summaryrefslogtreecommitdiff
path: root/ports/stm32/uart.c
blob: 9354af4a291e35d2ba12a6ade667b07b8b8c0ae8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>
#include <stdarg.h>

#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "shared/runtime/interrupt_char.h"
#include "shared/runtime/mpirq.h"
#include "uart.h"
#include "irq.h"
#include "pendsv.h"

#if defined(STM32F4) || defined(STM32L1)
#define UART_RXNE_IS_SET(uart) ((uart)->SR & USART_SR_RXNE)
#else
#if defined(STM32G0) || defined(STM32H7) || defined(STM32WL)
#define USART_ISR_RXNE USART_ISR_RXNE_RXFNE
#endif
#define UART_RXNE_IS_SET(uart) ((uart)->ISR & USART_ISR_RXNE)
#endif

#if defined(STM32G0) || defined(STM32WL)
#define UART_RXNE_IT_EN(uart) do { (uart)->CR1 |= USART_CR1_RXNEIE_RXFNEIE; } while (0)
#define UART_RXNE_IT_DIS(uart) do { (uart)->CR1 &= ~USART_CR1_RXNEIE_RXFNEIE; } while (0)
#else
#define UART_RXNE_IT_EN(uart) do { (uart)->CR1 |= USART_CR1_RXNEIE; } while (0)
#define UART_RXNE_IT_DIS(uart) do { (uart)->CR1 &= ~USART_CR1_RXNEIE; } while (0)
#endif

#if defined(STM32G0) || defined(STM32WL)
#define USART_CR1_IE_BASE (USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE | USART_CR1_RXNEIE_RXFNEIE | USART_CR1_IDLEIE)
#else
#define USART_CR1_IE_BASE (USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE | USART_CR1_RXNEIE | USART_CR1_IDLEIE)
#endif
#define USART_CR2_IE_BASE (USART_CR2_LBDIE)
#define USART_CR3_IE_BASE (USART_CR3_CTSIE | USART_CR3_EIE)

#if defined(STM32F0)
#define USART_CR1_IE_ALL (USART_CR1_IE_BASE | USART_CR1_EOBIE | USART_CR1_RTOIE | USART_CR1_CMIE)
#define USART_CR2_IE_ALL (USART_CR2_IE_BASE)
#define USART_CR3_IE_ALL (USART_CR3_IE_BASE | USART_CR3_WUFIE)

#elif defined(STM32F4)
#define USART_CR1_IE_ALL (USART_CR1_IE_BASE)
#define USART_CR2_IE_ALL (USART_CR2_IE_BASE)
#define USART_CR3_IE_ALL (USART_CR3_IE_BASE)

#elif defined(STM32F7)
#define USART_CR1_IE_ALL (USART_CR1_IE_BASE | USART_CR1_EOBIE | USART_CR1_RTOIE | USART_CR1_CMIE)
#define USART_CR2_IE_ALL (USART_CR2_IE_BASE)
#if defined(USART_CR3_TCBGTIE)
#define USART_CR3_IE_ALL (USART_CR3_IE_BASE | USART_CR3_TCBGTIE)
#else
#define USART_CR3_IE_ALL (USART_CR3_IE_BASE)
#endif

#elif defined(STM32G0) || defined(STM32G4) || defined(STM32H5)
#define USART_CR1_IE_ALL (USART_CR1_IE_BASE | USART_CR1_EOBIE | USART_CR1_RTOIE | USART_CR1_CMIE)
#define USART_CR2_IE_ALL (USART_CR2_IE_BASE)
#if defined(USART_CR3_TCBGTIE)
#define USART_CR3_IE_ALL (USART_CR3_IE_BASE | USART_CR3_TCBGTIE | USART_CR3_WUFIE)
#else
#define USART_CR3_IE_ALL (USART_CR3_IE_BASE | USART_CR3_WUFIE)
#endif

#elif defined(STM32H7) || defined(STM32N6)
#define USART_CR1_IE_ALL (USART_CR1_IE_BASE | USART_CR1_RXFFIE | USART_CR1_TXFEIE | USART_CR1_EOBIE | USART_CR1_RTOIE | USART_CR1_CMIE)
#define USART_CR2_IE_ALL (USART_CR2_IE_BASE)
#define USART_CR3_IE_ALL (USART_CR3_IE_BASE | USART_CR3_RXFTIE | USART_CR3_TCBGTIE | USART_CR3_TXFTIE | USART_CR3_WUFIE)

#elif defined(STM32L0)
#define USART_CR1_IE_ALL (USART_CR1_IE_BASE | USART_CR1_EOBIE | USART_CR1_RTOIE | USART_CR1_CMIE)
#define USART_CR2_IE_ALL (USART_CR2_IE_BASE)
#define USART_CR3_IE_ALL (USART_CR3_IE_BASE | USART_CR3_WUFIE)

#elif defined(STM32L1)
#define USART_CR1_IE_ALL (USART_CR1_IE_BASE)
#define USART_CR2_IE_ALL (USART_CR2_IE_BASE)
#define USART_CR3_IE_ALL (USART_CR3_IE_BASE)

#elif defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
#define USART_CR1_IE_ALL (USART_CR1_IE_BASE | USART_CR1_EOBIE | USART_CR1_RTOIE | USART_CR1_CMIE)
#define USART_CR2_IE_ALL (USART_CR2_IE_BASE)
#if defined(USART_CR3_TCBGTIE)
#define USART_CR3_IE_ALL (USART_CR3_IE_BASE | USART_CR3_TCBGTIE | USART_CR3_WUFIE)
#else
#define USART_CR3_IE_ALL (USART_CR3_IE_BASE | USART_CR3_WUFIE)
#endif

#endif

typedef struct _machine_uart_irq_map_t {
    uint16_t irq_en;
    uint16_t flag;
} machine_uart_irq_map_t;

static const machine_uart_irq_map_t mp_uart_irq_map[] = {
    { USART_CR1_IDLEIE, UART_FLAG_IDLE}, // RX idle
    { USART_CR1_PEIE,   UART_FLAG_PE},   // parity error
    #if defined(STM32G0) || defined(STM32WL)
    { USART_CR1_TXEIE_TXFNFIE, UART_FLAG_TXE}, // TX register empty
    #else
    { USART_CR1_TXEIE,  UART_FLAG_TXE},  // TX register empty
    #endif
    { USART_CR1_TCIE,   UART_FLAG_TC},   // TX complete
    #if defined(STM32G0) || defined(STM32WL)
    { USART_CR1_RXNEIE_RXFNEIE, UART_FLAG_RXNE}, // RX register not empty
    #else
    { USART_CR1_RXNEIE, UART_FLAG_RXNE}, // RX register not empty
    #endif
    #if 0
    // For now only IRQs selected by CR1 are supported
    #if defined(STM32F4)
    { USART_CR2_LBDIE,  UART_FLAG_LBD},  // LIN break detection
    #else
    { USART_CR2_LBDIE,  UART_FLAG_LBDF}, // LIN break detection
    #endif
    { USART_CR3_CTSIE,  UART_FLAG_CTS},  // CTS
    #endif
};

void uart_init0(void) {
    #if defined(STM32H7)
    RCC_PeriphCLKInitTypeDef RCC_PeriphClkInit = {0};
    // Configure USART1/6 and USART2/3/4/5/7/8 clock sources
    RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART16 | RCC_PERIPHCLK_USART234578;
    RCC_PeriphClkInit.Usart16ClockSelection = RCC_USART16CLKSOURCE_D2PCLK2;
    RCC_PeriphClkInit.Usart234578ClockSelection = RCC_USART234578CLKSOURCE_D2PCLK1;
    if (HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit) != HAL_OK) {
        MICROPY_BOARD_FATAL_ERROR("HAL_RCCEx_PeriphCLKConfig");
    }
    #elif defined(STM32N6)
    // UART clock configuration, IC14 (max 100MHz).
    LL_RCC_SetUSARTClockSource(LL_RCC_USART1_CLKSOURCE_IC14);
    LL_RCC_SetUSARTClockSource(LL_RCC_USART2_CLKSOURCE_IC14);
    LL_RCC_SetUSARTClockSource(LL_RCC_USART3_CLKSOURCE_IC14);
    LL_RCC_SetUARTClockSource(LL_RCC_UART4_CLKSOURCE_IC14);
    LL_RCC_SetUARTClockSource(LL_RCC_UART5_CLKSOURCE_IC14);
    LL_RCC_SetUSARTClockSource(LL_RCC_USART6_CLKSOURCE_IC14);
    LL_RCC_SetUARTClockSource(LL_RCC_UART7_CLKSOURCE_IC14);
    LL_RCC_SetUARTClockSource(LL_RCC_UART8_CLKSOURCE_IC14);
    LL_RCC_SetUARTClockSource(LL_RCC_UART9_CLKSOURCE_IC14);
    LL_RCC_SetUSARTClockSource(LL_RCC_USART10_CLKSOURCE_IC14);
    #endif
}

// unregister all interrupt sources
void uart_deinit_all(void) {
    for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(machine_uart_obj_all)); i++) {
        machine_uart_obj_t *uart_obj = MP_STATE_PORT(machine_uart_obj_all)[i];
        if (uart_obj != NULL && !uart_obj->is_static) {
            uart_deinit(uart_obj);
            MP_STATE_PORT(machine_uart_obj_all)[i] = NULL;
        }
    }
}

bool uart_exists(int uart_id) {
    if (uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(machine_uart_obj_all))) {
        // safeguard against machine_uart_obj_all array being configured too small
        return false;
    }
    switch (uart_id) {
        #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX)
        case PYB_UART_1:
            return true;
        #endif

        #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX)
        case PYB_UART_2:
            return true;
        #endif

        #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX)
        case PYB_UART_3:
            return true;
        #endif

        #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX)
        case PYB_UART_4:
            return true;
        #endif

        #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX)
        case PYB_UART_5:
            return true;
        #endif

        #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX)
        case PYB_UART_6:
            return true;
        #endif

        #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX)
        case PYB_UART_7:
            return true;
        #endif

        #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX)
        case PYB_UART_8:
            return true;
        #endif

        #if defined(MICROPY_HW_UART9_TX) && defined(MICROPY_HW_UART9_RX)
        case PYB_UART_9:
            return true;
        #endif

        #if defined(MICROPY_HW_UART10_TX) && defined(MICROPY_HW_UART10_RX)
        case PYB_UART_10:
            return true;
        #endif

        #if defined(MICROPY_HW_LPUART1_TX) && defined(MICROPY_HW_LPUART1_RX)
        case PYB_LPUART_1:
            return true;
        #endif

        #if defined(MICROPY_HW_LPUART2_TX) && defined(MICROPY_HW_LPUART2_RX)
        case PYB_LPUART_2:
            return true;
        #endif

        default:
            return false;
    }
}

// assumes Init parameters have been set up correctly
bool uart_init(machine_uart_obj_t *uart_obj,
    uint32_t baudrate, uint32_t bits, uint32_t parity, uint32_t stop, uint32_t flow) {
    USART_TypeDef *UARTx;
    IRQn_Type irqn;
    uint8_t uart_fn = AF_FN_UART;
    int uart_unit;

    const machine_pin_obj_t *pins[4] = {0};

    // Default pull is pull-up on RX and CTS (the input pins).
    uint32_t pins_pull[4] = { GPIO_NOPULL, GPIO_PULLUP, GPIO_NOPULL, GPIO_PULLUP };

    switch (uart_obj->uart_id) {
        #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX)
        case PYB_UART_1:
            uart_unit = 1;
            UARTx = USART1;
            irqn = USART1_IRQn;
            pins[0] = MICROPY_HW_UART1_TX;
            pins[1] = MICROPY_HW_UART1_RX;
            #if defined(MICROPY_HW_UART1_RTS)
            if (flow & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_UART1_RTS;
            }
            #endif
            #if defined(MICROPY_HW_UART1_CTS)
            if (flow & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_UART1_CTS;
            }
            #endif
            #if defined(MICROPY_HW_UART1_RX_PULL)
            pins_pull[1] = MICROPY_HW_UART1_RX_PULL;
            #endif
            #if defined(MICROPY_HW_UART1_CTS_PULL)
            pins_pull[3] = MICROPY_HW_UART1_CTS_PULL;
            #endif
            __HAL_RCC_USART1_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX)
        case PYB_UART_2:
            uart_unit = 2;
            UARTx = USART2;
            #if defined(STM32G0)
            irqn = USART2_LPUART2_IRQn;
            #else
            irqn = USART2_IRQn;
            #endif
            pins[0] = MICROPY_HW_UART2_TX;
            pins[1] = MICROPY_HW_UART2_RX;
            #if defined(MICROPY_HW_UART2_RTS)
            if (flow & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_UART2_RTS;
            }
            #endif
            #if defined(MICROPY_HW_UART2_CTS)
            if (flow & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_UART2_CTS;
            }
            #endif
            #if defined(MICROPY_HW_UART2_RX_PULL)
            pins_pull[1] = MICROPY_HW_UART2_RX_PULL;
            #endif
            #if defined(MICROPY_HW_UART2_CTS_PULL)
            pins_pull[3] = MICROPY_HW_UART2_CTS_PULL;
            #endif
            __HAL_RCC_USART2_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX)
        case PYB_UART_3:
            uart_unit = 3;
            UARTx = USART3;
            #if defined(STM32F0)
            irqn = USART3_8_IRQn;
            #elif defined(STM32G0)
            irqn = USART3_4_5_6_LPUART1_IRQn;
            #else
            irqn = USART3_IRQn;
            #endif
            pins[0] = MICROPY_HW_UART3_TX;
            pins[1] = MICROPY_HW_UART3_RX;
            #if defined(MICROPY_HW_UART3_RTS)
            if (flow & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_UART3_RTS;
            }
            #endif
            #if defined(MICROPY_HW_UART3_CTS)
            if (flow & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_UART3_CTS;
            }
            #endif
            #if defined(MICROPY_HW_UART3_RX_PULL)
            pins_pull[1] = MICROPY_HW_UART3_RX_PULL;
            #endif
            #if defined(MICROPY_HW_UART3_CTS_PULL)
            pins_pull[3] = MICROPY_HW_UART3_CTS_PULL;
            #endif
            __HAL_RCC_USART3_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX)
        case PYB_UART_4:
            uart_unit = 4;
            #if defined(STM32F0)
            UARTx = USART4;
            irqn = USART3_8_IRQn;
            __HAL_RCC_USART4_CLK_ENABLE();
            #elif defined(STM32L0)
            UARTx = USART4;
            irqn = USART4_5_IRQn;
            __HAL_RCC_USART4_CLK_ENABLE();
            #elif defined(STM32G0)
            UARTx = USART4;
            irqn = USART3_4_5_6_LPUART1_IRQn;
            __HAL_RCC_USART4_CLK_ENABLE();
            #else
            UARTx = UART4;
            irqn = UART4_IRQn;
            __HAL_RCC_UART4_CLK_ENABLE();
            #endif
            pins[0] = MICROPY_HW_UART4_TX;
            pins[1] = MICROPY_HW_UART4_RX;
            #if defined(MICROPY_HW_UART4_RTS)
            if (flow & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_UART4_RTS;
            }
            #endif
            #if defined(MICROPY_HW_UART4_CTS)
            if (flow & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_UART4_CTS;
            }
            #endif
            #if defined(MICROPY_HW_UART4_RX_PULL)
            pins_pull[1] = MICROPY_HW_UART4_RX_PULL;
            #endif
            #if defined(MICROPY_HW_UART4_CTS_PULL)
            pins_pull[3] = MICROPY_HW_UART4_CTS_PULL;
            #endif
            break;
        #endif

        #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX)
        case PYB_UART_5:
            uart_unit = 5;
            #if defined(STM32F0)
            UARTx = USART5;
            irqn = USART3_8_IRQn;
            __HAL_RCC_USART5_CLK_ENABLE();
            #elif defined(STM32L0)
            UARTx = USART5;
            irqn = USART4_5_IRQn;
            __HAL_RCC_USART5_CLK_ENABLE();
            #elif defined(STM32G0)
            UARTx = USART5;
            irqn = USART3_4_5_6_LPUART1_IRQn;
            __HAL_RCC_USART5_CLK_ENABLE();
            #else
            UARTx = UART5;
            irqn = UART5_IRQn;
            __HAL_RCC_UART5_CLK_ENABLE();
            #endif
            pins[0] = MICROPY_HW_UART5_TX;
            pins[1] = MICROPY_HW_UART5_RX;
            #if defined(MICROPY_HW_UART5_RTS)
            if (flow & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_UART5_RTS;
            }
            #endif
            #if defined(MICROPY_HW_UART5_CTS)
            if (flow & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_UART5_CTS;
            }
            #endif
            #if defined(MICROPY_HW_UART5_RX_PULL)
            pins_pull[1] = MICROPY_HW_UART5_RX_PULL;
            #endif
            #if defined(MICROPY_HW_UART5_CTS_PULL)
            pins_pull[3] = MICROPY_HW_UART5_CTS_PULL;
            #endif
            break;
        #endif

        #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX)
        case PYB_UART_6:
            uart_unit = 6;
            UARTx = USART6;
            #if defined(STM32F0)
            irqn = USART3_8_IRQn;
            #elif defined(STM32G0)
            irqn = USART3_4_5_6_LPUART1_IRQn;
            #else
            irqn = USART6_IRQn;
            #endif
            pins[0] = MICROPY_HW_UART6_TX;
            pins[1] = MICROPY_HW_UART6_RX;
            #if defined(MICROPY_HW_UART6_RTS)
            if (flow & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_UART6_RTS;
            }
            #endif
            #if defined(MICROPY_HW_UART6_CTS)
            if (flow & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_UART6_CTS;
            }
            #endif
            #if defined(MICROPY_HW_UART6_RX_PULL)
            pins_pull[1] = MICROPY_HW_UART6_RX_PULL;
            #endif
            #if defined(MICROPY_HW_UART6_CTS_PULL)
            pins_pull[3] = MICROPY_HW_UART6_CTS_PULL;
            #endif
            __HAL_RCC_USART6_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX)
        case PYB_UART_7:
            uart_unit = 7;
            #if defined(STM32F0)
            UARTx = USART7;
            irqn = USART3_8_IRQn;
            __HAL_RCC_USART7_CLK_ENABLE();
            #else
            UARTx = UART7;
            irqn = UART7_IRQn;
            __HAL_RCC_UART7_CLK_ENABLE();
            #endif
            pins[0] = MICROPY_HW_UART7_TX;
            pins[1] = MICROPY_HW_UART7_RX;
            #if defined(MICROPY_HW_UART7_RTS)
            if (flow & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_UART7_RTS;
            }
            #endif
            #if defined(MICROPY_HW_UART7_CTS)
            if (flow & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_UART7_CTS;
            }
            #endif
            #if defined(MICROPY_HW_UART7_RX_PULL)
            pins_pull[1] = MICROPY_HW_UART7_RX_PULL;
            #endif
            #if defined(MICROPY_HW_UART7_CTS_PULL)
            pins_pull[3] = MICROPY_HW_UART7_CTS_PULL;
            #endif
            break;
        #endif

        #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX)
        case PYB_UART_8:
            uart_unit = 8;
            #if defined(STM32F0)
            UARTx = USART8;
            irqn = USART3_8_IRQn;
            __HAL_RCC_USART8_CLK_ENABLE();
            #else
            UARTx = UART8;
            irqn = UART8_IRQn;
            __HAL_RCC_UART8_CLK_ENABLE();
            #endif
            pins[0] = MICROPY_HW_UART8_TX;
            pins[1] = MICROPY_HW_UART8_RX;
            #if defined(MICROPY_HW_UART8_RTS)
            if (flow & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_UART8_RTS;
            }
            #endif
            #if defined(MICROPY_HW_UART8_CTS)
            if (flow & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_UART8_CTS;
            }
            #endif
            #if defined(MICROPY_HW_UART8_RX_PULL)
            pins_pull[1] = MICROPY_HW_UART8_RX_PULL;
            #endif
            #if defined(MICROPY_HW_UART8_CTS_PULL)
            pins_pull[3] = MICROPY_HW_UART8_CTS_PULL;
            #endif
            break;
        #endif

        #if defined(MICROPY_HW_UART9_TX) && defined(MICROPY_HW_UART9_RX)
        case PYB_UART_9:
            uart_unit = 9;
            UARTx = UART9;
            irqn = UART9_IRQn;
            __HAL_RCC_UART9_CLK_ENABLE();
            pins[0] = MICROPY_HW_UART9_TX;
            pins[1] = MICROPY_HW_UART9_RX;
            #if defined(MICROPY_HW_UART9_RX_PULL)
            pins_pull[1] = MICROPY_HW_UART9_RX_PULL;
            #endif
            break;
        #endif

        #if defined(MICROPY_HW_UART10_TX) && defined(MICROPY_HW_UART10_RX)
        case PYB_UART_10:
            uart_unit = 10;
            #if defined(UART10)
            UARTx = UART10;
            irqn = UART10_IRQn;
            __HAL_RCC_UART10_CLK_ENABLE();
            #else
            UARTx = USART10;
            irqn = USART10_IRQn;
            __HAL_RCC_USART10_CLK_ENABLE();
            #endif
            pins[0] = MICROPY_HW_UART10_TX;
            pins[1] = MICROPY_HW_UART10_RX;
            #if defined(MICROPY_HW_UART10_RX_PULL)
            pins_pull[1] = MICROPY_HW_UART10_RX_PULL;
            #endif
            break;
        #endif

        #if defined(MICROPY_HW_LPUART1_TX) && defined(MICROPY_HW_LPUART1_RX)
        case PYB_LPUART_1:
            uart_fn = AF_FN_LPUART;
            uart_unit = 1;
            UARTx = LPUART1;
            #if defined(STM32G0)
            irqn = USART3_4_5_6_LPUART1_IRQn;
            #else
            irqn = LPUART1_IRQn;
            #endif
            pins[0] = MICROPY_HW_LPUART1_TX;
            pins[1] = MICROPY_HW_LPUART1_RX;
            #if defined(MICROPY_HW_LPUART1_RTS)
            if (flow & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_LPUART1_RTS;
            }
            #endif
            #if defined(MICROPY_HW_LPUART1_CTS)
            if (flow & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_LPUART1_CTS;
            }
            #endif
            #if defined(MICROPY_HW_LPUART1_RX_PULL)
            pins_pull[1] = MICROPY_HW_LPUART1_RX_PULL;
            #endif
            #if defined(MICROPY_HW_LPUART1_CTS_PULL)
            pins_pull[3] = MICROPY_HW_LPUART1_CTS_PULL;
            #endif
            __HAL_RCC_LPUART1_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_LPUART2_TX) && defined(MICROPY_HW_LPUART2_RX)
        case PYB_LPUART_2:
            uart_fn = AF_FN_LPUART;
            uart_unit = 2;
            UARTx = LPUART2;
            #if defined(STM32G0)
            irqn = USART2_LPUART2_IRQn;
            #endif
            pins[0] = MICROPY_HW_LPUART2_TX;
            pins[1] = MICROPY_HW_LPUART2_RX;
            #if defined(MICROPY_HW_LPUART2_RTS)
            if (flow & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_LPUART2_RTS;
            }
            #endif
            #if defined(MICROPY_HW_LPUART2_CTS)
            if (flow & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_LPUART2_CTS;
            }
            #endif
            #if defined(MICROPY_HW_LPUART2_RX_PULL)
            pins_pull[1] = MICROPY_HW_LPUART2_RX_PULL;
            #endif
            #if defined(MICROPY_HW_LPUART2_CTS_PULL)
            pins_pull[3] = MICROPY_HW_LPUART2_CTS_PULL;
            #endif
            __HAL_RCC_LPUART2_CLK_ENABLE();
            break;
        #endif

        default:
            // UART does not exist or is not configured for this board
            return false;
    }

    uint32_t mode = MP_HAL_PIN_MODE_ALT;

    for (uint i = 0; i < 4; i++) {
        if (pins[i] != NULL) {
            if (!mp_hal_pin_config_alt(pins[i], mode, pins_pull[i], uart_fn, uart_unit)) {
                return false;
            }
        }
    }

    uart_obj->uartx = UARTx;

    // Set the initialisation parameters for the UART.
    UART_HandleTypeDef huart;
    memset(&huart, 0, sizeof(huart));
    huart.Instance = UARTx;
    huart.Init.BaudRate = baudrate;
    huart.Init.WordLength = bits;
    huart.Init.StopBits = stop;
    huart.Init.Parity = parity;
    huart.Init.Mode = UART_MODE_TX_RX;
    huart.Init.HwFlowCtl = flow;
    huart.Init.OverSampling = UART_OVERSAMPLING_16;

    #if defined(STM32G4) || defined(STM32H7) // WB also has a fifo..
    huart.FifoMode = UART_FIFOMODE_ENABLE;
    #endif

    #if !defined(STM32F4) && !defined(STM32L1)
    huart.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
    #endif

    #if defined(STM32H7) || defined(STM32N6) || defined(STM32WB)
    // Compute the smallest prescaler that will allow the given baudrate.
    uint32_t presc = UART_PRESCALER_DIV1;
    if (uart_obj->uart_id == PYB_LPUART_1) {
        uint32_t source_clk = uart_get_source_freq(uart_obj);
        for (; presc < UART_PRESCALER_DIV256; ++presc) {
            uint32_t brr = UART_DIV_LPUART(source_clk, baudrate, presc);
            if (brr <= LPUART_BRR_MASK) {
                break;
            }
        }
    }
    huart.Init.ClockPrescaler = presc;
    #endif

    // Initialise the UART hardware.
    HAL_UART_Init(&huart);

    // Disable all individual UART IRQs, but enable the global handler
    uart_obj->uartx->CR1 &= ~USART_CR1_IE_ALL;
    uart_obj->uartx->CR2 &= ~USART_CR2_IE_ALL;
    uart_obj->uartx->CR3 &= ~USART_CR3_IE_ALL;
    NVIC_SetPriority(IRQn_NONNEG(irqn), IRQ_PRI_UART);
    HAL_NVIC_EnableIRQ(irqn);

    uart_obj->is_enabled = true;
    uart_obj->attached_to_repl = false;

    #if defined(STM32F4) || defined(STM32L1)
    uart_obj->suppress_idle_irq = true;
    #endif

    if (bits == UART_WORDLENGTH_9B && parity == UART_PARITY_NONE) {
        uart_obj->char_mask = 0x1ff;
        uart_obj->char_width = CHAR_WIDTH_9BIT;
    } else {
        if (bits == UART_WORDLENGTH_9B || parity == UART_PARITY_NONE) {
            uart_obj->char_mask = 0xff;
        } else {
            uart_obj->char_mask = 0x7f;
        }
        uart_obj->char_width = CHAR_WIDTH_8BIT;
    }

    #if defined(STM32H7)
    HAL_UARTEx_SetTxFifoThreshold(&huart, UART_TXFIFO_THRESHOLD_1_8);
    HAL_UARTEx_SetRxFifoThreshold(&huart, UART_RXFIFO_THRESHOLD_1_8);
    HAL_UARTEx_EnableFifoMode(&huart);
    #endif

    uart_obj->mp_irq_trigger = 0;
    uart_obj->mp_irq_obj = NULL;

    return true;
}

void uart_irq_config(machine_uart_obj_t *self, bool enable) {
    if (self->mp_irq_trigger) {
        for (size_t entry = 0; entry < MP_ARRAY_SIZE(mp_uart_irq_map); ++entry) {
            if (mp_uart_irq_map[entry].flag & MP_UART_RESERVED_FLAGS) {
                continue;
            }
            if (mp_uart_irq_map[entry].flag & self->mp_irq_trigger) {
                if (enable) {
                    self->uartx->CR1 |= mp_uart_irq_map[entry].irq_en;
                } else {
                    self->uartx->CR1 &= ~mp_uart_irq_map[entry].irq_en;
                }
            }
        }
    }
}

void uart_set_rxbuf(machine_uart_obj_t *self, size_t len, void *buf) {
    self->read_buf_head = 0;
    self->read_buf_tail = 0;
    self->read_buf_len = len;
    self->read_buf = buf;
    if (len == 0) {
        UART_RXNE_IT_DIS(self->uartx);
    } else {
        UART_RXNE_IT_EN(self->uartx);
    }
}

void uart_deinit(machine_uart_obj_t *self) {
    self->is_enabled = false;

    // Disable UART
    self->uartx->CR1 &= ~USART_CR1_UE;

    // Reset and turn off the UART peripheral
    if (self->uart_id == 1) {
        HAL_NVIC_DisableIRQ(USART1_IRQn);
        __HAL_RCC_USART1_FORCE_RESET();
        __HAL_RCC_USART1_RELEASE_RESET();
        __HAL_RCC_USART1_CLK_DISABLE();
    #if defined(USART2)
    } else if (self->uart_id == 2) {
        #if defined(STM32G0)
        HAL_NVIC_DisableIRQ(USART2_LPUART2_IRQn);
        #else
        HAL_NVIC_DisableIRQ(USART2_IRQn);
        #endif
        __HAL_RCC_USART2_FORCE_RESET();
        __HAL_RCC_USART2_RELEASE_RESET();
        __HAL_RCC_USART2_CLK_DISABLE();
    #endif
    #if defined(USART3)
    } else if (self->uart_id == 3) {
        #if defined(STM32G0)
        HAL_NVIC_DisableIRQ(USART3_4_5_6_LPUART1_IRQn);
        #elif !defined(STM32F0)
        HAL_NVIC_DisableIRQ(USART3_IRQn);
        #endif
        __HAL_RCC_USART3_FORCE_RESET();
        __HAL_RCC_USART3_RELEASE_RESET();
        __HAL_RCC_USART3_CLK_DISABLE();
    #endif
    #if defined(UART4)
    } else if (self->uart_id == 4) {
        HAL_NVIC_DisableIRQ(UART4_IRQn);
        __HAL_RCC_UART4_FORCE_RESET();
        __HAL_RCC_UART4_RELEASE_RESET();
        __HAL_RCC_UART4_CLK_DISABLE();
    #endif
    #if defined(USART4)
    } else if (self->uart_id == 4) {
        __HAL_RCC_USART4_FORCE_RESET();
        __HAL_RCC_USART4_RELEASE_RESET();
        __HAL_RCC_USART4_CLK_DISABLE();
    #endif
    #if defined(UART5)
    } else if (self->uart_id == 5) {
        HAL_NVIC_DisableIRQ(UART5_IRQn);
        __HAL_RCC_UART5_FORCE_RESET();
        __HAL_RCC_UART5_RELEASE_RESET();
        __HAL_RCC_UART5_CLK_DISABLE();
    #endif
    #if defined(USART5)
    } else if (self->uart_id == 5) {
        __HAL_RCC_USART5_FORCE_RESET();
        __HAL_RCC_USART5_RELEASE_RESET();
        __HAL_RCC_USART5_CLK_DISABLE();
    #endif
    #if defined(UART6)
    } else if (self->uart_id == 6) {
        HAL_NVIC_DisableIRQ(USART6_IRQn);
        __HAL_RCC_USART6_FORCE_RESET();
        __HAL_RCC_USART6_RELEASE_RESET();
        __HAL_RCC_USART6_CLK_DISABLE();
    #endif
    #if defined(UART7)
    } else if (self->uart_id == 7) {
        HAL_NVIC_DisableIRQ(UART7_IRQn);
        __HAL_RCC_UART7_FORCE_RESET();
        __HAL_RCC_UART7_RELEASE_RESET();
        __HAL_RCC_UART7_CLK_DISABLE();
    #endif
    #if defined(USART7)
    } else if (self->uart_id == 7) {
        __HAL_RCC_USART7_FORCE_RESET();
        __HAL_RCC_USART7_RELEASE_RESET();
        __HAL_RCC_USART7_CLK_DISABLE();
    #endif
    #if defined(UART8)
    } else if (self->uart_id == 8) {
        HAL_NVIC_DisableIRQ(UART8_IRQn);
        __HAL_RCC_UART8_FORCE_RESET();
        __HAL_RCC_UART8_RELEASE_RESET();
        __HAL_RCC_UART8_CLK_DISABLE();
    #endif
    #if defined(USART8)
    } else if (self->uart_id == 8) {
        __HAL_RCC_USART8_FORCE_RESET();
        __HAL_RCC_USART8_RELEASE_RESET();
        __HAL_RCC_USART8_CLK_DISABLE();
    #endif
    #if defined(UART9)
    } else if (self->uart_id == 9) {
        HAL_NVIC_DisableIRQ(UART9_IRQn);
        __HAL_RCC_UART9_FORCE_RESET();
        __HAL_RCC_UART9_RELEASE_RESET();
        __HAL_RCC_UART9_CLK_DISABLE();
    #endif
    #if defined(UART10)
    } else if (self->uart_id == 10) {
        HAL_NVIC_DisableIRQ(UART10_IRQn);
        __HAL_RCC_UART10_FORCE_RESET();
        __HAL_RCC_UART10_RELEASE_RESET();
        __HAL_RCC_UART10_CLK_DISABLE();
    #endif
    #if defined(USART10)
    } else if (self->uart_id == 10) {
        HAL_NVIC_DisableIRQ(USART10_IRQn);
        __HAL_RCC_USART10_FORCE_RESET();
        __HAL_RCC_USART10_RELEASE_RESET();
        __HAL_RCC_USART10_CLK_DISABLE();
    #endif
    #if defined(LPUART1)
    } else if (self->uart_id == PYB_LPUART_1) {
        #if defined(STM32G0)
        HAL_NVIC_DisableIRQ(USART3_4_5_6_LPUART1_IRQn);
        #else
        HAL_NVIC_DisableIRQ(LPUART1_IRQn);
        #endif
        __HAL_RCC_LPUART1_FORCE_RESET();
        __HAL_RCC_LPUART1_RELEASE_RESET();
        __HAL_RCC_LPUART1_CLK_DISABLE();
    #endif
    #if defined(LPUART2)
    } else if (self->uart_id == PYB_LPUART_2) {
        #if defined(STM32G0)
        HAL_NVIC_DisableIRQ(USART2_LPUART2_IRQn);
        #else
        HAL_NVIC_DisableIRQ(LPUART2_IRQn);
        #endif
        __HAL_RCC_LPUART2_FORCE_RESET();
        __HAL_RCC_LPUART2_RELEASE_RESET();
        __HAL_RCC_LPUART2_CLK_DISABLE();
    #endif
    }
}

void uart_attach_to_repl(machine_uart_obj_t *self, bool attached) {
    self->attached_to_repl = attached;
}

uint32_t uart_get_source_freq(machine_uart_obj_t *self) {
    uint32_t uart_clk = 0;

    #if defined(STM32F0) || defined(STM32G0)
    uart_clk = HAL_RCC_GetPCLK1Freq();
    #elif defined(STM32F7)
    switch ((RCC->DCKCFGR2 >> ((self->uart_id - 1) * 2)) & 3) {
        case 0:
            if (self->uart_id == 1 || self->uart_id == 6) {
                uart_clk = HAL_RCC_GetPCLK2Freq();
            } else {
                uart_clk = HAL_RCC_GetPCLK1Freq();
            }
            break;
        case 1:
            uart_clk = HAL_RCC_GetSysClockFreq();
            break;
        case 2:
            uart_clk = HSI_VALUE;
            break;
        case 3:
            uart_clk = LSE_VALUE;
            break;
    }

    #elif defined(STM32H5) || defined(STM32H7)

    uint32_t csel;
    unsigned int bus_pclk;

    #if defined(STM32H5)
    if (1 <= self->uart_id && self->uart_id <= 10) {
        csel = RCC->CCIPR1 >> ((self->uart_id - 1) * 3);
    } else {
        csel = RCC->CCIPR2 >> ((self->uart_id - 11) * 3);
    }
    bus_pclk = self->uart_id == 1 ? 2 : 1;
    #elif defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ)
    if (self->uart_id == 1 || self->uart_id == 6 || self->uart_id == 9 || self->uart_id == 10) {
        csel = RCC->CDCCIP2R >> 3;
        bus_pclk = 2;
    } else {
        csel = RCC->CDCCIP2R;
        bus_pclk = 1;
    }
    #else
    if (self->uart_id == 1 || self->uart_id == 6) {
        csel = RCC->D2CCIP2R >> 3;
        bus_pclk = 2;
    } else {
        csel = RCC->D2CCIP2R;
        bus_pclk = 1;
    }
    #endif

    switch (csel & 7) {
        case 0:
            if (bus_pclk == 1) {
                uart_clk = HAL_RCC_GetPCLK1Freq();
            } else {
                uart_clk = HAL_RCC_GetPCLK2Freq();
            }
            break;
        case 1: {
            LL_PLL_ClocksTypeDef PLL_Clocks;
            LL_RCC_GetPLL2ClockFreq(&PLL_Clocks);
            uart_clk = PLL_Clocks.PLL_Q_Frequency;
            break;
        }
        case 2: {
            LL_PLL_ClocksTypeDef PLL_Clocks;
            LL_RCC_GetPLL3ClockFreq(&PLL_Clocks);
            uart_clk = PLL_Clocks.PLL_Q_Frequency;
            break;
        }
        case 3:
            uart_clk = HSI_VALUE;
            break;
        case 4:
            uart_clk = CSI_VALUE;
            break;
        case 5:
            uart_clk = LSE_VALUE;
            break;
        default:
            break;
    }

    #elif defined(STM32N6)

    static const uint16_t is_usart = 1 << 10 | 1 << 6 | 1 << 3 | 1 << 2 | 1 << 1;
    static const uint32_t clksource[] = {
        LL_RCC_USART1_CLKSOURCE,
        LL_RCC_USART2_CLKSOURCE,
        LL_RCC_USART3_CLKSOURCE,
        LL_RCC_UART4_CLKSOURCE,
        LL_RCC_UART5_CLKSOURCE,
        LL_RCC_USART6_CLKSOURCE,
        LL_RCC_UART7_CLKSOURCE,
        LL_RCC_UART8_CLKSOURCE,
        LL_RCC_UART9_CLKSOURCE,
        LL_RCC_USART10_CLKSOURCE,
    };

    if (is_usart & (1 << self->uart_id)) {
        uart_clk = LL_RCC_GetUSARTClockFreq(clksource[self->uart_id - 1]);
    } else {
        uart_clk = LL_RCC_GetUARTClockFreq(clksource[self->uart_id - 1]);
    }

    #else
    if (self->uart_id == 1
        #if defined(USART6)
        || self->uart_id == 6
        #endif
        #if defined(UART9)
        || self->uart_id == 9
        #endif
        #if defined(UART10) || defined(USART10)
        || self->uart_id == 10
        #endif
        ) {
        uart_clk = HAL_RCC_GetPCLK2Freq();
    } else {
        uart_clk = HAL_RCC_GetPCLK1Freq();
    }
    #endif

    return uart_clk;
}

uint32_t uart_get_baudrate(machine_uart_obj_t *self) {
    #if defined(LPUART1)
    if (self->uart_id == PYB_LPUART_1) {
        return LL_LPUART_GetBaudRate(self->uartx, uart_get_source_freq(self)
            #if defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32N6) || defined(STM32WB) || defined(STM32WL)
            , self->uartx->PRESC
            #endif
            );
    }
    #endif
    return LL_USART_GetBaudRate(self->uartx, uart_get_source_freq(self),
        #if defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32N6) || defined(STM32WB) || defined(STM32WL)
        self->uartx->PRESC,
        #endif
        LL_USART_OVERSAMPLING_16);
}

void uart_set_baudrate(machine_uart_obj_t *self, uint32_t baudrate) {
    #if defined(LPUART1)
    if (self->uart_id == PYB_LPUART_1) {
        LL_LPUART_SetBaudRate(self->uartx, uart_get_source_freq(self),
            #if defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32N6) || defined(STM32WB) || defined(STM32WL)
            LL_LPUART_PRESCALER_DIV1,
            #endif
            baudrate);
        return;
    }
    #endif
    LL_USART_SetBaudRate(self->uartx, uart_get_source_freq(self),
        #if defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32N6) || defined(STM32WB) || defined(STM32WL)
        LL_USART_PRESCALER_DIV1,
        #endif
        LL_USART_OVERSAMPLING_16, baudrate);
}

mp_uint_t uart_rx_any(machine_uart_obj_t *self) {
    int buffer_bytes = self->read_buf_head - self->read_buf_tail;
    if (buffer_bytes < 0) {
        return buffer_bytes + self->read_buf_len;
    } else if (buffer_bytes > 0) {
        return buffer_bytes;
    } else {
        return UART_RXNE_IS_SET(self->uartx) != 0;
    }
}

// Waits at most timeout milliseconds for at least 1 char to become ready for
// reading (from buf or for direct reading).
// Returns true if something available, false if not.
bool uart_rx_wait(machine_uart_obj_t *self, uint32_t timeout) {
    uint32_t start = HAL_GetTick();
    for (;;) {
        if (self->read_buf_tail != self->read_buf_head || UART_RXNE_IS_SET(self->uartx)) {
            return true; // have at least 1 char ready for reading
        }
        if (HAL_GetTick() - start >= timeout) {
            return false; // timeout
        }
        MICROPY_EVENT_POLL_HOOK
    }
}

// assumes there is a character available
int uart_rx_char(machine_uart_obj_t *self) {
    if (self->read_buf_tail != self->read_buf_head) {
        // buffering via IRQ
        int data;
        if (self->char_width == CHAR_WIDTH_9BIT) {
            data = ((uint16_t *)self->read_buf)[self->read_buf_tail];
        } else {
            data = self->read_buf[self->read_buf_tail];
        }
        self->read_buf_tail = (self->read_buf_tail + 1) % self->read_buf_len;
        if (UART_RXNE_IS_SET(self->uartx)) {
            // UART was stalled by flow ctrl: re-enable IRQ now we have room in buffer
            UART_RXNE_IT_EN(self->uartx);
        }
        return data;
    } else {
        // no buffering
        #if defined(STM32F0) || defined(STM32F7) || defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32L0) || defined(STM32L4) || defined(STM32H7) || defined(STM32N6) || defined(STM32WB) || defined(STM32WL)
        int data = self->uartx->RDR & self->char_mask;
        self->uartx->ICR = USART_ICR_ORECF; // clear ORE if it was set
        return data;
        #else
        int data = self->uartx->DR & self->char_mask;
        // Re-enable any IRQs that were disabled in uart_irq_handler because SR couldn't
        // be cleared there (clearing SR in uart_irq_handler required reading DR which
        // may have lost a character).
        if (self->mp_irq_trigger & UART_FLAG_RXNE) {
            self->uartx->CR1 |= USART_CR1_RXNEIE;
        }
        if (self->mp_irq_trigger & UART_FLAG_IDLE) {
            self->uartx->CR1 |= USART_CR1_IDLEIE;
        }
        return data;
        #endif
    }
}

// Waits at most timeout milliseconds for TX register to become empty.
// Returns true if can write, false if can't.
bool uart_tx_wait(machine_uart_obj_t *self, uint32_t timeout) {
    uint32_t start = HAL_GetTick();
    for (;;) {
        if (uart_tx_avail(self)) {
            return true; // tx register is empty
        }
        if (HAL_GetTick() - start >= timeout) {
            return false; // timeout
        }
        MICROPY_EVENT_POLL_HOOK
    }
}

// Waits at most timeout milliseconds for UART flag to be set.
// Returns true if flag is/was set, false on timeout.
static bool uart_wait_flag_set(machine_uart_obj_t *self, uint32_t flag, uint32_t timeout) {
    // Note: we don't use WFI to idle in this loop because UART tx doesn't generate
    // an interrupt and the flag can be set quickly if the baudrate is large.
    uint32_t start = HAL_GetTick();
    for (;;) {
        #if defined(STM32F4) || defined(STM32L1)
        if (self->uartx->SR & flag) {
            return true;
        }
        #else
        if (self->uartx->ISR & flag) {
            return true;
        }
        #endif
        if (timeout == 0 || HAL_GetTick() - start >= timeout) {
            return false; // timeout
        }
    }
}

// src - a pointer to the data to send (16-bit aligned for 9-bit chars)
// num_chars - number of characters to send (9-bit chars count for 2 bytes from src)
// *errcode - returns 0 for success, MP_Exxx on error
// returns the number of characters sent (valid even if there was an error)
size_t uart_tx_data(machine_uart_obj_t *self, const void *src_in, size_t num_chars, int *errcode) {
    if (num_chars == 0) {
        *errcode = 0;
        return 0;
    }

    uint32_t timeout;
    #if defined(STM32G4)
    // With using UART FIFO, the timeout should be long enough that FIFO becomes empty.
    // Since previous data transfer may be ongoing, the timeout must be multiplied
    // timeout_char by FIFO size + 1.
    // STM32G4 has 8 words FIFO.
    timeout = (8 + 1) * self->timeout_char;
    #elif defined(STM32H7)
    // STM32H7 has 16 words FIFO.
    timeout = (16 + 1) * self->timeout_char;
    #else
    // The timeout specified here is for waiting for the TX data register to
    // become empty (ie between chars), as well as for the final char to be
    // completely transferred.  The default value for timeout_char is long
    // enough for 1 char, but we need to double it to wait for the last char
    // to be transferred to the data register, and then to be transmitted.
    timeout = 2 * self->timeout_char;
    #endif

    const uint8_t *src = (const uint8_t *)src_in;
    size_t num_tx = 0;
    USART_TypeDef *uart = self->uartx;

    while (num_tx < num_chars) {
        if (!uart_wait_flag_set(self, UART_FLAG_TXE, timeout)) {
            *errcode = MP_ETIMEDOUT;
            return num_tx;
        }
        uint32_t data;
        if (self->char_width == CHAR_WIDTH_9BIT) {
            data = *((uint16_t *)src) & 0x1ff;
            src += 2;
        } else {
            data = *src++;
        }
        #if defined(STM32F4) || defined(STM32L1)
        uart->DR = data;
        #else
        uart->TDR = data;
        #endif
        ++num_tx;
    }

    // wait for the UART frame to complete
    if (!uart_wait_flag_set(self, UART_FLAG_TC, timeout)) {
        *errcode = MP_ETIMEDOUT;
        return num_tx;
    }

    *errcode = 0;
    return num_tx;
}

void uart_tx_strn(machine_uart_obj_t *uart_obj, const char *str, uint len) {
    int errcode;
    uart_tx_data(uart_obj, str, len, &errcode);
}

// This IRQ handler is set up to handle RXNE, IDLE and ORE interrupts only.
// Notes:
// - ORE (overrun error) is tied to the RXNE IRQ line.
// - On STM32F4 the IRQ flags are cleared by reading SR then DR.
void uart_irq_handler(mp_uint_t uart_id) {
    // get the uart object
    machine_uart_obj_t *self = MP_STATE_PORT(machine_uart_obj_all)[uart_id - 1];

    if (self == NULL) {
        // UART object has not been set, so we can't do anything, not
        // even disable the IRQ.  This should never happen.
        return;
    }

    // Capture IRQ status flags.
    #if defined(STM32F4) || defined(STM32L1)
    self->mp_irq_flags = self->uartx->SR;
    bool rxne_is_set = self->mp_irq_flags & USART_SR_RXNE;
    bool did_clear_sr = false;
    #else
    self->mp_irq_flags = self->uartx->ISR;
    bool rxne_is_set = self->mp_irq_flags & USART_ISR_RXNE;
    #endif

    // Process RXNE flag, either read the character or disable the interrupt.
    if (rxne_is_set) {
        if (self->read_buf_len != 0) {
            uint16_t next_head = (self->read_buf_head + 1) % self->read_buf_len;
            if (next_head != self->read_buf_tail) {
                // only read data if room in buf
                #if defined(STM32F0) || defined(STM32F7) || defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4) || defined(STM32N6) || defined(STM32WB) || defined(STM32WL)
                int data = self->uartx->RDR; // clears UART_FLAG_RXNE
                #else
                self->mp_irq_flags = self->uartx->SR; // resample to get any new flags since next read of DR will clear SR
                int data = self->uartx->DR; // clears UART_FLAG_RXNE
                did_clear_sr = true;
                #endif
                data &= self->char_mask;
                if (self->attached_to_repl && data == mp_interrupt_char) {
                    // Handle interrupt coming in on a UART REPL
                    mp_sched_keyboard_interrupt();
                } else {
                    if (self->char_width == CHAR_WIDTH_9BIT) {
                        ((uint16_t *)self->read_buf)[self->read_buf_head] = data;
                    } else {
                        self->read_buf[self->read_buf_head] = data;
                    }
                    self->read_buf_head = next_head;
                }
            } else { // No room: leave char in buf, disable interrupt
                UART_RXNE_IT_DIS(self->uartx);
            }
        } else {
            // No buffering, disable interrupt.
            UART_RXNE_IT_DIS(self->uartx);
        }
    }

    // Clear other interrupt flags that can trigger this IRQ handler.
    #if defined(STM32F4) || defined(STM32L1)
    if (did_clear_sr) {
        // SR was cleared above.  Re-enable IDLE if it should be enabled.
        if (self->mp_irq_trigger & UART_FLAG_IDLE) {
            self->uartx->CR1 |= USART_CR1_IDLEIE;
        }
    } else {
        // On STM32F4 the only way to clear flags is to read SR then DR, but that may
        // lead to a loss of data in DR.  So instead the IRQs are disabled.
        if (self->mp_irq_flags & USART_SR_IDLE) {
            self->uartx->CR1 &= ~USART_CR1_IDLEIE;
        }
        if (self->mp_irq_flags & USART_SR_ORE) {
            // ORE is tied to RXNE so that must be disabled.
            self->uartx->CR1 &= ~USART_CR1_RXNEIE;
        }
    }
    if (self->suppress_idle_irq) {
        self->mp_irq_flags &= ~USART_SR_IDLE;
    }
    #else
    self->uartx->ICR = self->mp_irq_flags & (USART_ICR_IDLECF | USART_ICR_ORECF);
    #endif

    // Check the flags to see if the user handler should be called
    if (self->mp_irq_trigger & self->mp_irq_flags) {
        mp_irq_handler(self->mp_irq_obj);
    }

    #if defined(STM32F4) || defined(STM32L1)
    if (did_clear_sr) {
        self->suppress_idle_irq = false;
    } else {
        self->suppress_idle_irq = true;
    }
    #endif
}

static mp_uint_t uart_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
    machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
    uart_irq_config(self, false);
    self->mp_irq_trigger = new_trigger;
    uart_irq_config(self, true);
    return 0;
}

static mp_uint_t uart_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
    machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
    if (info_type == MP_IRQ_INFO_FLAGS) {
        return self->mp_irq_flags;
    } else if (info_type == MP_IRQ_INFO_TRIGGERS) {
        return self->mp_irq_trigger;
    }
    return 0;
}

const mp_irq_methods_t uart_irq_methods = {
    .trigger = uart_irq_trigger,
    .info = uart_irq_info,
};

MP_REGISTER_ROOT_POINTER(struct _machine_uart_obj_t *machine_uart_obj_all[MICROPY_HW_MAX_UART + MICROPY_HW_MAX_LPUART]);