1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
|
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mpconfig.h"
#include "py/misc.h"
#if MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_NONE
#include <assert.h>
#include <stdlib.h>
#include <stdint.h>
#include <math.h>
#include "py/formatfloat.h"
#include "py/parsenum.h"
/***********************************************************************
Routine for converting a arbitrary floating
point number into a string.
The code in this function was inspired from Dave Hylands's previous
version, which was itself inspired from Fred Bayer's pdouble.c.
The original code can be found in https://github.com/dhylands/format-float
***********************************************************************/
// Float formatting debug code is intended for use in ports/unix only,
// as it uses the libc float printing function as a reference.
#define DEBUG_FLOAT_FORMATTING 0
#if DEBUG_FLOAT_FORMATTING
#define DEBUG_PRINTF(...) fprintf(stderr, __VA_ARGS__)
#else
#define DEBUG_PRINTF(...)
#endif
#if MICROPY_FLOAT_FORMAT_IMPL == MICROPY_FLOAT_FORMAT_IMPL_EXACT || MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
#define MP_FFUINT_FMT "%lu"
#else
#define MP_FFUINT_FMT "%u"
#endif
static inline int fp_expval(mp_float_t x) {
mp_float_union_t fb = { x };
return (int)fb.p.exp - MP_FLOAT_EXP_OFFSET;
}
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
static inline int fp_isless1(mp_float_t x) {
return x < 1.0;
}
static inline int fp_iszero(mp_float_t x) {
return x == 0.0;
}
#if MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_APPROX
static inline int fp_equal(mp_float_t x, mp_float_t y) {
return x == y;
}
#else
static inline mp_float_t fp_diff(mp_float_t x, mp_float_t y) {
return x - y;
}
#endif
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
// The functions below are roughly equivalent to the ones above,
// but they are optimized to reduce code footprint by skipping
// handling for special values such as nan, inf, +/-0.0
// for ports where FP support is done in software.
//
// They also take into account lost bits of REPR_C as needed.
static inline int fp_isless1(mp_float_t x) {
mp_float_union_t fb = { x };
return fb.i < 0x3f800000;
}
static inline int fp_iszero(mp_float_t x) {
mp_float_union_t x_check = { x };
return !x_check.i; // this is valid for REPR_C as well
}
#if MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_APPROX
static inline int fp_equal(mp_float_t x, mp_float_t y) {
mp_float_union_t x_check = { x };
mp_float_union_t y_check = { y };
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
return (x_check.i & ~3) == (y_check.i & ~3);
#else
return x_check.i == y_check.i;
#endif
}
#else
static inline mp_float_t fp_diff(mp_float_t x, mp_float_t y) {
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
mp_float_union_t x_check = { x };
mp_float_union_t y_check = { y };
x_check.i &= ~3;
y_check.i &= ~3;
return x_check.f - y_check.f;
#else
return x - y;
#endif
}
#endif
#endif
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define FPMIN_BUF_SIZE 6 // +9e+99
#define MAX_MANTISSA_DIGITS (9)
#define SAFE_MANTISSA_DIGITS (6)
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
#define FPMIN_BUF_SIZE 7 // +9e+199
#define MAX_MANTISSA_DIGITS (19)
#define SAFE_MANTISSA_DIGITS (16)
#endif
// Internal formatting flags
#define FMT_MODE_E 0x01 // render using scientific notation (%e)
#define FMT_MODE_G 0x02 // render using general format (%g)
#define FMT_MODE_F 0x04 // render using using expanded fixed-point format (%f)
#define FMT_E_CASE 0x20 // don't change this value (used for case conversion!)
static char *mp_prepend_zeros(char *s, int cnt) {
*s++ = '0';
*s++ = '.';
while (cnt > 0) {
*s++ = '0';
cnt--;
}
return s;
}
// Helper to convert a decimal mantissa (provided as an mp_large_float_uint_t) to string
static int mp_format_mantissa(mp_large_float_uint_t mantissa, mp_large_float_uint_t mantissa_cap, char *buf, char *s,
int num_digits, int max_exp_zeros, int trailing_zeros, int dec, int e, int fmt_flags) {
DEBUG_PRINTF("mantissa=" MP_FFUINT_FMT " exp=%d (cap=" MP_FFUINT_FMT "):\n", mantissa, e, mantissa_cap);
if (mantissa) {
// If rounding/searching created an extra digit or removed too many, fix mantissa first
if (mantissa >= mantissa_cap) {
if (fmt_flags & FMT_MODE_F) {
assert(e >= 0);
num_digits++;
dec++;
} else {
mantissa /= 10;
e++;
}
}
}
// When 'g' format is used, replace small exponents by explicit zeros
if ((fmt_flags & FMT_MODE_G) && e != 0) {
if (e >= 0) {
// If 0 < e < max_exp_zeros, expand positive exponent into trailing zeros
if (e < max_exp_zeros) {
dec += e;
if (dec >= num_digits) {
trailing_zeros = dec - (num_digits - 1);
}
e = 0;
}
} else {
// If -4 <= e < 0, expand negative exponent without losing significant digits
if (e >= -4) {
int cnt = 0;
while (e < 0 && !(mantissa % 10)) {
mantissa /= 10;
cnt++;
e++;
}
num_digits -= cnt;
s = mp_prepend_zeros(s, cnt - e - 1);
dec = 255;
e = 0;
}
}
}
// Convert the integer mantissa to string
for (int digit = num_digits - 1; digit >= 0; digit--) {
int digit_ofs = (digit > dec ? digit + 1 : digit);
s[digit_ofs] = '0' + (int)(mantissa % 10);
mantissa /= 10;
}
int dot = (dec >= 255);
if (dec + 1 < num_digits) {
dot = 1;
s++;
s[dec] = '.';
}
s += num_digits;
#if DEBUG_FLOAT_FORMATTING
*s = 0;
DEBUG_PRINTF(" = %s exp=%d num_digits=%d zeros=%d dec=%d\n", buf, e, num_digits, trailing_zeros, dec);
#endif
// Append or remove trailing zeros, as required by format
if (trailing_zeros) {
dec -= num_digits - 1;
while (trailing_zeros--) {
if (!dec--) {
*s++ = '.';
dot = 1;
}
*s++ = '0';
}
}
if (fmt_flags & FMT_MODE_G) {
// 'g' format requires to remove trailing zeros after decimal point
if (dot) {
while (s[-1] == '0') {
s--;
}
if (s[-1] == '.') {
s--;
}
}
}
// Append the exponent if needed
if (((e != 0) || (fmt_flags & FMT_MODE_E)) && !(fmt_flags & FMT_MODE_F)) {
*s++ = 'E' | (fmt_flags & FMT_E_CASE);
if (e >= 0) {
*s++ = '+';
} else {
*s++ = '-';
e = -e;
}
if (e >= 100) {
*s++ = '0' + (e / 100);
}
*s++ = '0' + ((e / 10) % 10);
*s++ = '0' + (e % 10);
}
*s = '\0';
DEBUG_PRINTF(" ===> %s\n", buf);
return s - buf;
}
// minimal value expected for buf_size, to avoid checking everywhere for overflow
#define MIN_BUF_SIZE (MAX_MANTISSA_DIGITS + 10)
int mp_format_float(mp_float_t f_entry, char *buf_entry, size_t buf_size, char fmt, int prec, char sign) {
assert(buf_size >= MIN_BUF_SIZE);
// Handle sign
mp_float_t f = f_entry;
char *buf = buf_entry;
if (signbit(f_entry) && !isnan(f_entry)) {
f = -f;
sign = '-';
}
if (sign) {
*buf++ = sign;
buf_size--;
}
// Handle inf/nan
char uc = fmt & 0x20;
{
char *s = buf;
if (isinf(f)) {
*s++ = 'I' ^ uc;
*s++ = 'N' ^ uc;
*s++ = 'F' ^ uc;
goto ret;
} else if (isnan(f)) {
*s++ = 'N' ^ uc;
*s++ = 'A' ^ uc;
*s++ = 'N' ^ uc;
ret:
*s = '\0';
return s - buf_entry;
}
}
// Decode format character
int fmt_flags = (unsigned char)uc; // setup FMT_E_CASE, clear all other bits
char lofmt = (char)(fmt | 0x20); // fmt in lowercase
if (lofmt == 'f') {
fmt_flags |= FMT_MODE_F;
} else if (lofmt == 'g') {
fmt_flags |= FMT_MODE_G;
} else {
fmt_flags |= FMT_MODE_E;
}
// When precision is unspecified, default to 6
if (prec < 0) {
prec = 6;
}
// Use high precision for `repr`, but switch to exponent mode
// after 16 digits in any case to match CPython behaviour
int max_exp_zeros = (prec < (int)buf_size - 3 ? prec : (int)buf_size - 3);
if (prec == MP_FLOAT_REPR_PREC) {
prec = MAX_MANTISSA_DIGITS;
max_exp_zeros = 16;
}
// Precompute the exact decimal exponent of f, such that
// abs(e) is lower bound on abs(power of 10 exponent).
int e = 0;
if (!fp_iszero(f)) {
// Approximate power of 10 exponent from binary exponent.
e = (int)(fp_expval(f) * MICROPY_FLOAT_CONST(0.3010299956639812)); // 1/log2(10).
int positive_exp = !fp_isless1(f);
mp_float_t u_base = (mp_float_t)mp_decimal_exp((mp_large_float_t)1.0, e + positive_exp);
while ((f >= u_base) == positive_exp) {
e += (positive_exp ? 1 : -1);
u_base = (mp_float_t)mp_decimal_exp((mp_large_float_t)1.0, e + positive_exp);
}
}
// For 'e' format, prec is # digits after the decimal
// For 'f' format, prec is # digits after the decimal
// For 'g' format, prec is the max number of significant digits
//
// For 'e' & 'g' format, there will be a single digit before the decimal
// For 'f' format, zeros must be expanded instead of using an exponent.
// Make sure there is enough room in the buffer for them, or switch to format 'g'.
if ((fmt_flags & FMT_MODE_F) && e > 0) {
int req_size = e + prec + 2;
if (req_size > (int)buf_size) {
fmt_flags ^= FMT_MODE_F;
fmt_flags |= FMT_MODE_G;
prec++;
}
}
// To work independently of the format, we precompute:
// - the max number of significant digits to produce
// - the number of leading zeros to prepend (mode f only)
// - the number of trailing zeros to append
int max_digits = prec;
int lead_zeros = 0;
int trail_zeros = 0;
if (fmt_flags & FMT_MODE_F) {
if (max_digits > (int)buf_size - 3) {
// cannot satisfy requested number of decimals given buf_size, sorry
max_digits = (int)buf_size - 3;
}
if (e < 0) {
if (max_digits > 2 && e < -2) {
// Insert explicit leading zeros
lead_zeros = (-e < max_digits ? -e : max_digits) - 2;
max_digits -= lead_zeros;
} else {
max_digits++;
}
} else {
max_digits += e + 1;
}
} else {
if (!(fmt_flags & FMT_MODE_G) || max_digits == 0) {
max_digits++;
}
}
if (max_digits > MAX_MANTISSA_DIGITS) {
// use trailing zeros to avoid overflowing the mantissa
trail_zeros = max_digits - MAX_MANTISSA_DIGITS;
max_digits = MAX_MANTISSA_DIGITS;
}
int overhead = (fmt_flags & FMT_MODE_F ? 3 : FPMIN_BUF_SIZE + 1);
if (trail_zeros > (int)buf_size - max_digits - overhead) {
// cannot satisfy requested number of decimals given buf_size, sorry
trail_zeros = (int)buf_size - max_digits - overhead;
}
// When the caller asks for more precision than available for sure,
// Look for a shorter (rounded) representation first, and only dig
// into more digits if there is no short representation.
int num_digits = (SAFE_MANTISSA_DIGITS < max_digits ? SAFE_MANTISSA_DIGITS : max_digits);
try_again:
;
char *s = buf;
int extra_zeros = trail_zeros + (max_digits - num_digits);
int decexp;
int dec = 0;
if (fp_iszero(f)) {
// no need for scaling 0.0
decexp = 0;
} else if (fmt_flags & FMT_MODE_F) {
decexp = num_digits - 1;
if (e < 0) {
// Negative exponent: we keep a single leading zero in the mantissa,
// as using more would waste precious digits needed for accuracy.
if (lead_zeros > 0) {
// We are using leading zeros
s = mp_prepend_zeros(s, lead_zeros);
decexp += lead_zeros + 1;
dec = 255; // no decimal dot
} else {
// Small negative exponent, work directly on the mantissa
dec = 0;
}
} else {
// Positive exponent: we will add trailing zeros separately
decexp -= e;
dec = e;
}
} else {
decexp = num_digits - e - 1;
}
DEBUG_PRINTF("input=%.19g e=%d fmt=%c max_d=%d num_d=%d decexp=%d dec=%d l0=%d r0=%d\n",
(double)f, e, lofmt, max_digits, num_digits, decexp, dec, lead_zeros, extra_zeros);
// At this point,
// - buf points to beginning of output buffer for the unsigned representation
// - num_digits == the number of mantissa digits to add
// - (dec + 1) == the number of digits to print before adding a decimal point
// - decexp == the power of 10 exponent to apply to f to get the decimal mantissa
// - e == the power of 10 exponent to append ('e' or 'g' format)
mp_large_float_uint_t mantissa_cap = 10;
for (int n = 1; n < num_digits; n++) {
mantissa_cap *= 10;
}
// Build the decimal mantissa into a large uint
mp_large_float_uint_t mantissa = 1;
if (sizeof(mp_large_float_t) == sizeof(mp_float_t) && num_digits > SAFE_MANTISSA_DIGITS && decexp > 1) {
// if we don't have large floats, use integer multiply to produce the last digits
if (num_digits > SAFE_MANTISSA_DIGITS + 1 && decexp > 2) {
mantissa = 100;
decexp -= 2;
} else {
mantissa = 10;
decexp -= 1;
}
}
mp_large_float_t mantissa_f = mp_decimal_exp((mp_large_float_t)f, decexp);
mantissa *= (mp_large_float_uint_t)(mantissa_f + (mp_large_float_t)0.5);
DEBUG_PRINTF("input=%.19g fmt=%c num_digits=%d dec=%d mantissa=" MP_FFUINT_FMT " r0=%d\n", (double)f, lofmt, num_digits, dec, mantissa, extra_zeros);
// Finally convert the decimal mantissa to a floating-point string, according to formatting rules
int reprlen = mp_format_mantissa(mantissa, mantissa_cap, buf, s, num_digits, max_exp_zeros, extra_zeros, dec, e, fmt_flags);
assert(reprlen + 1 <= (int)buf_size);
#if MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_APPROX
if (num_digits < max_digits) {
// The initial precision might not be sufficient for an exact representation
// for all numbers. If the result is not exact, restart using next precision.
// parse the resulting number and compare against the original
mp_float_t check;
DEBUG_PRINTF("input=%.19g, compare to float('%s')\n", (double)f, buf);
mp_parse_float_internal(buf, reprlen, &check);
if (!fp_equal(check, f)) {
num_digits++;
DEBUG_PRINTF("Not perfect, retry using more digits (%d)\n", num_digits);
goto try_again;
}
}
#else
// The initial decimal mantissa might not have been be completely accurate due
// to the previous loating point operations. The best way to verify this is to
// parse the resulting number and compare against the original
mp_float_t check;
DEBUG_PRINTF("input=%.19g, compare to float('%s')\n", (double)f, buf);
mp_parse_float_internal(buf, reprlen, &check);
mp_float_t diff = fp_diff(check, f);
mp_float_t best_diff = diff;
mp_large_float_uint_t best_mantissa = mantissa;
if (fp_iszero(diff)) {
// we have a perfect match
DEBUG_PRINTF(MP_FFUINT_FMT ": perfect match (direct)\n", mantissa);
} else {
// In order to get the best possible representation, we will perform a
// dichotomic search for a reversible representation.
// This will also provide optimal rounding on the fly.
unsigned err_range = 1;
if (num_digits > SAFE_MANTISSA_DIGITS) {
err_range <<= 3 * (num_digits - SAFE_MANTISSA_DIGITS);
}
int maxruns = 3 + 3 * (MAX_MANTISSA_DIGITS - SAFE_MANTISSA_DIGITS);
while (maxruns-- > 0) {
// update mantissa according to dichotomic search
if (signbit(diff)) {
mantissa += err_range;
} else {
// mantissa is expected to always have more significant digits than err_range
assert(mantissa >= err_range);
mantissa -= err_range;
}
// retry conversion
reprlen = mp_format_mantissa(mantissa, mantissa_cap, buf, s, num_digits, max_exp_zeros, extra_zeros, dec, e, fmt_flags);
assert(reprlen + 1 <= (int)buf_size);
DEBUG_PRINTF("input=%.19g, compare to float('%s')\n", (double)f, buf);
mp_parse_float_internal(buf, reprlen, &check);
DEBUG_PRINTF("check=%.19g num_digits=%d e=%d mantissa=" MP_FFUINT_FMT "\n", (double)check, num_digits, e, mantissa);
diff = fp_diff(check, f);
if (fp_iszero(diff)) {
// we have a perfect match
DEBUG_PRINTF(MP_FFUINT_FMT ": perfect match\n", mantissa);
break;
}
// keep track of our best estimate
mp_float_t delta = MICROPY_FLOAT_C_FUN(fabs)(diff) - MICROPY_FLOAT_C_FUN(fabs)(best_diff);
if (signbit(delta) || (fp_iszero(delta) && !(mantissa % 10u))) {
best_diff = diff;
best_mantissa = mantissa;
}
// string repr is not perfect: continue a dichotomic improvement
DEBUG_PRINTF(MP_FFUINT_FMT ": %.19g, err_range=%d\n", mantissa, (double)check, err_range);
if (err_range > 1) {
err_range >>= 1;
} else {
// We have tried all possible mantissa, without finding a reversible repr.
// Check if we have an alternate precision to try.
if (num_digits < max_digits) {
num_digits++;
DEBUG_PRINTF("Failed to find a perfect match, try with more digits (%d)\n", num_digits);
goto try_again;
}
// Otherwise, keep the closest one, which is either the first one or the last one.
if (mantissa == best_mantissa) {
// Last guess is the best one
DEBUG_PRINTF(MP_FFUINT_FMT ": last guess was the best one\n", mantissa);
} else {
// We had a better guess earlier
DEBUG_PRINTF(MP_FFUINT_FMT ": use best guess\n", mantissa);
reprlen = mp_format_mantissa(best_mantissa, mantissa_cap, buf, s, num_digits, max_exp_zeros, extra_zeros, dec, e, fmt_flags);
}
break;
}
}
}
#endif
return buf + reprlen - buf_entry;
}
#endif // MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_NONE
|