summaryrefslogtreecommitdiff
path: root/ports/stm32/dma.c
blob: c252770740d01eeb390cfbc132598dc40bcedc6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2019 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>
#include <stdint.h>

#include "py/obj.h"
#include "py/mphal.h"
#include "systick.h"
#include "dma.h"
#include "irq.h"
#include "mpu.h"

// When this option is enabled, the DMA will turn off automatically after
// a period of inactivity.
#ifndef MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF
#define MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF (1)
#endif

#define DMA_IDLE_ENABLED()  (dma_idle.enabled != 0)
#define DMA_SYSTICK_LOG2    (3)
#define DMA_SYSTICK_MASK    ((1 << DMA_SYSTICK_LOG2) - 1)
#define DMA_IDLE_TICK_MAX   (8) // 8*8 = 64 msec
#define DMA_IDLE_TICK(tick) (((tick) & ~(SYSTICK_DISPATCH_NUM_SLOTS - 1) & DMA_SYSTICK_MASK) == 0)

#define ENABLE_SDIO (MICROPY_HW_ENABLE_SDCARD || MICROPY_HW_ENABLE_MMCARD || MICROPY_PY_NETWORK_CYW43)

// If the CYW43 driver is enabled then SDIO DMA can happen preemptively (on an
// IRQ) and so the SDIO needs exclusive access to its DMA resource.
#define SDIO_NEEDS_EXCLUSIVE_DMA_ACCESS (MICROPY_PY_NETWORK_CYW43 && MICROPY_HW_SDIO_SDMMC == 1)

typedef enum {
    dma_id_not_defined=-1,
    dma_id_0,
    dma_id_1,
    dma_id_2,
    dma_id_3,
    dma_id_4,
    dma_id_5,
    dma_id_6,
    dma_id_7,
    dma_id_8,
    dma_id_9,
    dma_id_10,
    dma_id_11,
    dma_id_12,
    dma_id_13,
    dma_id_14,
    dma_id_15,
} dma_id_t;

typedef union {
    uint16_t enabled; // Used to test if both counters are == 0
    uint8_t counter[2];
} dma_idle_count_t;

struct _dma_descr_t {
    #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
    DMA_Stream_TypeDef *instance;
    #elif defined(STM32F0) || defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32L0) || defined(STM32L1) || defined(STM32L4) || defined(STM32N6) || defined(STM32WB) || defined(STM32WL)
    DMA_Channel_TypeDef *instance;
    #else
    #error "Unsupported Processor"
    #endif
    uint32_t sub_instance;
    dma_id_t id;
    const DMA_InitTypeDef *init;
};

// Default parameters to dma_init() shared by spi and i2c; Channel and Direction
// vary depending on the peripheral instance so they get passed separately
#if defined(STM32H5) || defined(STM32N6)
static const DMA_InitTypeDef dma_init_struct_spi_i2c = {
    .Request = 0, // set by dma_init_handle
    .BlkHWRequest = DMA_BREQ_SINGLE_BURST,
    .Direction = 0, // set by dma_init_handle
    .SrcInc = 0, // set by dma_init_handle
    .DestInc = 0, // set by dma_init_handle
    .SrcDataWidth = DMA_SRC_DATAWIDTH_BYTE,
    .DestDataWidth = DMA_DEST_DATAWIDTH_BYTE,
    .Priority = DMA_LOW_PRIORITY_LOW_WEIGHT,
    .SrcBurstLength = 1,
    .DestBurstLength = 1,
    .TransferAllocatedPort = DMA_SRC_ALLOCATED_PORT0 | DMA_DEST_ALLOCATED_PORT0,
    .TransferEventMode = DMA_TCEM_BLOCK_TRANSFER,
    .Mode = DMA_NORMAL, // DMA_NORMAL or DMA_PFCTRL (peripheral flow control mode)
};
#else
static const DMA_InitTypeDef dma_init_struct_spi_i2c = {
    #if defined(STM32F4) || defined(STM32F7)
    .Channel = 0,
    #elif defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
    .Request = 0,
    #endif
    .Direction = 0,
    .PeriphInc = DMA_PINC_DISABLE,
    .MemInc = DMA_MINC_ENABLE,
    .PeriphDataAlignment = DMA_PDATAALIGN_BYTE,
    .MemDataAlignment = DMA_MDATAALIGN_BYTE,
    .Mode = DMA_NORMAL,
    .Priority = DMA_PRIORITY_LOW,
    #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
    .FIFOMode = DMA_FIFOMODE_DISABLE,
    .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
    .MemBurst = DMA_MBURST_INC4,
    .PeriphBurst = DMA_PBURST_INC4
    #endif
};
#endif

#if MICROPY_PY_MACHINE_I2S
// Default parameters to dma_init() for i2s; Channel and Direction
// vary depending on the peripheral instance so they get passed separately
static const DMA_InitTypeDef dma_init_struct_i2s = {
    #if defined(STM32F4) || defined(STM32F7)
    .Channel = 0,
    #elif defined(STM32G0) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4)
    .Request = 0,
    #endif
    .Direction = DMA_MEMORY_TO_PERIPH,
    .PeriphInc = DMA_PINC_DISABLE,
    .MemInc = DMA_MINC_ENABLE,
    .PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD,
    .MemDataAlignment = DMA_MDATAALIGN_HALFWORD,
    .Mode = DMA_CIRCULAR,
    .Priority = DMA_PRIORITY_LOW,
    #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
    .FIFOMode = DMA_FIFOMODE_DISABLE,
    .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
    .MemBurst = DMA_MBURST_SINGLE,
    .PeriphBurst = DMA_PBURST_SINGLE
    #endif
};
#endif

#if ENABLE_SDIO && !defined(STM32H5) && !defined(STM32H7) && !defined(STM32N6)
// Parameters to dma_init() for SDIO tx and rx.
static const DMA_InitTypeDef dma_init_struct_sdio = {
    #if defined(STM32F4) || defined(STM32F7)
    .Channel = 0,
    #elif defined(STM32G0) || defined(STM32G4) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
    .Request = 0,
    #endif
    .Direction = 0,
    .PeriphInc = DMA_PINC_DISABLE,
    .MemInc = DMA_MINC_ENABLE,
    .PeriphDataAlignment = DMA_PDATAALIGN_WORD,
    .MemDataAlignment = DMA_MDATAALIGN_WORD,
    #if defined(STM32F4) || defined(STM32F7)
    .Mode = DMA_PFCTRL,
    #elif defined(STM32G0) || defined(STM32G4) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
    .Mode = DMA_NORMAL,
    #endif
    .Priority = DMA_PRIORITY_VERY_HIGH,
    #if defined(STM32F4) || defined(STM32F7)
    .FIFOMode = DMA_FIFOMODE_ENABLE,
    .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
    .MemBurst = DMA_MBURST_INC4,
    .PeriphBurst = DMA_PBURST_INC4,
    #endif
};
#endif

#if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC
#if defined(STM32H5)
// Default parameters to dma_init() for DAC tx
static const DMA_InitTypeDef dma_init_struct_dac = {
    .Request = 0, // set by dma_init_handle
    .BlkHWRequest = DMA_BREQ_SINGLE_BURST,
    .Direction = DMA_MEMORY_TO_PERIPH,
    .SrcInc = DMA_SINC_INCREMENTED,
    .DestInc = DMA_DINC_FIXED,
    .SrcDataWidth = DMA_SRC_DATAWIDTH_BYTE,
    .DestDataWidth = DMA_DEST_DATAWIDTH_WORD,
    .Priority = DMA_HIGH_PRIORITY,
    .SrcBurstLength = 1,
    .DestBurstLength = 1,
    .TransferAllocatedPort = DMA_SRC_ALLOCATED_PORT0 | DMA_DEST_ALLOCATED_PORT0,
    .TransferEventMode = DMA_TCEM_BLOCK_TRANSFER,
    .Mode = DMA_NORMAL, // DMA_NORMAL or DMA_PFCTRL (peripheral flow control mode)
};
#else
// Default parameters to dma_init() for DAC tx
static const DMA_InitTypeDef dma_init_struct_dac = {
    #if defined(STM32F4) || defined(STM32F7)
    .Channel = 0,
    #elif defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
    .Request = 0,
    #endif
    .Direction = 0,
    .PeriphInc = DMA_PINC_DISABLE,
    .MemInc = DMA_MINC_ENABLE,
    .PeriphDataAlignment = DMA_PDATAALIGN_BYTE,
    .MemDataAlignment = DMA_MDATAALIGN_BYTE,
    .Mode = DMA_NORMAL,
    .Priority = DMA_PRIORITY_HIGH,
    #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
    .FIFOMode = DMA_FIFOMODE_DISABLE,
    .FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL,
    .MemBurst = DMA_MBURST_SINGLE,
    .PeriphBurst = DMA_PBURST_SINGLE,
    #endif
};
#endif
#endif

#if MICROPY_HW_ENABLE_DCMI
static const DMA_InitTypeDef dma_init_struct_dcmi = {
    #if defined(STM32H7)
    .Request = DMA_REQUEST_DCMI,
    #else
    .Channel = DMA_CHANNEL_1,
    #endif
    .Direction = DMA_PERIPH_TO_MEMORY,
    .PeriphInc = DMA_PINC_DISABLE,
    .MemInc = DMA_MINC_ENABLE,
    .PeriphDataAlignment = DMA_PDATAALIGN_WORD,
    .MemDataAlignment = DMA_MDATAALIGN_WORD,
    .Mode = DMA_NORMAL,
    .Priority = DMA_PRIORITY_HIGH,
    .FIFOMode = DMA_FIFOMODE_ENABLE,
    .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
    .MemBurst = DMA_MBURST_INC4,
    .PeriphBurst = DMA_PBURST_SINGLE
};
#endif

#if defined(STM32F0)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) ((dma_channel) >> ((dma_channel >> 28) * 4))

#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1 (7 channels)
#define DMA2_ENABLE_MASK (0x0f80) // Bits in dma_enable_mask corresponding to DMA2 (only 5 channels)

// DMA1 streams
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, HAL_DMA1_CH3_DAC_CH1, dma_id_2, &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, HAL_DMA1_CH4_DAC_CH2, dma_id_3, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, HAL_DMA1_CH5_SPI2_TX, dma_id_4, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel6, HAL_DMA1_CH6_SPI2_RX, dma_id_5, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_1_RX = { DMA2_Channel3, HAL_DMA2_CH3_SPI1_RX, dma_id_9, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_1_TX = { DMA2_Channel4, HAL_DMA2_CH4_SPI1_TX, dma_id_10, &dma_init_struct_spi_i2c};

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Ch1_IRQn,
    DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
    DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,

    DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
    DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    0,
    0,
};

#elif defined(STM32F4) || defined(STM32F7)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (8)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (((dma_channel) & DMA_SxCR_CHSEL) >> 25)

#define DMA1_ENABLE_MASK (0x00ff) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to DMA2

// These descriptors are ordered by DMAx_Stream number, and within a stream by channel
// number. The duplicate streams are ok as long as they aren't used at the same time.
//
// Currently I2C and SPI are synchronous and they call dma_init/dma_deinit
// around each transfer.

// DMA1 streams
const dma_descr_t dma_I2C_1_RX = { DMA1_Stream0, DMA_CHANNEL_1, dma_id_0,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_RX = { DMA1_Stream2, DMA_CHANNEL_0, dma_id_2,   &dma_init_struct_spi_i2c };
#if defined(STM32F7)
const dma_descr_t dma_I2C_4_RX = { DMA1_Stream2, DMA_CHANNEL_2, dma_id_2,   &dma_init_struct_spi_i2c };
#endif
const dma_descr_t dma_I2C_3_RX = { DMA1_Stream2, DMA_CHANNEL_3, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Stream2, DMA_CHANNEL_7, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Stream3, DMA_CHANNEL_0, dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Stream4, DMA_CHANNEL_0, dma_id_4,   &dma_init_struct_spi_i2c };
#if MICROPY_PY_MACHINE_I2S
const dma_descr_t dma_I2S_2_RX = { DMA1_Stream3, DMA_CHANNEL_0, dma_id_3,   &dma_init_struct_i2s };
const dma_descr_t dma_I2S_2_TX = { DMA1_Stream4, DMA_CHANNEL_0, dma_id_4,   &dma_init_struct_i2s };
#endif
const dma_descr_t dma_I2C_3_TX = { DMA1_Stream4, DMA_CHANNEL_3, dma_id_4,   &dma_init_struct_spi_i2c };
#if defined(STM32F7)
const dma_descr_t dma_I2C_4_TX = { DMA1_Stream5, DMA_CHANNEL_2, dma_id_5,   &dma_init_struct_spi_i2c };
#endif
#if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Stream5, DMA_CHANNEL_7, dma_id_5,   &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Stream6, DMA_CHANNEL_7, dma_id_6,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_3_TX = { DMA1_Stream7, DMA_CHANNEL_0, dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Stream7, DMA_CHANNEL_1, dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Stream7, DMA_CHANNEL_7, dma_id_7,   &dma_init_struct_spi_i2c };
/* not preferred streams
const dma_descr_t dma_SPI_3_RX = { DMA1_Stream0, DMA_CHANNEL_0, dma_id_0,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Stream6, DMA_CHANNEL_1, dma_id_6,   &dma_init_struct_spi_i2c };
*/

// DMA2 streams
#if defined(STM32F7) && defined(SDMMC2) && ENABLE_SDIO
const dma_descr_t dma_SDMMC_2 = { DMA2_Stream0, DMA_CHANNEL_11, dma_id_8,  &dma_init_struct_sdio };
#endif
#if MICROPY_HW_ENABLE_DCMI
const dma_descr_t dma_DCMI_0 = { DMA2_Stream1, DMA_CHANNEL_1, dma_id_9,  &dma_init_struct_dcmi };
#endif
const dma_descr_t dma_SPI_1_RX = { DMA2_Stream2, DMA_CHANNEL_3, dma_id_10,  &dma_init_struct_spi_i2c };
#if MICROPY_PY_MACHINE_I2S
const dma_descr_t dma_I2S_1_RX = { DMA2_Stream2, DMA_CHANNEL_3, dma_id_10,  &dma_init_struct_i2s };
#endif
#if ENABLE_SDIO
const dma_descr_t dma_SDIO_0 = { DMA2_Stream3, DMA_CHANNEL_4, dma_id_11,  &dma_init_struct_sdio };
#endif
#if !SDIO_NEEDS_EXCLUSIVE_DMA_ACCESS
const dma_descr_t dma_SPI_5_RX = { DMA2_Stream3, DMA_CHANNEL_2, dma_id_11,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_RX = { DMA2_Stream3, DMA_CHANNEL_5, dma_id_11,  &dma_init_struct_spi_i2c };
#endif
const dma_descr_t dma_SPI_5_TX = { DMA2_Stream4, DMA_CHANNEL_2, dma_id_12,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_TX = { DMA2_Stream4, DMA_CHANNEL_5, dma_id_12,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_6_TX = { DMA2_Stream5, DMA_CHANNEL_1, dma_id_13,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { DMA2_Stream5, DMA_CHANNEL_3, dma_id_13,  &dma_init_struct_spi_i2c };
#if MICROPY_PY_MACHINE_I2S
const dma_descr_t dma_I2S_1_TX = { DMA2_Stream5, DMA_CHANNEL_3, dma_id_13,  &dma_init_struct_i2s };
#endif
// #if defined(STM32F7) && defined(SDMMC2) && ENABLE_SDIO
// const dma_descr_t dma_SDMMC_2 = { DMA2_Stream5, DMA_CHANNEL_11, dma_id_13,  &dma_init_struct_sdio };
// #endif
const dma_descr_t dma_SPI_6_RX = { DMA2_Stream6, DMA_CHANNEL_1, dma_id_14,  &dma_init_struct_spi_i2c };
// #if ENABLE_SDIO
// const dma_descr_t dma_SDIO_0 = { DMA2_Stream6, DMA_CHANNEL_4, dma_id_14,  &dma_init_struct_sdio };
// #endif
/* not preferred streams
const dma_descr_t dma_SPI_1_TX = { DMA2_Stream3, DMA_CHANNEL_3, dma_id_11,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_RX = { DMA2_Stream0, DMA_CHANNEL_3, dma_id_8,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_RX = { DMA2_Stream0, DMA_CHANNEL_4, dma_id_8,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_TX = { DMA2_Stream1, DMA_CHANNEL_4, dma_id_9,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_RX = { DMA2_Stream5, DMA_CHANNEL_7, dma_id_13,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_TX = { DMA2_Stream6, DMA_CHANNEL_7, dma_id_14,  &dma_init_struct_spi_i2c };
*/

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Stream0_IRQn,
    DMA1_Stream1_IRQn,
    DMA1_Stream2_IRQn,
    DMA1_Stream3_IRQn,
    DMA1_Stream4_IRQn,
    DMA1_Stream5_IRQn,
    DMA1_Stream6_IRQn,
    DMA1_Stream7_IRQn,
    DMA2_Stream0_IRQn,
    DMA2_Stream1_IRQn,
    DMA2_Stream2_IRQn,
    DMA2_Stream3_IRQn,
    DMA2_Stream4_IRQn,
    DMA2_Stream5_IRQn,
    DMA2_Stream6_IRQn,
    DMA2_Stream7_IRQn,
};

#elif defined(STM32L0)

#define NCONTROLLERS            (1)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)

#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1

// These descriptors are ordered by DMAx_Channel number, and within a channel by request
// number. The duplicate streams are ok as long as they aren't used at the same time.

// DMA1 streams
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel2, DMA_REQUEST_1,  dma_id_1,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Channel2, DMA_REQUEST_14, dma_id_1,   &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel2, DMA_REQUEST_9,  dma_id_1,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel3, DMA_REQUEST_1,  dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_RX = { DMA1_Channel3, DMA_REQUEST_14, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel4, DMA_REQUEST_2,  dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, DMA_REQUEST_7,  dma_id_3,   &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, DMA_REQUEST_15, dma_id_3,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, DMA_REQUEST_2,  dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Channel5, DMA_REQUEST_7,  dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Channel6, DMA_REQUEST_6,  dma_id_5,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_RX = { DMA1_Channel7, DMA_REQUEST_6,  dma_id_6,   &dma_init_struct_spi_i2c };

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Channel1_IRQn,
    DMA1_Channel2_3_IRQn,
    DMA1_Channel2_3_IRQn,
    DMA1_Channel4_5_6_7_IRQn,
    DMA1_Channel4_5_6_7_IRQn,
    DMA1_Channel4_5_6_7_IRQn,
    DMA1_Channel4_5_6_7_IRQn,
};

#elif defined(STM32L1)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)

#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0x0f80) // Bits in dma_enable_mask corresponding to DMA2

// These descriptors are ordered by DMAx_Channel number, and within a channel by request
// number. The duplicate streams are ok as long as they aren't used at the same time.

// DMA1 streams
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel2, 2, dma_id_1,   &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel2, 2, dma_id_1,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel3, 3, dma_id_2,   &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel3, 3, dma_id_2,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel4, 4, dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, 4, dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, 5, dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Channel5, 5, dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Channel6, 6, dma_id_5,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_RX = { DMA1_Channel7, 7, dma_id_6,   &dma_init_struct_spi_i2c };

// DMA2 streams
const dma_descr_t dma_SPI_3_RX = { DMA2_Channel1, 3, dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_TX = { DMA2_Channel2, 3, dma_id_8,   &dma_init_struct_spi_i2c };

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Channel1_IRQn,
    DMA1_Channel2_IRQn,
    DMA1_Channel3_IRQn,
    DMA1_Channel4_IRQn,
    DMA1_Channel5_IRQn,
    DMA1_Channel6_IRQn,
    DMA1_Channel7_IRQn,
    DMA2_Channel1_IRQn,
    DMA2_Channel2_IRQn,
    DMA2_Channel3_IRQn,
    DMA2_Channel4_IRQn,
    DMA2_Channel5_IRQn,
    0,
    0
};

#elif defined(STM32L4)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)

#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0x3f80) // Bits in dma_enable_mask corresponding to DMA2

// These descriptors are ordered by DMAx_Channel number, and within a channel by request
// number. The duplicate streams are ok as long as they aren't used at the same time.

// DMA1 streams
// const dma_descr_t dma_ADC_1_RX = { DMA1_Channel1, DMA_REQUEST_0, dma_id_0,   NULL }; // unused
// const dma_descr_t dma_ADC_2_RX = { DMA1_Channel2, DMA_REQUEST_0, dma_id_1,   NULL }; // unused
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel2, DMA_REQUEST_1, dma_id_1,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Channel2, DMA_REQUEST_3, dma_id_1,   &dma_init_struct_spi_i2c };
// const dma_descr_t dma_ADC_3_RX = { DMA1_Channel3, DMA_REQUEST_0, dma_id_2,   NULL }; // unused
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel3, DMA_REQUEST_1, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_RX = { DMA1_Channel3, DMA_REQUEST_3, dma_id_2,   &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, DMA_REQUEST_6, dma_id_2,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel4, DMA_REQUEST_1, dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, DMA_REQUEST_3, dma_id_3,   &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, DMA_REQUEST_5, dma_id_3,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, DMA_REQUEST_1, dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Channel5, DMA_REQUEST_3, dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Channel6, DMA_REQUEST_3, dma_id_5,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_RX = { DMA1_Channel7, DMA_REQUEST_3, dma_id_6,   &dma_init_struct_spi_i2c };

// DMA2 streams
const dma_descr_t dma_I2C_4_RX = { DMA2_Channel1, DMA_REQUEST_0, dma_id_0,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_RX = { DMA2_Channel1, DMA_REQUEST_3, dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_4_TX = { DMA2_Channel2, DMA_REQUEST_0, dma_id_1,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_TX = { DMA2_Channel2, DMA_REQUEST_3, dma_id_8,   &dma_init_struct_spi_i2c };
/* not preferred streams
const dma_descr_t dma_ADC_1_RX = { DMA2_Channel3, DMA_REQUEST_0, dma_id_9,   NULL };
const dma_descr_t dma_SPI_1_RX = { DMA2_Channel3, DMA_REQUEST_4, dma_id_9,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_ADC_2_RX = { DMA2_Channel4, DMA_REQUEST_0, dma_id_10,  NULL };
const dma_descr_t dma_DAC_1_TX = { DMA2_Channel4, DMA_REQUEST_3, dma_id_10,  &dma_init_struct_dac };
const dma_descr_t dma_SPI_1_TX = { DMA2_Channel4, DMA_REQUEST_4, dma_id_10,  &dma_init_struct_spi_i2c };
*/
#if ENABLE_SDIO
const dma_descr_t dma_SDIO_0 = { DMA2_Channel4, DMA_REQUEST_7, dma_id_10,  &dma_init_struct_sdio };
#endif
/* not preferred streams
const dma_descr_t dma_ADC_3_RX = { DMA2_Channel5, DMA_REQUEST_0, dma_id_11,  NULL };
const dma_descr_t dma_DAC_2_TX = { DMA2_Channel5, DMA_REQUEST_3, dma_id_11,  &dma_init_struct_dac };
const dma_descr_t dma_SDIO_0_TX= { DMA2_Channel5, DMA_REQUEST_7, dma_id_11,  &dma_init_struct_sdio };
const dma_descr_t dma_I2C_1_RX = { DMA2_Channel6, DMA_REQUEST_5, dma_id_12,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA2_Channel7, DMA_REQUEST_5, dma_id_13,  &dma_init_struct_spi_i2c };
*/

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Channel1_IRQn,
    DMA1_Channel2_IRQn,
    DMA1_Channel3_IRQn,
    DMA1_Channel4_IRQn,
    DMA1_Channel5_IRQn,
    DMA1_Channel6_IRQn,
    DMA1_Channel7_IRQn,
    DMA2_Channel1_IRQn,
    DMA2_Channel2_IRQn,
    DMA2_Channel3_IRQn,
    DMA2_Channel4_IRQn,
    DMA2_Channel5_IRQn,
    DMA2_Channel6_IRQn,
    DMA2_Channel7_IRQn,
};

#elif defined(STM32WB) || defined(STM32WL)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)

#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0x3f80) // Bits in dma_enable_mask corresponding to DMA2

// DMA1 streams
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel1, DMA_REQUEST_SPI1_RX, dma_id_0, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel2, DMA_REQUEST_SPI1_TX, dma_id_1, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel3, DMA_REQUEST_SPI2_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel4, DMA_REQUEST_SPI2_TX, dma_id_3, &dma_init_struct_spi_i2c };
#if defined(STM32WL)
const dma_descr_t dma_SPI_SUBGHZ_RX = { DMA1_Channel5, DMA_REQUEST_SUBGHZSPI_RX, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_SUBGHZ_TX = { DMA1_Channel6, DMA_REQUEST_SUBGHZSPI_TX, dma_id_5, &dma_init_struct_spi_i2c };
#endif

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Channel1_IRQn,
    DMA1_Channel2_IRQn,
    DMA1_Channel3_IRQn,
    DMA1_Channel4_IRQn,
    DMA1_Channel5_IRQn,
    DMA1_Channel6_IRQn,
    DMA1_Channel7_IRQn,
    DMA2_Channel1_IRQn,
    DMA2_Channel2_IRQn,
    DMA2_Channel3_IRQn,
    DMA2_Channel4_IRQn,
    DMA2_Channel5_IRQn,
    DMA2_Channel6_IRQn,
    DMA2_Channel7_IRQn,
};

#elif defined(STM32G0)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)

#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1 (7 channels)
#define DMA2_ENABLE_MASK (0x0f80) // Bits in dma_enable_mask corresponding to DMA2 (only 5 channels)

// DMA1 streams
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, DMA_REQUEST_DAC1_CH1, dma_id_2, &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, DMA_REQUEST_DAC1_CH2, dma_id_3, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_3_TX = { DMA1_Channel7, DMA_REQUEST_SPI3_TX, dma_id_6, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_3_RX = { DMA2_Channel1, DMA_REQUEST_SPI3_RX, dma_id_7, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, DMA_REQUEST_SPI2_TX, dma_id_4, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel6, DMA_REQUEST_SPI2_RX, dma_id_5, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_1_RX = { DMA2_Channel3, DMA_REQUEST_SPI1_RX, dma_id_9, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_1_TX = { DMA2_Channel4, DMA_REQUEST_SPI1_TX, dma_id_10, &dma_init_struct_spi_i2c};

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Channel1_IRQn,
    DMA1_Channel2_3_IRQn,
    DMA1_Channel2_3_IRQn,
    DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
    DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
    DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
    DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
    DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
    DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
    DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
    DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
    DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
    0,
    0,
};

#elif defined(STM32G4)

#define NCONTROLLERS            (2)

#if defined(STM32G431xx) || defined(STM32G441xx)
#define NSTREAMS_PER_CONTROLLER (6) // Cat 2 devices = 6, Cat 3 = 8
#else
#define NSTREAMS_PER_CONTROLLER (8) // Cat 2 devices = 6, Cat 3 = 8
#endif
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)
#if defined(STM32G431xx) || defined(STM32G441xx)
#define DMA1_ENABLE_MASK (0x004f) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0x0fc0) // Bits in dma_enable_mask corresponding to DMA2
#else
#define DMA1_ENABLE_MASK (0x00Ff) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to DMA2
#endif

// These descriptors are ordered by DMAx_Channel number, and within a channel by request
// number. The duplicate streams are ok as long as they aren't used at the same time.

// DMA1 streams
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel1, DMA_REQUEST_SPI1_RX, dma_id_0,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel2, DMA_REQUEST_SPI1_TX, dma_id_1,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel1, DMA_REQUEST_SPI2_RX, dma_id_0,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel2, DMA_REQUEST_SPI2_TX, dma_id_1,   &dma_init_struct_spi_i2c };

const dma_descr_t dma_I2C_1_RX = { DMA1_Channel3, DMA_REQUEST_I2C1_RX, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Channel4, DMA_REQUEST_I2C1_TX, dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Channel3, DMA_REQUEST_I2C2_RX, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, DMA_REQUEST_I2C2_TX, dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_RX = { DMA1_Channel3, DMA_REQUEST_I2C3_RX, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Channel4, DMA_REQUEST_I2C3_TX, dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_UART_3_RX = { DMA1_Channel3, DMA_REQUEST_USART3_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_UART_3_TX = { DMA1_Channel4, DMA_REQUEST_USART3_TX, dma_id_3, &dma_init_struct_spi_i2c };

#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel5, DMA_REQUEST_DAC1_CHANNEL1, dma_id_4,   &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel6, DMA_REQUEST_DAC1_CHANNEL2, dma_id_5,   &dma_init_struct_dac };
#endif
#if !defined(STM32G431xx) && !defined(STM32G441xx)
// channel 7 & 8
#endif

// DMA2 streams
const dma_descr_t dma_UART_1_RX = { DMA2_Channel1, DMA_REQUEST_USART1_RX,  dma_id_6,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_UART_1_TX = { DMA2_Channel2, DMA_REQUEST_USART1_TX,  dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_LPUART_1_RX = { DMA2_Channel3, DMA_REQUEST_LPUART1_RX, dma_id_8,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_LPUART_1_TX = { DMA2_Channel4, DMA_REQUEST_LPUART1_TX, dma_id_9,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_ADC_1 = { DMA2_Channel5, DMA_REQUEST_ADC1,       dma_id_10,  NULL };
const dma_descr_t dma_MEM_2_MEM = { DMA2_Channel6, DMA_REQUEST_MEM2MEM,    dma_id_11,  NULL };
#if !defined(STM32G431xx) && !defined(STM32G441xx)
// channel 7 & 8
#endif

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Channel1_IRQn,
    DMA1_Channel2_IRQn,
    DMA1_Channel3_IRQn,
    DMA1_Channel4_IRQn,
    DMA1_Channel5_IRQn,
    DMA1_Channel6_IRQn,
    #if !defined(STM32G431xx) && !defined(STM32G441xx)
    DMA1_Channel7_IRQn,
    DMA1_Channel8_IRQn,
    #endif
    DMA2_Channel1_IRQn,
    DMA2_Channel2_IRQn,
    DMA2_Channel3_IRQn,
    DMA2_Channel4_IRQn,
    DMA2_Channel5_IRQn,
    DMA2_Channel6_IRQn,
    #if !defined(STM32G431xx) && !defined(STM32G441xx)
    DMA2_Channel7_IRQn,
    DMA2_Channel8_IRQn,
    #endif
};

#elif defined(STM32H5)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (8)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (dma_channel)

#define DMA1_ENABLE_MASK (0x00ff) // Bits in dma_enable_mask corresponding to GPDMA1
#define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to GPDMA2

const dma_descr_t dma_SPI_1_RX = { GPDMA1_Channel0, GPDMA1_REQUEST_SPI1_RX, dma_id_0, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { GPDMA1_Channel1, GPDMA1_REQUEST_SPI1_TX, dma_id_1, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { GPDMA1_Channel2, GPDMA1_REQUEST_SPI2_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { GPDMA1_Channel3, GPDMA1_REQUEST_SPI2_TX, dma_id_3, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_RX = { GPDMA1_Channel4, GPDMA1_REQUEST_SPI3_RX, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_TX = { GPDMA1_Channel5, GPDMA1_REQUEST_SPI3_TX, dma_id_5, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_RX = { GPDMA1_Channel6, GPDMA1_REQUEST_SPI4_RX, dma_id_6, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_TX = { GPDMA1_Channel7, GPDMA1_REQUEST_SPI4_TX, dma_id_7, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { GPDMA2_Channel0, GPDMA1_REQUEST_DAC1_CH1, dma_id_8, &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { GPDMA2_Channel1, GPDMA1_REQUEST_DAC1_CH2, dma_id_9, &dma_init_struct_dac };
#endif

static const uint8_t dma_irqn[NSTREAM] = {
    GPDMA1_Channel0_IRQn,
    GPDMA1_Channel1_IRQn,
    GPDMA1_Channel2_IRQn,
    GPDMA1_Channel3_IRQn,
    GPDMA1_Channel4_IRQn,
    GPDMA1_Channel5_IRQn,
    GPDMA1_Channel6_IRQn,
    GPDMA1_Channel7_IRQn,
    GPDMA2_Channel0_IRQn,
    GPDMA2_Channel1_IRQn,
    GPDMA2_Channel2_IRQn,
    GPDMA2_Channel3_IRQn,
    GPDMA2_Channel4_IRQn,
    GPDMA2_Channel5_IRQn,
    GPDMA2_Channel6_IRQn,
    GPDMA2_Channel7_IRQn,
};

#elif defined(STM32H7)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (8)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (dma_channel)

#define DMA1_ENABLE_MASK (0x00ff) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to DMA2

// These descriptors are ordered by DMAx_Stream number, and within a stream by channel
// number. The duplicate streams are ok as long as they aren't used at the same time.
//
// Currently I2C and SPI are synchronous and they call dma_init/dma_deinit
// around each transfer.

// DMA1 streams
const dma_descr_t dma_I2C_1_RX = { DMA1_Stream0, DMA_REQUEST_I2C1_RX, dma_id_0,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_RX = { DMA1_Stream2, DMA_REQUEST_SPI3_RX, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_4_RX = { DMA1_Stream2, BDMA_REQUEST_I2C4_RX, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_RX = { DMA1_Stream2, DMA_REQUEST_I2C3_RX, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Stream2, DMA_REQUEST_I2C2_RX, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Stream3, DMA_REQUEST_SPI2_RX, dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Stream4, DMA_REQUEST_SPI2_TX, dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Stream4, DMA_REQUEST_I2C3_TX, dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_4_TX = { DMA1_Stream5, BDMA_REQUEST_I2C4_TX, dma_id_5,   &dma_init_struct_spi_i2c };
#if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Stream5, DMA_REQUEST_DAC1_CH1, dma_id_5,   &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Stream6, DMA_REQUEST_DAC1_CH2, dma_id_6,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_3_TX = { DMA1_Stream7, DMA_REQUEST_SPI3_TX, dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Stream7, DMA_REQUEST_I2C1_TX, dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Stream7, DMA_REQUEST_I2C2_TX, dma_id_7,   &dma_init_struct_spi_i2c };

// DMA2 streams
#if MICROPY_HW_ENABLE_DCMI
const dma_descr_t dma_DCMI_0 = { DMA2_Stream1, DMA_REQUEST_DCMI, dma_id_9,  &dma_init_struct_dcmi };
#endif
const dma_descr_t dma_SPI_1_RX = { DMA2_Stream2, DMA_REQUEST_SPI1_RX, dma_id_10,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_RX = { DMA2_Stream3, DMA_REQUEST_SPI5_RX, dma_id_11,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_RX = { DMA2_Stream3, DMA_REQUEST_SPI4_RX, dma_id_11,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_TX = { DMA2_Stream4, DMA_REQUEST_SPI5_TX, dma_id_12,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_TX = { DMA2_Stream4, DMA_REQUEST_SPI4_TX, dma_id_12,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_6_TX = { DMA2_Stream5, BDMA_REQUEST_SPI6_TX, dma_id_13,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { DMA2_Stream5, DMA_REQUEST_SPI1_TX, dma_id_13,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_6_RX = { DMA2_Stream6, BDMA_REQUEST_SPI6_RX, dma_id_14,  &dma_init_struct_spi_i2c };

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Stream0_IRQn,
    DMA1_Stream1_IRQn,
    DMA1_Stream2_IRQn,
    DMA1_Stream3_IRQn,
    DMA1_Stream4_IRQn,
    DMA1_Stream5_IRQn,
    DMA1_Stream6_IRQn,
    DMA1_Stream7_IRQn,
    DMA2_Stream0_IRQn,
    DMA2_Stream1_IRQn,
    DMA2_Stream2_IRQn,
    DMA2_Stream3_IRQn,
    DMA2_Stream4_IRQn,
    DMA2_Stream5_IRQn,
    DMA2_Stream6_IRQn,
    DMA2_Stream7_IRQn,
};

#elif defined(STM32N6)

#define NCONTROLLERS            (1)
#define NSTREAMS_PER_CONTROLLER (16)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (dma_channel)

#define DMA1_ENABLE_MASK (0xffff) // Bits in dma_enable_mask corresponding to GPDMA1

const dma_descr_t dma_SPI_1_RX = { GPDMA1_Channel0, GPDMA1_REQUEST_SPI1_RX, dma_id_0, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { GPDMA1_Channel1, GPDMA1_REQUEST_SPI1_TX, dma_id_1, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { GPDMA1_Channel2, GPDMA1_REQUEST_SPI2_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { GPDMA1_Channel3, GPDMA1_REQUEST_SPI2_TX, dma_id_3, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_RX = { GPDMA1_Channel4, GPDMA1_REQUEST_SPI3_RX, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_TX = { GPDMA1_Channel5, GPDMA1_REQUEST_SPI3_TX, dma_id_5, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_RX = { GPDMA1_Channel6, GPDMA1_REQUEST_SPI4_RX, dma_id_6, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_TX = { GPDMA1_Channel7, GPDMA1_REQUEST_SPI4_TX, dma_id_7, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_RX = { GPDMA1_Channel8, GPDMA1_REQUEST_SPI5_RX, dma_id_8, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_TX = { GPDMA1_Channel9, GPDMA1_REQUEST_SPI5_TX, dma_id_9, &dma_init_struct_spi_i2c };

static const uint8_t dma_irqn[NSTREAM] = {
    GPDMA1_Channel0_IRQn,
    GPDMA1_Channel1_IRQn,
    GPDMA1_Channel2_IRQn,
    GPDMA1_Channel3_IRQn,
    GPDMA1_Channel4_IRQn,
    GPDMA1_Channel5_IRQn,
    GPDMA1_Channel6_IRQn,
    GPDMA1_Channel7_IRQn,
    GPDMA1_Channel8_IRQn,
    GPDMA1_Channel9_IRQn,
    GPDMA1_Channel10_IRQn,
    GPDMA1_Channel11_IRQn,
    GPDMA1_Channel12_IRQn,
    GPDMA1_Channel13_IRQn,
    GPDMA1_Channel14_IRQn,
    GPDMA1_Channel15_IRQn,
};

#endif

static DMA_HandleTypeDef *dma_handle[NSTREAM] = {NULL};
static uint8_t dma_last_sub_instance[NSTREAM];
static volatile uint32_t dma_enable_mask = 0;
#if MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF
volatile dma_idle_count_t dma_idle;
#endif

#define DMA_INVALID_CHANNEL 0xff    // Value stored in dma_last_channel which means invalid

#if defined(STM32F0) || defined(STM32G0) || defined(STM32L0) || defined(STM32L1)
#define DMA1_IS_CLK_ENABLED()   ((RCC->AHBENR & RCC_AHBENR_DMA1EN) != 0)
#if defined(DMA2)
#define DMA2_IS_CLK_ENABLED()   ((RCC->AHBENR & RCC_AHBENR_DMA2EN) != 0)
#endif
#elif defined(STM32H5)
#define DMA1_IS_CLK_ENABLED()   (__HAL_RCC_GPDMA1_IS_CLK_ENABLED())
#define DMA2_IS_CLK_ENABLED()   (__HAL_RCC_GPDMA2_IS_CLK_ENABLED())
#define __HAL_RCC_DMA1_CLK_ENABLE __HAL_RCC_GPDMA1_CLK_ENABLE
#define __HAL_RCC_DMA2_CLK_ENABLE __HAL_RCC_GPDMA2_CLK_ENABLE
#define __HAL_RCC_DMA1_CLK_DISABLE __HAL_RCC_GPDMA1_CLK_DISABLE
#define __HAL_RCC_DMA2_CLK_DISABLE __HAL_RCC_GPDMA2_CLK_DISABLE
#elif defined(STM32N6)
#define DMA1_IS_CLK_ENABLED()   (__HAL_RCC_GPDMA1_IS_CLK_ENABLED())
#define __HAL_RCC_DMA1_CLK_ENABLE __HAL_RCC_GPDMA1_CLK_ENABLE
#define __HAL_RCC_DMA1_CLK_DISABLE __HAL_RCC_GPDMA1_CLK_DISABLE
#else
#define DMA1_IS_CLK_ENABLED()   ((RCC->AHB1ENR & RCC_AHB1ENR_DMA1EN) != 0)
#define DMA2_IS_CLK_ENABLED()   ((RCC->AHB1ENR & RCC_AHB1ENR_DMA2EN) != 0)
#endif

#if defined(STM32F0)

void DMA1_Ch1_IRQHandler(void) {
    IRQ_ENTER(DMA1_Ch1_IRQn);
    if (dma_handle[dma_id_0] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
    }
}

void DMA1_Ch2_3_DMA2_Ch1_2_IRQHandler(void) {
    IRQ_ENTER(DMA1_Ch2_3_DMA2_Ch1_2_IRQn);
    if (dma_handle[dma_id_1] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
    }
    if (dma_handle[dma_id_2] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
    }
    if (dma_handle[dma_id_7] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
    }
    if (dma_handle[dma_id_8] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
    }
    IRQ_EXIT(DMA1_Ch2_3_DMA2_Ch1_2_IRQn);
}

void DMA1_Ch4_7_DMA2_Ch3_5_IRQHandler(void) {
    IRQ_ENTER(DMA1_Ch4_7_DMA2_Ch3_5_IRQn);
    for (unsigned int i = 0; i < 4; ++i) {
        if (dma_handle[dma_id_3 + i] != NULL) {
            HAL_DMA_IRQHandler(dma_handle[dma_id_3 + i]);
        }
        // When i==3 this will check an invalid handle, but it will always be NULL
        if (dma_handle[dma_id_9 + i] != NULL) {
            HAL_DMA_IRQHandler(dma_handle[dma_id_9 + i]);
        }
    }
    IRQ_EXIT(DMA1_Ch4_7_DMA2_Ch3_5_IRQn);
}

#elif defined(STM32F4) || defined(STM32F7) || defined(STM32H7)

void DMA1_Stream0_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream0_IRQn);
    if (dma_handle[dma_id_0] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
    }
    IRQ_EXIT(DMA1_Stream0_IRQn);
}
void DMA1_Stream1_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream1_IRQn);
    if (dma_handle[dma_id_1] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
    }
    IRQ_EXIT(DMA1_Stream1_IRQn);
}
void DMA1_Stream2_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream2_IRQn);
    if (dma_handle[dma_id_2] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
    }
    IRQ_EXIT(DMA1_Stream2_IRQn);
}
void DMA1_Stream3_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream3_IRQn);
    if (dma_handle[dma_id_3] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
    }
    IRQ_EXIT(DMA1_Stream3_IRQn);
}
void DMA1_Stream4_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream4_IRQn);
    if (dma_handle[dma_id_4] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
    }
    IRQ_EXIT(DMA1_Stream4_IRQn);
}
void DMA1_Stream5_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream5_IRQn);
    if (dma_handle[dma_id_5] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
    }
    IRQ_EXIT(DMA1_Stream5_IRQn);
}
void DMA1_Stream6_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream6_IRQn);
    if (dma_handle[dma_id_6] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
    }
    IRQ_EXIT(DMA1_Stream6_IRQn);
}
void DMA1_Stream7_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream7_IRQn);
    if (dma_handle[dma_id_7] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
    }
    IRQ_EXIT(DMA1_Stream7_IRQn);
}
void DMA2_Stream0_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream0_IRQn);
    if (dma_handle[dma_id_8] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
    }
    IRQ_EXIT(DMA2_Stream0_IRQn);
}
void DMA2_Stream1_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream1_IRQn);
    if (dma_handle[dma_id_9] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_9]);
    }
    IRQ_EXIT(DMA2_Stream1_IRQn);
}
void DMA2_Stream2_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream2_IRQn);
    if (dma_handle[dma_id_10] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_10]);
    }
    IRQ_EXIT(DMA2_Stream2_IRQn);
}
void DMA2_Stream3_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream3_IRQn);
    if (dma_handle[dma_id_11] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_11]);
    }
    IRQ_EXIT(DMA2_Stream3_IRQn);
}
void DMA2_Stream4_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream4_IRQn);
    if (dma_handle[dma_id_12] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_12]);
    }
    IRQ_EXIT(DMA2_Stream4_IRQn);
}
void DMA2_Stream5_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream5_IRQn);
    if (dma_handle[dma_id_13] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_13]);
    }
    IRQ_EXIT(DMA2_Stream5_IRQn);
}
void DMA2_Stream6_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream6_IRQn);
    if (dma_handle[dma_id_14] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_14]);
    }
    IRQ_EXIT(DMA2_Stream6_IRQn);
}
void DMA2_Stream7_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream7_IRQn);
    if (dma_handle[dma_id_15] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_15]);
    }
    IRQ_EXIT(DMA2_Stream7_IRQn);
}

#elif defined(STM32G0)

void DMA1_Channel1_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel1_IRQn);
    if (dma_handle[dma_id_0] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
    }
    IRQ_EXIT(DMA1_Channel1_IRQn);
}

void DMA1_Channel2_3_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel2_3_IRQn);
    if (dma_handle[dma_id_1] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
    }
    if (dma_handle[dma_id_2] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
    }
    IRQ_EXIT(DMA1_Channel2_3_IRQn);
}

void DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQHandler(void) {
    IRQ_ENTER(DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn);
    if (dma_handle[dma_id_3] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
    }
    if (dma_handle[dma_id_4] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
    }
    if (dma_handle[dma_id_5] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
    }
    if (dma_handle[dma_id_6] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
    }
    if (dma_handle[dma_id_7] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
    }
    if (dma_handle[dma_id_8] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
    }
    if (dma_handle[dma_id_9] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_9]);
    }
    if (dma_handle[dma_id_10] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_10]);
    }
    if (dma_handle[dma_id_11] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_11]);
    }
    IRQ_EXIT(DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn);
}

#elif defined(STM32G4)

void DMA1_Channel1_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel1_IRQn);
    if (dma_handle[dma_id_0] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
    }
    IRQ_EXIT(DMA1_Channel1_IRQn);
}
void DMA1_Channel2_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel2_IRQn);
    if (dma_handle[dma_id_1] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
    }
    IRQ_EXIT(DMA1_Channel2_IRQn);
}
void DMA1_Channel3_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel3_IRQn);
    if (dma_handle[dma_id_2] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
    }
    IRQ_EXIT(DMA1_Channel3_IRQn);
}
void DMA1_Channel4_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel4_IRQn);
    if (dma_handle[dma_id_3] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
    }
    IRQ_EXIT(DMA1_Channel4_IRQn);
}
void DMA1_Channel5_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel5_IRQn);
    if (dma_handle[dma_id_4] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
    }
    IRQ_EXIT(DMA1_Channel5_IRQn);
}
void DMA1_Channel6_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel6_IRQn);
    if (dma_handle[dma_id_5] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
    }
    IRQ_EXIT(DMA1_Channel6_IRQn);
}
#if !(defined(STM32G431xx) || defined(STM32G441xx))
void DMA1_Channel7_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel7_IRQn);
    if (dma_handle[dma_id_12] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_12]);
    }
    IRQ_EXIT(DMA1_Channel7_IRQn);
}
void DMA1_Channel8_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel8_IRQn);
    if (dma_handle[dma_id_13] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_13]);
    }
    IRQ_EXIT(DMA1_Channel8_IRQn);
}
#endif
void DMA2_Channel1_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel1_IRQn);
    if (dma_handle[dma_id_6] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
    }
    IRQ_EXIT(DMA2_Channel1_IRQn);
}
void DMA2_Channel2_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel2_IRQn);
    if (dma_handle[dma_id_7] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
    }
    IRQ_EXIT(DMA2_Channel2_IRQn);
}
void DMA2_Channel3_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel3_IRQn);
    if (dma_handle[dma_id_8] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
    }
    IRQ_EXIT(DMA2_Channel3_IRQn);
}
void DMA2_Channel4_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel4_IRQn);
    if (dma_handle[dma_id_9] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_9]);
    }
    IRQ_EXIT(DMA2_Channel4_IRQn);
}
void DMA2_Channel5_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel5_IRQn);
    if (dma_handle[dma_id_10] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_10]);
    }
    IRQ_EXIT(DMA2_Channel5_IRQn);
}
void DMA2_Channel6_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel6_IRQn);
    if (dma_handle[dma_id_11] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_11]);
    }
    IRQ_EXIT(DMA2_Channel6_IRQn);
}
#if !(defined(STM32G431xx) || defined(STM32G441xx))
void DMA2_Channel7_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel7_IRQn);
    if (dma_handle[dma_id_14] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_14]);
    }
    IRQ_EXIT(DMA2_Channel7_IRQn);
}
void DMA2_Channel8_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel8_IRQn);
    if (dma_handle[dma_id_15] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_15]);
    }
    IRQ_EXIT(DMA2_Channel8_IRQn);
}
#endif

#elif defined(STM32H5) || defined(STM32N6)

#define DEFINE_IRQ_HANDLER(periph, channel, id) \
    void GPDMA##periph##_Channel##channel##_IRQHandler(void) { \
        MP_STATIC_ASSERT(GPDMA##periph##_Channel##channel##_IRQn > 0); \
        IRQ_ENTER(GPDMA##periph##_Channel##channel##_IRQn); \
        if (dma_handle[id] != NULL) { \
            HAL_DMA_IRQHandler(dma_handle[id]); \
        } \
        IRQ_EXIT(GPDMA##periph##_Channel##channel##_IRQn); \
    }

DEFINE_IRQ_HANDLER(1, 0, dma_id_0)
DEFINE_IRQ_HANDLER(1, 1, dma_id_1)
DEFINE_IRQ_HANDLER(1, 2, dma_id_2)
DEFINE_IRQ_HANDLER(1, 3, dma_id_3)
DEFINE_IRQ_HANDLER(1, 4, dma_id_4)
DEFINE_IRQ_HANDLER(1, 5, dma_id_5)
DEFINE_IRQ_HANDLER(1, 6, dma_id_6)
DEFINE_IRQ_HANDLER(1, 7, dma_id_7)
#if defined(STM32H5)
DEFINE_IRQ_HANDLER(2, 0, dma_id_8)
DEFINE_IRQ_HANDLER(2, 1, dma_id_9)
DEFINE_IRQ_HANDLER(2, 2, dma_id_10)
DEFINE_IRQ_HANDLER(2, 3, dma_id_11)
DEFINE_IRQ_HANDLER(2, 4, dma_id_12)
DEFINE_IRQ_HANDLER(2, 5, dma_id_13)
DEFINE_IRQ_HANDLER(2, 6, dma_id_14)
DEFINE_IRQ_HANDLER(2, 7, dma_id_15)
#else
DEFINE_IRQ_HANDLER(1, 8, dma_id_8)
DEFINE_IRQ_HANDLER(1, 9, dma_id_9)
DEFINE_IRQ_HANDLER(1, 10, dma_id_10)
DEFINE_IRQ_HANDLER(1, 11, dma_id_11)
DEFINE_IRQ_HANDLER(1, 12, dma_id_12)
DEFINE_IRQ_HANDLER(1, 13, dma_id_13)
DEFINE_IRQ_HANDLER(1, 14, dma_id_14)
DEFINE_IRQ_HANDLER(1, 15, dma_id_15)
#endif

#elif defined(STM32L0)

void DMA1_Channel1_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel1_IRQn);
    if (dma_handle[dma_id_0] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
    }
    IRQ_EXIT(DMA1_Channel1_IRQn);
}

void DMA1_Channel2_3_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel2_3_IRQn);
    if (dma_handle[dma_id_1] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
    }
    if (dma_handle[dma_id_2] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
    }
    IRQ_EXIT(DMA1_Channel2_3_IRQn);
}

void DMA1_Channel4_5_6_7_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel4_5_6_7_IRQn);
    if (dma_handle[dma_id_3] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
    }
    if (dma_handle[dma_id_4] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
    }
    if (dma_handle[dma_id_5] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
    }
    if (dma_handle[dma_id_6] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
    }
    IRQ_EXIT(DMA1_Channel4_5_6_7_IRQn);
}

#elif defined(STM32L1) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)

void DMA1_Channel1_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel1_IRQn);
    if (dma_handle[dma_id_0] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
    }
    IRQ_EXIT(DMA1_Channel1_IRQn);
}
void DMA1_Channel2_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel2_IRQn);
    if (dma_handle[dma_id_1] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
    }
    IRQ_EXIT(DMA1_Channel2_IRQn);
}
void DMA1_Channel3_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel3_IRQn);
    if (dma_handle[dma_id_2] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
    }
    IRQ_EXIT(DMA1_Channel3_IRQn);
}
void DMA1_Channel4_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel4_IRQn);
    if (dma_handle[dma_id_3] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
    }
    IRQ_EXIT(DMA1_Channel4_IRQn);
}
void DMA1_Channel5_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel5_IRQn);
    if (dma_handle[dma_id_4] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
    }
    IRQ_EXIT(DMA1_Channel5_IRQn);
}
void DMA1_Channel6_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel6_IRQn);
    if (dma_handle[dma_id_5] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
    }
    IRQ_EXIT(DMA1_Channel6_IRQn);
}
void DMA1_Channel7_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel7_IRQn);
    if (dma_handle[dma_id_6] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
    }
    IRQ_EXIT(DMA1_Channel7_IRQn);
}
void DMA2_Channel1_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel1_IRQn);
    if (dma_handle[dma_id_7] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
    }
    IRQ_EXIT(DMA2_Channel1_IRQn);
}
void DMA2_Channel2_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel2_IRQn);
    if (dma_handle[dma_id_8] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
    }
    IRQ_EXIT(DMA2_Channel2_IRQn);
}
void DMA2_Channel3_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel3_IRQn);
    if (dma_handle[dma_id_9] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_9]);
    }
    IRQ_EXIT(DMA2_Channel3_IRQn);
}
void DMA2_Channel4_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel4_IRQn);
    if (dma_handle[dma_id_10] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_10]);
    }
    IRQ_EXIT(DMA2_Channel4_IRQn);
}
void DMA2_Channel5_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel5_IRQn);
    if (dma_handle[dma_id_11] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_11]);
    }
    IRQ_EXIT(DMA2_Channel5_IRQn);
}
#if !defined(STM32L1)
void DMA2_Channel6_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel6_IRQn);
    if (dma_handle[dma_id_12] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_12]);
    }
    IRQ_EXIT(DMA2_Channel6_IRQn);
}
void DMA2_Channel7_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel7_IRQn);
    if (dma_handle[dma_id_13] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_13]);
    }
    IRQ_EXIT(DMA2_Channel7_IRQn);
}
#endif

#endif

#if MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF
static void dma_idle_handler(uint32_t tick);

// Resets the idle counter for the DMA controller associated with dma_id.
static void dma_tickle(dma_id_t dma_id) {
    dma_idle.counter[(dma_id < NSTREAMS_PER_CONTROLLER) ? 0 : 1] = 1;
    systick_enable_dispatch(SYSTICK_DISPATCH_DMA, dma_idle_handler);
}
#endif

static void dma_enable_clock(dma_id_t dma_id) {
    // We don't want dma_tick_handler() to turn off the clock right after we
    // enable it, so we need to mark the channel in use in an atomic fashion.
    mp_uint_t irq_state = MICROPY_BEGIN_ATOMIC_SECTION();
    uint32_t old_enable_mask = dma_enable_mask;
    dma_enable_mask |= (1 << dma_id);
    MICROPY_END_ATOMIC_SECTION(irq_state);

    #if defined(STM32G4) || defined(STM32WB) || defined(STM32WL)
    if (!__HAL_RCC_DMAMUX1_IS_CLK_ENABLED()) {
        // MCU has a DMAMUX peripheral which needs to be enabled to multiplex the channels.
        __HAL_RCC_DMAMUX1_CLK_ENABLE();
    }
    #endif

    if (dma_id < NSTREAMS_PER_CONTROLLER) {
        if (((old_enable_mask & DMA1_ENABLE_MASK) == 0) && !DMA1_IS_CLK_ENABLED()) {
            __HAL_RCC_DMA1_CLK_ENABLE();

            // We just turned on the clock. This means that anything stored
            // in dma_last_channel (for DMA1) needs to be invalidated.

            for (int channel = 0; channel < NSTREAMS_PER_CONTROLLER; channel++) {
                dma_last_sub_instance[channel] = DMA_INVALID_CHANNEL;
            }
        }
    }
    #if defined(DMA2) || defined(GPDMA2)
    else {
        if (((old_enable_mask & DMA2_ENABLE_MASK) == 0) && !DMA2_IS_CLK_ENABLED()) {
            __HAL_RCC_DMA2_CLK_ENABLE();

            // We just turned on the clock. This means that anything stored
            // in dma_last_channel (for DMA2) needs to be invalidated.

            for (int channel = NSTREAMS_PER_CONTROLLER; channel < NSTREAM; channel++) {
                dma_last_sub_instance[channel] = DMA_INVALID_CHANNEL;
            }
        }
    }
    #endif
}

static void dma_disable_clock(dma_id_t dma_id) {
    // We just mark the clock as disabled here, but we don't actually disable it.
    // We wait for the timer to expire first, which means that back-to-back
    // transfers don't have to initialize as much.
    #if MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF
    dma_tickle(dma_id);
    #endif
    dma_enable_mask &= ~(1 << dma_id);
}

void dma_init_handle(DMA_HandleTypeDef *dma, const dma_descr_t *dma_descr, uint32_t dir, void *data) {
    // initialise parameters
    dma->Instance = dma_descr->instance;
    dma->Init = *dma_descr->init;
    dma->Init.Direction = dir;
    #if defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4) || defined(STM32N6) || defined(STM32WB) || defined(STM32WL)
    dma->Init.Request = dma_descr->sub_instance;
    #else
    #if !defined(STM32F0) && !defined(STM32L1)
    dma->Init.Channel = dma_descr->sub_instance;
    #endif
    #endif

    #if defined(STM32H5) || defined(STM32N6)
    // Configure src/dest settings based on the DMA direction.
    if (dir == DMA_MEMORY_TO_PERIPH) {
        dma->Init.SrcInc = DMA_SINC_INCREMENTED;
        dma->Init.DestInc = DMA_DINC_FIXED;
    } else if (dir == DMA_PERIPH_TO_MEMORY) {
        dma->Init.SrcInc = DMA_SINC_FIXED;
        dma->Init.DestInc = DMA_DINC_INCREMENTED;
    }
    #endif

    // half of __HAL_LINKDMA(data, xxx, *dma)
    // caller must implement other half by doing: data->xxx = dma
    dma->Parent = data;
}

void dma_init(DMA_HandleTypeDef *dma, const dma_descr_t *dma_descr, uint32_t dir, void *data) {
    // Some drivers allocate the DMA_HandleTypeDef from the stack
    // (i.e. dac, i2c, spi) and for those cases we need to clear the
    // structure so we don't get random values from the stack)
    memset(dma, 0, sizeof(*dma));

    if (dma_descr != NULL) {
        dma_id_t dma_id = dma_descr->id;

        dma_init_handle(dma, dma_descr, dir, data);
        // set global pointer for IRQ handler
        dma_handle[dma_id] = dma;

        dma_enable_clock(dma_id);

        #if defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L0) || defined(STM32L1) || defined(STM32L4) || defined(STM32N6) || defined(STM32WB) || defined(STM32WL)
        // Always reset and configure the H7 and G0/G4/H7/L0/L4/WB/WL DMA peripheral
        // (dma->State is set to HAL_DMA_STATE_RESET by memset above)
        // TODO: understand how L0/L4 DMA works so this is not needed
        HAL_DMA_DeInit(dma);
        dma->Parent = data; // HAL_DMA_DeInit may clear Parent, so set it again
        HAL_DMA_Init(dma);

        #if defined(STM32N6)
        // Configure security attributes.
        HAL_DMA_ConfigChannelAttributes(dma, DMA_CHANNEL_PRIV | DMA_CHANNEL_SEC | DMA_CHANNEL_SRC_SEC | DMA_CHANNEL_DEST_SEC);
        // Configure data handling.
        DMA_DataHandlingConfTypeDef config;
        config.DataExchange = DMA_EXCHANGE_NONE;
        config.DataAlignment = DMA_DATA_RIGHTALIGN_ZEROPADDED;
        HAL_DMAEx_ConfigDataHandling(dma, &config);
        #endif

        NVIC_SetPriority(IRQn_NONNEG(dma_irqn[dma_id]), IRQ_PRI_DMA);
        #else
        // if this stream was previously configured for this channel/request and direction then we
        // can skip most of the initialisation
        uint8_t sub_inst = DMA_SUB_INSTANCE_AS_UINT8(dma_descr->sub_instance) | (dir == DMA_PERIPH_TO_MEMORY) << 7;
        if (dma_last_sub_instance[dma_id] != sub_inst) {
            dma_last_sub_instance[dma_id] = sub_inst;

            // reset and configure DMA peripheral
            // (dma->State is set to HAL_DMA_STATE_RESET by memset above)
            HAL_DMA_DeInit(dma);
            HAL_DMA_Init(dma);
            NVIC_SetPriority(IRQn_NONNEG(dma_irqn[dma_id]), IRQ_PRI_DMA);
            #if defined(STM32F0)
            if (dma->Instance < DMA2_Channel1) {
                __HAL_DMA1_REMAP(dma_descr->sub_instance);
            } else {
                __HAL_DMA2_REMAP(dma_descr->sub_instance);
            }
            #endif
        } else {
            // only necessary initialization
            dma->State = HAL_DMA_STATE_READY;
            #if defined(STM32F0)
            // These variables are used to access the relevant 4 bits in ISR and IFCR
            if (dma_id < NSTREAMS_PER_CONTROLLER) {
                dma->DmaBaseAddress = DMA1;
                dma->ChannelIndex = dma_id * 4;
            } else {
                dma->DmaBaseAddress = DMA2;
                dma->ChannelIndex = (dma_id - NSTREAMS_PER_CONTROLLER) * 4;
            }
            #elif defined(STM32F4) || defined(STM32F7)
            // calculate DMA base address and bitshift to be used in IRQ handler
            extern uint32_t DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma);
            DMA_CalcBaseAndBitshift(dma);
            #endif
        }
        #endif

        HAL_NVIC_EnableIRQ(dma_irqn[dma_id]);
    }
}

void dma_deinit(const dma_descr_t *dma_descr) {
    if (dma_descr != NULL) {
        #if !defined(STM32F0)
        HAL_NVIC_DisableIRQ(dma_irqn[dma_descr->id]);
        #endif
        dma_handle[dma_descr->id] = NULL;

        dma_disable_clock(dma_descr->id);
    }
}

void dma_invalidate_channel(const dma_descr_t *dma_descr) {
    if (dma_descr != NULL) {
        dma_id_t dma_id = dma_descr->id;
        // Only compare the sub-instance, not the direction bit (MSB)
        if ((dma_last_sub_instance[dma_id] & 0x7f) == DMA_SUB_INSTANCE_AS_UINT8(dma_descr->sub_instance)) {
            dma_last_sub_instance[dma_id] = DMA_INVALID_CHANNEL;
        }
    }
}

#if MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF
// Called from the SysTick handler
// We use LSB of tick to select which controller to process
static void dma_idle_handler(uint32_t tick) {
    if (!DMA_IDLE_ENABLED() || !DMA_IDLE_TICK(tick)) {
        return;
    }

    static const uint32_t controller_mask[] = {
        DMA1_ENABLE_MASK,
        #if defined(DMA2) || defined(GPDMA2)
        DMA2_ENABLE_MASK,
        #endif
    };
    {
        int controller = (tick >> DMA_SYSTICK_LOG2) & 1;
        if (dma_idle.counter[controller] == 0) {
            return;
        }
        if (++dma_idle.counter[controller] > DMA_IDLE_TICK_MAX) {
            if ((dma_enable_mask & controller_mask[controller]) == 0) {
                // Nothing is active and we've reached our idle timeout,
                // Now we'll really disable the clock.
                dma_idle.counter[controller] = 0;
                if (controller == 0) {
                    __HAL_RCC_DMA1_CLK_DISABLE();
                    #if defined(STM32G4)
                    #if defined(DMA2) || defined(GPDMA2)
                    if (__HAL_RCC_DMA2_IS_CLK_DISABLED())
                    #endif
                    {
                        __HAL_RCC_DMAMUX1_CLK_DISABLE();
                    }
                    #endif
                }
                #if defined(DMA2) || defined(GPDMA2)
                else {
                    __HAL_RCC_DMA2_CLK_DISABLE();
                    #if defined(STM32G4)
                    if (__HAL_RCC_DMA1_IS_CLK_DISABLED()) {
                        __HAL_RCC_DMAMUX1_CLK_DISABLE();
                    }
                    #endif
                }
                #endif
            } else {
                // Something is still active, but the counter never got
                // reset, so we'll reset the counter here.
                dma_idle.counter[controller] = 1;
            }
        }
    }
}
#endif

#if defined(STM32F0) || defined(STM32G4) || defined(STM32L0) || defined(STM32L1) || defined(STM32L4)

void dma_nohal_init(const dma_descr_t *descr, uint32_t config) {
    DMA_Channel_TypeDef *dma = descr->instance;

    // Enable the DMA peripheral
    dma_enable_clock(descr->id);

    // Set main configuration register
    dma->CCR =
        descr->init->Priority       // PL
        | descr->init->MemInc       // MINC
        | descr->init->PeriphInc    // PINC
        | config                    // MSIZE | PSIZE | CIRC | DIR
    ;

    // Select channel that the DMA stream uses
    #if defined(STM32F0)
    if (dma < DMA2_Channel1) {
        __HAL_DMA1_REMAP(descr->sub_instance);
    } else {
        __HAL_DMA2_REMAP(descr->sub_instance);
    }
    #elif defined(STM32G4)
    uint32_t *dmamux_ctrl = (void *)(DMAMUX1_Channel0_BASE + 0x04 * descr->id);
    *dmamux_ctrl = (*dmamux_ctrl & ~(0x7f)) | descr->sub_instance;
    #elif defined(STM32L1)
    #else
    DMA_Request_TypeDef *dma_ctrl = (void *)(((uint32_t)dma & ~0xff) + (DMA1_CSELR_BASE - DMA1_BASE)); // DMA1_CSELR or DMA2_CSELR
    uint32_t channel_number = (((uint32_t)dma & 0xff) - 0x08) / 20; // 0 through 6
    uint32_t channel_pos = channel_number * 4;
    dma_ctrl->CSELR = (dma_ctrl->CSELR & ~(0xf << channel_pos)) | (descr->sub_instance << channel_pos);
    #endif
}

void dma_nohal_deinit(const dma_descr_t *descr) {
    DMA_Channel_TypeDef *dma = descr->instance;
    dma->CCR &= ~DMA_CCR_EN;
    dma->CCR = 0;
    dma->CNDTR = 0;
    dma_deinit(descr);
}

void dma_nohal_start(const dma_descr_t *descr, uint32_t src_addr, uint32_t dst_addr, uint16_t len) {
    DMA_Channel_TypeDef *dma = descr->instance;
    dma->CNDTR = len;
    dma->CPAR = dst_addr;
    dma->CMAR = src_addr;
    dma->CCR |= DMA_CCR_EN;
}

#elif defined(STM32H5)

// Fully setup GPDMA linked list entry
typedef struct _dma_ll_full_t {
    __IO uint32_t CTR1;
    __IO uint32_t CTR2;
    __IO uint32_t CBR1;
    __IO uint32_t CSAR;
    __IO uint32_t CDAR;
    __IO uint32_t CLLR;
} dma_ll_full_t;

// Align LL entry to 32 bytes to ensure it never crosses a 64 kB boundary
__ALIGNED(32) static __IO dma_ll_full_t lli1;

void dma_nohal_init(const dma_descr_t *descr, uint32_t config) {
    DMA_Channel_TypeDef *dma = descr->instance;
    const DMA_InitTypeDef *init = descr->init;

    // Enable the DMA peripheral
    dma_enable_clock(descr->id);

    // - LSM = 0, normal linked list mode
    // - No interrupts
    // - Not suspended, out of reset, disabled
    // - Priority as defined by user
    dma->CCR = init->Priority;

    uint32_t ctr1reg = 0;
    ctr1reg |= init->SrcDataWidth;
    ctr1reg |= init->SrcInc;
    ctr1reg |= (((init->SrcBurstLength - 1) << DMA_CTR1_SBL_1_Pos)) & DMA_CTR1_SBL_1_Msk;
    ctr1reg |= init->DestDataWidth;
    ctr1reg |= init->DestInc;
    ctr1reg |= (((init->DestBurstLength - 1) << DMA_CTR1_DBL_1_Pos)) & DMA_CTR1_DBL_1_Msk;

    uint32_t ctr2reg = 0;
    ctr2reg |= init->BlkHWRequest;
    ctr2reg |= init->Direction;
    ctr2reg |= init->Mode;
    ctr2reg |= init->TransferEventMode;
    ctr2reg |= init->TransferAllocatedPort;
    uint32_t reqsel = descr->sub_instance;
    ctr2reg |= (reqsel << DMA_CTR2_REQSEL_Pos) & DMA_CTR2_REQSEL_Msk;

    dma->CBR1 = 0;  // set length to zero, so that GPDMA engine fetches first LL entry immediately
    dma->CSAR = 0;
    dma->CDAR = 0;

    // Attach linked list entry
    dma->CLBAR = (uint32_t)(&lli1) & 0xffff0000UL;  // upper 16 bits of linked list addresses

    uint32_t cllrreg = 0;
    cllrreg |= (DMA_CLLR_UT1 | DMA_CLLR_UT2 | DMA_CLLR_UB1 | DMA_CLLR_USA | DMA_CLLR_UDA | DMA_CLLR_ULL);
    cllrreg |= (uint32_t)(&lli1) & 0x0000fffcUL;    // lower 16 bits of linked list entry address
    dma->CLLR = cllrreg;

    // Setup linked list control registers. Length and addresses are set in dma_nohal_start()
    lli1.CTR1 = ctr1reg;
    lli1.CTR2 = ctr2reg;

    if ((config & DMA_CIRCULAR) == DMA_CIRCULAR) {
        lli1.CLLR = cllrreg;    // pointer to itself for circular operation
    } else {
        lli1.CLLR = 0;  // No next node, this is end of linked list chain
    }
}

void dma_nohal_deinit(const dma_descr_t *descr) {
    DMA_Channel_TypeDef *dma = descr->instance;

    if ((dma->CCR & DMA_CCR_EN) == DMA_CCR_EN) {
        // Suspend currently running channel. Wait until done, then reset to clear FIFOs.
        dma->CCR |= DMA_CCR_SUSP;

        uint32_t t0 = mp_hal_ticks_ms();
        while ((dma->CSR & DMA_CSR_SUSPF) != DMA_CSR_SUSPF) {
            if (mp_hal_ticks_ms() - t0 >= 100) {
                // Timeout.. Abort to avoid blocking system forever
                break;
            }
        }

        dma->CCR |= DMA_CCR_RESET;
    }
    dma->CCR &= ~DMA_CCR_EN;
    dma->CCR = 0;
    dma_deinit(descr);
}

void dma_nohal_start(const dma_descr_t *descr, uint32_t src_addr, uint32_t dst_addr, uint16_t len) {
    DMA_Channel_TypeDef *dma = descr->instance;
    lli1.CBR1 = (len << DMA_CBR1_BNDT_Pos) & DMA_CBR1_BNDT_Msk;
    lli1.CSAR = src_addr;
    lli1.CDAR = dst_addr;

    dma->CCR |= DMA_CCR_EN;
}

#elif defined(STM32G0) || defined(STM32N6) || defined(STM32WB) || defined(STM32WL)

// These functions are currently not implemented or needed for this MCU.

#else

void dma_nohal_init(const dma_descr_t *descr, uint32_t config) {
    DMA_Stream_TypeDef *dma = descr->instance;

    // Enable the DMA peripheral
    dma_enable_clock(descr->id);

    // Set main configuration register
    const DMA_InitTypeDef *init = descr->init;
    dma->CR =
        descr->sub_instance         // CHSEL
        | init->MemBurst            // MBURST
        | init->PeriphBurst         // PBURST
        | init->Priority            // PL
        | init->MemInc              // MINC
        | init->PeriphInc           // PINC
        | config                    // MSIZE | PSIZE | CIRC | DIR
    ;

    // Set FIFO control register
    dma->FCR =
        init->FIFOMode              // DMDIS
        | init->FIFOThreshold       // FTH
    ;

    #if defined(STM32H7)
    // Configure DMAMUX
    uint32_t request = descr->sub_instance & DMAMUX_CxCR_DMAREQ_ID;
    if ((dma >= DMA1_Stream0 && dma <= DMA1_Stream7) || (dma >= DMA2_Stream0 && dma <= DMA2_Stream7)) {
        // DMA1/2 channels 0 to 7 are hardwired to DMAMUX1 channels 0-15.
        uint32_t stream = (((uint32_t)dma & 0xff) - 16) / 24 + ((dma >= DMA2_Stream0) ? 8 : 0);
        // Set DMAMUX channel peripheral request.
        ((DMAMUX_Channel_TypeDef *)(((uint32_t)DMAMUX1_Channel0) + (stream * 4)))->CCR = request;
        DMAMUX1_ChannelStatus->CFR = 1 << (stream & 0x1F);
        // Configure DMAMUX request generator if needed.
        if (request >= DMA_REQUEST_GENERATOR0 && request <= DMA_REQUEST_GENERATOR7) {
            ((DMAMUX_RequestGen_TypeDef *)(((uint32_t)DMAMUX1_RequestGenerator0) + ((request - 1) * 4)))->RGCR = 0;
            DMAMUX1_RequestGenStatus->RGCFR = 1 << (request - 1);
        }
    #if ENABLE_BDMA // TODO: BDMA is Not currently supported by this driver.
    } else if (dma >= BDMA_Channel0 && dma <= BDMA_Channel7) {
        // BDMA channels 0 to 7 are hardwired to DMAMUX2 channels 0-7.
        uint32_t stream = (((uint32_t)dma & 0xff) - 8) / 20;
        // Set DMAMUX channel peripheral request.
        ((DMAMUX_Channel_TypeDef *)(((uint32_t)DMAMUX2_Channel0) + (stream * 4)))->CCR = request;
        DMAMUX2_ChannelStatus->CFR = 1 << (stream & 0x1F);
        // Configure DMAMUX request generator if needed.
        if (request >= DMA_REQUEST_GENERATOR0 && request <= DMA_REQUEST_GENERATOR7) {
            ((DMAMUX_RequestGen_TypeDef *)(((uint32_t)DMAMUX2_RequestGenerator0) + ((request - 1) * 4)))->RGCR = 0;
            DMAMUX2_RequestGenStatus->RGCFR = 1 << (request - 1);
        }
    #endif // ENABLE_BDMA
    }
    #endif // STM32H7
}

void dma_nohal_deinit(const dma_descr_t *descr) {
    DMA_Stream_TypeDef *dma = descr->instance;
    dma->CR &= ~DMA_SxCR_EN;
    uint32_t t0 = mp_hal_ticks_ms();
    while ((dma->CR & DMA_SxCR_EN) && mp_hal_ticks_ms() - t0 < 100) {
    }
    dma->CR = 0;
    dma->NDTR = 0;
    dma->FCR = 0x21;
    dma_deinit(descr);
}

void dma_nohal_start(const dma_descr_t *descr, uint32_t src_addr, uint32_t dst_addr, uint16_t len) {
    // Must clear all event flags for this stream before enabling it
    DMA_TypeDef *dma_ctrl;
    uint32_t ch = descr->id;
    if (ch < NSTREAMS_PER_CONTROLLER) {
        dma_ctrl = DMA1;
    } else {
        dma_ctrl = DMA2;
        ch -= NSTREAMS_PER_CONTROLLER;
    }
    __IO uint32_t *ifcr;
    if (ch <= 3) {
        ifcr = &dma_ctrl->LIFCR;
    } else {
        ifcr = &dma_ctrl->HIFCR;
        ch -= 4;
    }
    if (ch <= 1) {
        ch = ch * 6;
    } else {
        ch = 4 + ch * 6;
    }
    *ifcr = 0x3d << ch;

    // Configure and enable stream
    DMA_Stream_TypeDef *dma = descr->instance;
    dma->CR &= ~DMA_SxCR_DBM;
    dma->NDTR = len;
    dma->PAR = dst_addr;
    dma->M0AR = src_addr;
    dma->CR |= DMA_SxCR_EN;
}

#endif

#define DMA_ID_FROM_CONTROLLER_STREAM(c, s) ((s) + (c) * NSTREAMS_PER_CONTROLLER)

void dma_external_acquire(uint32_t controller, uint32_t stream) {
    dma_enable_clock(DMA_ID_FROM_CONTROLLER_STREAM(controller, stream));
}

void dma_external_release(uint32_t controller, uint32_t stream) {
    dma_disable_clock(DMA_ID_FROM_CONTROLLER_STREAM(controller, stream));
}

#if __DCACHE_PRESENT

void dma_protect_rx_region(void *dest, size_t len) {
    #if __DCACHE_PRESENT
    uint32_t start_addr = (uint32_t)dest;
    uint32_t start_aligned = start_addr & ~(__SCB_DCACHE_LINE_SIZE - 1U);
    uint32_t end_addr = start_addr + len - 1; // Address of last byte in the buffer
    uint32_t end_aligned = end_addr & ~(__SCB_DCACHE_LINE_SIZE - 1U);

    uint32_t irq_state = mpu_config_start();

    // Clean (write back) any cached memory in this region, so there's no dirty
    // cache entries that might be written back later after DMA RX is done.
    MP_HAL_CLEAN_DCACHE(dest, len);

    // The way we protect the whole region is to mark the first and last cache
    // line as UNCACHED using the MPU. This means any unrelated reads/writes in
    // these cache lines will bypass the cache, and can coexist with DMA also
    // writing to parts of these cache lines.
    //
    // This is redundant sometimes (because the DMA region fills the entire cache line, or because
    // the region fits in a single cache line.) However, the implementation is only 3 register writes so
    // it's more efficient to call it every time.
    mpu_config_region(MPU_REGION_DMA_UNCACHED_1, start_aligned, MPU_CONFIG_UNCACHED(MPU_REGION_SIZE_32B));
    mpu_config_region(MPU_REGION_DMA_UNCACHED_2, end_aligned, MPU_CONFIG_UNCACHED(MPU_REGION_SIZE_32B));

    mpu_config_end(irq_state);
    #endif
}

void dma_unprotect_rx_region(void *dest, size_t len) {
    #if __DCACHE_PRESENT
    uint32_t irq_state = mpu_config_start();

    // Disabling these regions removes them from the MPU
    mpu_config_region(MPU_REGION_DMA_UNCACHED_1, 0, MPU_CONFIG_DISABLE);
    mpu_config_region(MPU_REGION_DMA_UNCACHED_2, 0, MPU_CONFIG_DISABLE);

    // Invalidate the whole region in the cache. This may seem redundant, but it
    // is possible that during the DMA operation the CPU read inside this region
    // (excluding the first & last cache lines), and cache lines were filled.
    //
    // (This can happen in SPI if src==dest, for example, possibly due to speculative
    // cache line fills.)
    MP_HAL_CLEANINVALIDATE_DCACHE(dest, len);

    mpu_config_end(irq_state);
    #endif
}

#endif