t timer_freq) {
unsigned int resolution = ledc_find_suitable_duty_resolution(src_clk_freq, timer_freq);
if (resolution > UI_RES_16_BIT) {
// limit resolution to user interface
resolution = UI_RES_16_BIT;
}
// Note: On ESP32, ESP32S2, ESP32S3, ESP32C3, ESP32C2, ESP32C6, ESP32H2, ESP32P4, due to a hardware bug,
// 100% duty cycle (i.e. 2**duty_res) is not reachable when the binded timer selects the maximum duty
// resolution. For example, the max duty resolution on ESP32C3 is 14-bit width, then set duty to (2**14)
// will mess up the duty calculation in hardware.
// Reduce the resolution from 14 to 13 bits to resolve the hardware bug.
if (resolution >= SOC_LEDC_TIMER_BIT_WIDTH) {
resolution -= 1;
}
return resolution;
}
static uint32_t get_duty_u16(machine_pwm_obj_t *self) {
pwm_is_active(self);
int duty = ledc_get_duty(self->mode, self->channel) << (UI_RES_16_BIT - timers[self->mode][self->timer].duty_resolution);
if (duty != MAX_16_DUTY) {
return duty;
} else {
return MAX_16_DUTY - 1;
}
}
static uint32_t get_duty_u10(machine_pwm_obj_t *self) {
// Scale down from 16 bit to 10 bit resolution
return get_duty_u16(self) >> (UI_RES_16_BIT - UI_RES_10_BIT);
}
static uint32_t get_duty_ns(machine_pwm_obj_t *self) {
return duty_to_ns(self, get_duty_u16(self));
}
static void check_duty_u16(machine_pwm_obj_t *self, int duty) {
if ((duty < 0) || (duty > MAX_16_DUTY - 1)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty_u16 must be from 0 to %d"), MAX_16_DUTY);
}
if (duty == MAX_16_DUTY - 1) {
duty = MAX_16_DUTY;
}
self->duty_scale = DUTY_16;
self->duty_ui = duty;
}
static void set_duty_u16(machine_pwm_obj_t *self, int duty) {
check_duty_u16(self, duty);
apply_duty(self);
}
static void check_duty_u10(machine_pwm_obj_t *self, int duty) {
if ((duty < 0) || (duty > MAX_10_DUTY - 1)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty must be from 0 to %u"), MAX_10_DUTY - 1);
}
if (duty == MAX_10_DUTY - 1) {
duty = MAX_10_DUTY;
}
self->duty_scale = DUTY_10;
self->duty_ui = duty;
}
static void set_duty_u10(machine_pwm_obj_t *self, int duty) {
check_duty_u10(self, duty);
apply_duty(self);
}
static void check_duty_ns(machine_pwm_obj_t *self, int ns) {
if ((ns < 0) || (ns > duty_to_ns(self, MAX_16_DUTY))) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty_ns must be from 0 to %d ns"), duty_to_ns(self, MAX_16_DUTY));
}
self->duty_scale = DUTY_NS;
self->duty_ui = ns;
}
static void set_duty_ns(machine_pwm_obj_t *self, int ns) {
check_duty_ns(self, ns);
apply_duty(self);
}
#if !(CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2)
// This check if a clock is already set in the timer list, if yes, return the LEDC_XXX value
static ledc_clk_cfg_t find_clock_in_use() {
for (int mode = 0; mode < LEDC_SPEED_MODE_MAX; ++mode) {
for (int timer = 0; timer < LEDC_TIMER_MAX; ++timer) {
if (timers[mode][timer].clk_cfg != LEDC_AUTO_CLK) {
return timers[mode][timer].clk_cfg;
}
}
}
return LEDC_AUTO_CLK;
}
// Check if a timer is already set with a different clock source
static bool is_timer_with_different_clock(int mode, int current_timer, ledc_clk_cfg_t clk_cfg) {
for (int timer = 0; timer < LEDC_TIMER_MAX; ++timer) {
if ((timer != current_timer) && (clk_cfg != LEDC_AUTO_CLK) && (timers[mode][timer].clk_cfg != LEDC_AUTO_CLK) && (timers[mode][timer].clk_cfg != clk_cfg)) {
return true;
}
}
return false;
}
#endif
static void check_freq_ranges(machine_pwm_obj_t *self, int freq, int upper_freq) {
if ((freq <= 0) || (freq > upper_freq)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("frequency must be from 1Hz to %dMHz"), upper_freq / 1000000);
}
}
// Set timer frequency
static void set_freq(machine_pwm_obj_t *self, unsigned int freq) {
self->freq = freq;
if ((timers[self->mode][self->timer].freq != freq) || (self->lightsleep)) {
ledc_timer_config_t timer = {};
timer.speed_mode = self->mode;
timer.timer_num = self->timer;
timer.freq_hz = freq;
timer.deconfigure = false;
timer.clk_cfg = LEDC_AUTO_CLK;
#if !(CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2)
ledc_clk_cfg_t clk_cfg = find_clock_in_use();
if (clk_cfg != LEDC_AUTO_CLK) {
timer.clk_cfg = clk_cfg;
} else
#endif
if (self->lightsleep) {
timer.clk_cfg = LEDC_USE_RC_FAST_CLK; // 8 or 20 MHz
} else {
#if SOC_LEDC_SUPPORT_APB_CLOCK
timer.clk_cfg = LEDC_USE_APB_CLK; // 80 MHz
#elif SOC_LEDC_SUPPORT_PLL_DIV_CLOCK
timer.clk_cfg = LEDC_USE_PLL_DIV_CLK; // 60 or 80 or 96 MHz
#elif SOC_LEDC_SUPPORT_XTAL_CLOCK
timer.clk_cfg = LEDC_USE_XTAL_CLK; // 40 MHz
#else
#error No supported PWM / LEDC clocks.
#endif
#ifdef EMPIRIC_FREQ // ESP32 and ESP32S2 only
if (freq < EMPIRIC_FREQ) {
timer.clk_cfg = LEDC_USE_REF_TICK; // 1 MHz
}
#endif
}
#if !(CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2)
// Check for clock source conflict
clk_cfg = find_clock_in_use();
if ((clk_cfg != LEDC_AUTO_CLK) && (clk_cfg != timer.clk_cfg)) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("one or more active timers use a different clock source, not supported by the current SoC."));
}
#endif
uint32_t src_clk_freq = 0;
check_esp_err(esp_clk_tree_src_get_freq_hz(timer.clk_cfg, ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX, &src_clk_freq));
// machine.freq(20_000_000) reduces APB_CLK_FREQ to 20MHz and the highest PWM frequency to 10MHz
check_freq_ranges(self, freq, src_clk_freq / 2);
// Configure the new resolution
timer.duty_resolution = find_suitable_duty_resolution(src_clk_freq, self->freq);
// Configure timer - Set frequency
if ((timers[self->mode][self->timer].duty_resolution == timer.duty_resolution) && (timers[self->mode][self->timer].clk_cfg == timer.clk_cfg)) {
check_esp_err(ledc_set_freq(self->mode, self->timer, freq));
} else {
check_esp_err(ledc_timer_config(&timer));
}
// Reset the timer if low speed
if (self->mode == LEDC_LOW_SPEED_MODE) {
check_esp_err(ledc_timer_rst(self->mode, self->timer));
}
timers[self->mode][self->timer].freq = freq;
timers[self->mode][self->timer].duty_resolution = timer.duty_resolution;
timers[self->mode][self->timer].clk_cfg = timer.clk_cfg;
}
}
static bool is_free_channels(int mode, int pin) {
for (int channel = 0; channel < LEDC_CHANNEL_MAX; ++channel) {
if ((chans[mode][channel].pin < 0) || (chans[mode][channel].pin == pin)) {
return true;
}
}
return false;
}
static bool is_free_timers(int mode, int32_t freq) {
for (int timer = 0; timer < LEDC_TIMER_MAX; ++timer) {
if ((timers[mode][timer].freq < 0) || (timers[mode][timer].freq == freq)) {
return true;
}
}
return false;
}
// Find self channel or free channel
static void find_channel(machine_pwm_obj_t *self, int *ret_mode, int *ret_channel, int32_t freq) {
// Try to find self channel first
for (int mode = 0; mode < LEDC_SPEED_MODE_MAX; ++mode) {
#if SOC_LEDC_SUPPORT_HS_MODE
if (self->lightsleep && (mode == LEDC_HIGH_SPEED_MODE)) {
continue;
}
#endif
for (int channel = 0; channel < LEDC_CHANNEL_MAX; ++channel) {
if (chans[mode][channel].pin == self->pin) {
*ret_mode = mode;
*ret_channel = channel;
return;
}
}
}
// Find free channel
for (int mode = 0; mode < LEDC_SPEED_MODE_MAX; ++mode) {
#if SOC_LEDC_SUPPORT_HS_MODE
if (self->lightsleep && (mode == LEDC_HIGH_SPEED_MODE)) {
continue;
}
#endif
for (int channel = 0; channel < LEDC_CHANNEL_MAX; ++channel) {
if ((chans[mode][channel].pin < 0) && is_free_timers(mode, freq)) {
*ret_mode = mode;
*ret_channel = channel;
return;
}
}
}
}
// Returns timer with the same frequency, freq == -1 means free timer
static void find_timer(machine_pwm_obj_t *self, int freq, int *ret_mode, int *ret_timer) {
for (int mode = 0; mode < LEDC_SPEED_MODE_MAX; ++mode) {
#if SOC_LEDC_SUPPORT_HS_MODE
if (self->lightsleep && (mode == LEDC_HIGH_SPEED_MODE)) {
continue;
}
#endif
if (is_free_channels(mode, self->pin)) {
for (int timer = 0; timer < LEDC_TIMER_MAX; ++timer) {
if (timers[mode][timer].freq == freq) {
*ret_mode = mode;
*ret_timer = timer;
return;
}
}
}
}
}
// Try to find a timer with the same frequency in the current mode, otherwise in the next mode.
// If no existing timer and channel was found, then try to find free timer in any mode.
// If the mode or channel is changed, release the channel and register a new channel in the next mode.
static void select_timer(machine_pwm_obj_t *self, int freq) {
// mode, channel, timer may be -1(not defined) or actual values
int mode = -1;
int timer = -1;
// Check if an already running timer with the required frequency is running
find_timer(self, freq, &mode, &timer);
if (timer < 0) {
// Try to reuse self timer
if ((self->mode >= 0) && (self->channel >= 0)) {
if (!is_timer_in_use(self->mode, self->channel, self->timer)) {
mode = self->mode;
timer = self->timer;
}
}
// If no existing timer and channel was found, then try to find free timer in any mode
if (timer < 0) {
find_timer(self, -1, &mode, &timer);
}
}
if (timer < 0) {
mp_raise_msg_varg(&mp_type_RuntimeError, MP_ERROR_TEXT("out of %sPWM timers:%d"), self->lightsleep ? "light sleep capable " : "", self->lightsleep ? LEDC_TIMER_MAX : LEDC_SPEED_MODE_MAX *LEDC_TIMER_MAX);
}
// If the timer is found, then register
if (self->timer != timer) {
unregister_channel(self->mode, self->channel);
// Rregister the channel to the timer
self->mode = mode;
self->timer = timer;
register_channel(self->mode, self->channel, -1, self->timer);
}
#if !(CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2)
if (is_timer_with_different_clock(self->mode, self->timer, timers[self->mode][self->timer].clk_cfg)) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("one or more active timers use a different clock source, not supported by the current SoC."));
}
#endif
}
static void set_freq_duty(machine_pwm_obj_t *self, unsigned int freq) {
select_timer(self, freq);
set_freq(self, freq);
apply_duty(self);
}
// ******************************************************************************
// MicroPython bindings for PWM
static void mp_machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "PWM(Pin(%u)", self->pin);
if (self->timer >= 0) {
mp_printf(print, ", freq=%u", ledc_get_freq(self->mode, self->timer));
if (self->duty_scale == DUTY_10) {
mp_printf(print, ", duty=%d", get_duty_u10(self));
} else if (self->duty_scale == DUTY_NS) {
mp_printf(print, ", duty_ns=%d", get_duty_ns(self));
} else {
mp_printf(print, ", duty_u16=%d", get_duty_u16(self));
}
if (self->output_invert) {
mp_printf(print, ", invert=True");
}
if (self->lightsleep) {
mp_printf(print, ", lightsleep=True");
}
mp_printf(print, ")");
#if MICROPY_ERROR_REPORTING > MICROPY_ERROR_REPORTING_NORMAL
mp_printf(print, " # duty=%.2f%%", 100.0 * get_duty_u16(self) / MAX_16_DUTY);
mp_printf(print, ", raw_duty=%d, resolution=%d", ledc_get_duty(self->mode, self->channel), timers[self->mode][self->timer].duty_resolution);
mp_printf(print, ", mode=%d, timer=%d, channel=%d", self->mode, self->timer, self->channel);
int clk_cfg = timers[self->mode][self->timer].clk_cfg;
mp_printf(print, ", clk_cfg=%d=", clk_cfg);
if (clk_cfg == LEDC_USE_RC_FAST_CLK) {
mp_printf(print, "RC_FAST_CLK");
}
#if SOC_LEDC_SUPPORT_APB_CLOCK
else if (clk_cfg == LEDC_USE_APB_CLK) {
mp_printf(print, "APB_CLK");
}
#endif
#if SOC_LEDC_SUPPORT_XTAL_CLOCK
else if (clk_cfg == LEDC_USE_XTAL_CLK) {
mp_printf(print, "XTAL_CLK");
}
#endif
#if SOC_LEDC_SUPPORT_REF_TICK
else if (clk_cfg == LEDC_USE_REF_TICK) {
mp_printf(print, "REF_TICK");
}
#endif
#if SOC_LEDC_SUPPORT_PLL_DIV_CLOCK
else if (clk_cfg == LEDC_USE_PLL_DIV_CLK) {
mp_printf(print, "PLL_CLK");
}
#endif
else if (clk_cfg == LEDC_AUTO_CLK) {
mp_printf(print, "AUTO_CLK");
} else {
mp_printf(print, "UNKNOWN");
}
#endif
} else {
mp_printf(print, ")");
}
}
// This called from pwm.init() method
//
// Check the current mode.
// If the frequency is changed, try to find a timer with the same frequency
// in the current mode, otherwise in the new mode.
// If the mode is changed, release the channel and select a new channel in the new mode.
// Then set the frequency with the same duty.
static void mp_machine_pwm_init_helper(machine_pwm_obj_t *self,
size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_freq, ARG_duty, ARG_duty_u16, ARG_duty_ns, ARG_invert, ARG_lightsleep };
mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty_u16, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty_ns, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = self->output_invert} },
{ MP_QSTR_lightsleep, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = self->lightsleep} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args,
MP_ARRAY_SIZE(allowed_args), allowed_args, args);
self->lightsleep = args[ARG_lightsleep].u_bool;
int freq = args[ARG_freq].u_int;
if (freq != -1) {
check_freq_ranges(self, freq, 40000000);
}
int duty = args[ARG_duty].u_int;
int duty_u16 = args[ARG_duty_u16].u_int;
int duty_ns = args[ARG_duty_ns].u_int;
if (duty_u16 >= 0) {
check_duty_u16(self, duty_u16);
} else if (duty_ns >= 0) {
check_duty_ns(self, duty_ns);
} else if (duty >= 0) {
check_duty_u10(self, duty);
} else if (self->duty_scale == 0) {
self->duty_scale = DUTY_16;
self->duty_ui = PWM_DUTY;
}
self->output_invert = args[ARG_invert].u_bool;
// Check the current mode and channel
int mode = -1;
int channel = -1;
find_channel(self, &mode, &channel, freq);
if (channel < 0) {
mp_raise_msg_varg(&mp_type_RuntimeError, MP_ERROR_TEXT("out of %sPWM channels:%d"), self->lightsleep ? "light sleep capable " : "", self->lightsleep ? LEDC_CHANNEL_MAX : LEDC_SPEED_MODE_MAX *LEDC_CHANNEL_MAX);
}
self->mode = mode;
self->channel = channel;
// Check if freq wasn't passed as an argument
if ((freq == -1) && (mode >= 0) && (channel >= 0)) {
// Check if already set, otherwise use the default freq.
// It is possible in case:
// pwm = PWM(pin, freq=1000, duty=256)
// pwm = PWM(pin, duty=128)
if (chans[mode][channel].timer >= 0) {
freq = timers[mode][chans[mode][channel].timer].freq;
}
if (freq <= 0) {
freq = PWM_FREQ;
}
}
set_freq_duty(self, freq);
}
static void self_reset(machine_pwm_obj_t *self) {
self->mode = -1;
self->channel = -1;
self->timer = -1;
self->freq = -1;
self->duty_scale = 0;
self->duty_ui = 0;
self->channel_duty = -1;
self->output_invert = false;
self->output_invert_prev = false;
self->lightsleep = false;
}
// This called from PWM() constructor
static mp_obj_t mp_machine_pwm_make_new(const mp_obj_type_t *type,
size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, 2, true);
// start the PWM subsystem if it's not already running
if (!pwm_inited) {
pwm_init();
#if FADE
ledc_fade_func_install(0);
#endif
pwm_inited = true;
}
// create PWM object from the given pin
machine_pwm_obj_t *self = mp_obj_malloc(machine_pwm_obj_t, &machine_pwm_type);
self_reset(self);
self->pin = machine_pin_get_id(args[0]);
// Process the remaining parameters.
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_pwm_init_helper(self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
// This called from pwm.deinit() method
static void mp_machine_pwm_deinit(machine_pwm_obj_t *self) {
pwm_deinit(self->mode, self->channel, self->output_invert);
self_reset(self);
}
// Set and get methods of PWM class
static mp_obj_t mp_machine_pwm_freq_get(machine_pwm_obj_t *self) {
pwm_is_active(self);
return MP_OBJ_NEW_SMALL_INT(ledc_get_freq(self->mode, self->timer));
}
static void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq) {
pwm_is_active(self);
check_freq_ranges(self, freq, 40000000);
if (freq == timers[self->mode][self->timer].freq) {
return;
}
set_freq_duty(self, freq);
}
static mp_obj_t mp_machine_pwm_duty_get(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(get_duty_u10(self));
}
static void mp_machine_pwm_duty_set(machine_pwm_obj_t *self, mp_int_t duty) {
set_duty_u10(self, duty);
}
static mp_obj_t mp_machine_pwm_duty_get_u16(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(get_duty_u16(self));
}
static void mp_machine_pwm_duty_set_u16(machine_pwm_obj_t *self, mp_int_t duty_u16) {
set_duty_u16(self, duty_u16);
}
static mp_obj_t mp_machine_pwm_duty_get_ns(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(get_duty_ns(self));
}
static void mp_machine_pwm_duty_set_ns(machine_pwm_obj_t *self, mp_int_t duty_ns) {
set_duty_ns(self, duty_ns);
}
|