1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
# Update Mboot or MicroPython from a .dfu.gz file on the board's filesystem
# MIT license; Copyright (c) 2019-2022 Damien P. George
from micropython import const
import struct, time
import deflate, machine, stm
# Constants to be used with update_mpy
VFS_FAT = 1
VFS_LFS1 = 2
VFS_LFS2 = 3
VFS_RAW = 4
# Constants for creating mboot elements.
_ELEM_TYPE_END = const(1)
_ELEM_TYPE_MOUNT = const(2)
_ELEM_TYPE_FSLOAD = const(3)
_ELEM_TYPE_STATUS = const(4)
def check_mem_contains(addr, buf):
mem8 = stm.mem8
r = range(len(buf))
for off in r:
if mem8[addr + off] != buf[off]:
return False
return True
def dfu_read(filename):
from binascii import crc32
f = open(filename, "rb")
hdr = f.read(3)
f.seek(0)
if hdr == b"Dfu":
pass
elif hdr == b"\x1f\x8b\x08":
f = deflate.DeflateIO(f, deflate.GZIP)
else:
print("Invalid firmware", filename)
return None
crc = 0
elems = []
hdr = f.read(11)
crc = crc32(hdr, crc)
sig, ver, size, num_targ = struct.unpack("<5sBIB", hdr)
file_offset = 11
for i in range(num_targ):
hdr = f.read(274)
crc = crc32(hdr, crc)
sig, alt, has_name, name, t_size, num_elem = struct.unpack("<6sBi255sII", hdr)
file_offset += 274
file_offset_t = file_offset
for j in range(num_elem):
hdr = f.read(8)
crc = crc32(hdr, crc)
addr, e_size = struct.unpack("<II", hdr)
data = f.read(e_size)
crc = crc32(data, crc)
elems.append((addr, data))
file_offset += 8 + e_size
if t_size != file_offset - file_offset_t:
print("corrupt DFU", t_size, file_offset - file_offset_t)
return None
if size != file_offset:
print("corrupt DFU", size, file_offset)
return None
hdr = f.read(16)
crc = crc32(hdr, crc)
crc = ~crc & 0xFFFFFFFF
if crc != 0:
print("CRC failed", crc)
return None
return elems
class Flash:
_FLASH_KEY1 = 0x45670123
_FLASH_KEY2 = 0xCDEF89AB
def __init__(self):
import os, uctypes
self.addressof = uctypes.addressof
# Detect MCU.
machine = os.uname().machine
if "STM32F4" in machine or "STM32F7" in machine:
dev_id = stm.mem32[0xE004_2000] & 0xFFF
elif "STM32H7" in machine:
dev_id = stm.mem32[0x5C00_1000] & 0xFFF
else:
dev_id = 0
# Configure flash parameters based on MCU.
if dev_id in (0x413, 0x419, 0x431, 0x434, 0x451, 0x452):
# 0x413: STM32F405/407, STM32F415/417
# 0x419: STM32F42x/43x
# 0x431: STM32F411
# 0x434: STM32F469/479
# 0x451: STM32F76x/77x
# 0x452: STM32F72x/73x
self._keyr = stm.FLASH + stm.FLASH_KEYR
self._sr = stm.FLASH + stm.FLASH_SR
self._sr_busy = 1 << 16
self._cr = stm.FLASH + stm.FLASH_CR
self._cr_lock = 1 << 31
self._cr_init_erase = lambda s: 2 << 8 | s << 3 | 1 << 1 # PSIZE=32-bits, SNB, SER
self._cr_start_erase = 1 << 16 # STRT
self._cr_init_write = 2 << 8 | 1 << 0 # PSIZE=32-bits, PG
self._cr_flush = None
self._write_multiple = 4
if dev_id == 0x451 and stm.mem32[0x1FFF_0008] & 1 << 13: # check nDBANK
# STM32F76x/77x in single-bank mode
self.sector0_size = 32 * 1024
else:
self.sector0_size = 16 * 1024
elif dev_id == 0x450:
# 0x450: STM32H742, STM32H743/753, STM32H750
self._keyr = stm.FLASH + stm.FLASH_KEYR1
self._sr = stm.FLASH + stm.FLASH_SR1
self._sr_busy = 1 << 2 # QW1
self._cr = stm.FLASH + stm.FLASH_CR1
self._cr_lock = 1 << 0 # LOCK1
self._cr_init_erase = lambda s: s << 8 | 3 << 4 | 1 << 2 # SNB1, PSIZE1=64-bits, SER1
self._cr_start_erase = 1 << 7 # START1
self._cr_init_write = 3 << 4 | 1 << 1 # PSIZE1=64-bits, PG1=1
self._cr_flush = 1 << 6 # FW1=1
self._write_multiple = 16
self.sector0_size = 128 * 1024
else:
raise Exception(f"unknown MCU {machine} DEV_ID=0x{dev_id:x}")
def wait_not_busy(self):
while stm.mem32[self._sr] & self._sr_busy:
machine.idle()
def unlock(self):
if stm.mem32[self._cr] & self._cr_lock:
stm.mem32[self._keyr] = self._FLASH_KEY1
stm.mem32[self._keyr] = self._FLASH_KEY2
def lock(self):
stm.mem32[self._cr] = self._cr_lock
def erase_sector(self, sector):
self.wait_not_busy()
stm.mem32[self._cr] = self._cr_init_erase(sector)
stm.mem32[self._cr] |= self._cr_start_erase
self.wait_not_busy()
stm.mem32[self._cr] = 0
# This method is optimised for speed, to reduce the time data is being written.
def write(self, addr, buf):
assert len(buf) % 4 == 0
mem32 = stm.mem32
buf_addr = self.addressof(buf)
r = range(0, len(buf), 4)
self.wait_not_busy()
mem32[self._cr] = self._cr_init_write
for off in r:
mem32[addr + off] = mem32[buf_addr + off]
if off % self._write_multiple == 0:
while mem32[self._sr] & self._sr_busy:
pass
if self._cr_flush is not None:
mem32[self._cr] |= self._cr_flush
self.wait_not_busy()
mem32[self._cr] = 0
def update_mboot(filename):
print("Loading file", filename)
mboot_fw = dfu_read(filename)
if mboot_fw is None:
return
if len(mboot_fw) != 1:
assert 0
mboot_addr, mboot_fw = mboot_fw[0]
if mboot_addr != 0x08000000:
assert 0
print("Found Mboot data with size %u." % len(mboot_fw))
chk = check_mem_contains(mboot_addr, mboot_fw)
if chk:
print("Supplied version of Mboot is already on device.")
return
print("Programming Mboot, do not turn off!")
time.sleep_ms(50)
flash = Flash()
irq = machine.disable_irq()
flash.unlock()
flash.erase_sector(0)
if len(mboot_fw) > flash.sector0_size:
flash.erase_sector(1)
flash.write(mboot_addr, mboot_fw)
flash.lock()
machine.enable_irq(irq)
print("New Mboot programmed.")
if check_mem_contains(mboot_addr, mboot_fw):
print("Verification of new Mboot succeeded.")
else:
print("Verification of new Mboot FAILED! Try rerunning.")
print("Programming finished, can now reset or turn off.")
def _create_element(kind, body):
return bytes([kind, len(body)]) + body
def update_app_elements(
filename,
fs_base,
fs_len,
fs_type=VFS_FAT,
fs_blocksize=0,
status_addr=None,
addr_64bit=False,
*,
fs_base2=0,
fs_len2=0,
):
if fs_type != VFS_RAW:
# Check firmware is of .dfu or .dfu.gz type
try:
with open(filename, "rb") as f:
hdr = deflate.DeflateIO(f, deflate.GZIP).read(6)
except Exception:
with open(filename, "rb") as f:
hdr = f.read(6)
if hdr != b"DfuSe\x01":
print("Firmware must be a .dfu(.gz) file.")
return ()
if fs_type in (VFS_LFS1, VFS_LFS2) and not fs_blocksize:
raise Exception("littlefs requires fs_blocksize parameter")
mount_point = 1
if fs_type == VFS_RAW:
mount_encoding = "<BBQQQQ" if addr_64bit else "<BBLLLL"
elems = _create_element(
_ELEM_TYPE_MOUNT,
struct.pack(mount_encoding, mount_point, fs_type, fs_base, fs_len, fs_base2, fs_len2),
)
else:
mount_encoding = "<BBQQL" if addr_64bit else "<BBLLL"
elems = _create_element(
_ELEM_TYPE_MOUNT,
struct.pack(mount_encoding, mount_point, fs_type, fs_base, fs_len, fs_blocksize),
)
elems += _create_element(
_ELEM_TYPE_FSLOAD, struct.pack("<B", mount_point) + bytes(filename, "ascii")
)
if status_addr is not None:
# mboot will write 0 to status_addr on success, or a negative number on failure
machine.mem32[status_addr] = 1
elems += _create_element(_ELEM_TYPE_STATUS, struct.pack("<L", status_addr))
elems += _create_element(_ELEM_TYPE_END, b"")
return elems
def update_mpy(*args, **kwargs):
elems = update_app_elements(*args, **kwargs)
if elems:
machine.bootloader(elems)
def get_mboot_version(
mboot_base=0x0800_0000, # address of start of mboot flash section
mboot_len=0x8000, # length of mboot flash section
mboot_ver_len=64, # length of mboot version section (defined in mboot/Makefile or in board dir)
valid_prefix="mboot-", # prefix that the version string was defined with
include_opts=True, # return the options mboot was built with (set False for just the version)
):
s = ""
for i in range(mboot_ver_len):
c = stm.mem8[mboot_base + mboot_len - mboot_ver_len + i]
if c == 0x00 or c == 0xFF: # have hit padding or empty flash
break
s += chr(c)
if s.startswith(valid_prefix):
if include_opts:
return s
else:
return s.split("+")[0] # optional mboot config info stored after "+"
else: # version hasn't been set, so on the original mboot (i.e. mboot-v1.0.0)
return None
|