diff options
author | Bruce Momjian <bruce@momjian.us> | 2014-05-06 12:12:18 -0400 |
---|---|---|
committer | Bruce Momjian <bruce@momjian.us> | 2014-05-06 12:12:18 -0400 |
commit | 0a7832005792fa6dad171f9cadb8d587fe0dd800 (patch) | |
tree | 365cfc42c521a52607e41394b08ef44d338d8fc1 /src/backend/access/nbtree/nbtinsert.c | |
parent | fb85cd4320414c3f6e9c8bc69ec944200ae1e493 (diff) |
pgindent run for 9.4
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
Diffstat (limited to 'src/backend/access/nbtree/nbtinsert.c')
-rw-r--r-- | src/backend/access/nbtree/nbtinsert.c | 47 |
1 files changed, 23 insertions, 24 deletions
diff --git a/src/backend/access/nbtree/nbtinsert.c b/src/backend/access/nbtree/nbtinsert.c index 0d806af5055..d64cbd98223 100644 --- a/src/backend/access/nbtree/nbtinsert.c +++ b/src/backend/access/nbtree/nbtinsert.c @@ -90,7 +90,7 @@ static void _bt_vacuum_one_page(Relation rel, Buffer buffer, Relation heapRel); * By here, itup is filled in, including the TID. * * If checkUnique is UNIQUE_CHECK_NO or UNIQUE_CHECK_PARTIAL, this - * will allow duplicates. Otherwise (UNIQUE_CHECK_YES or + * will allow duplicates. Otherwise (UNIQUE_CHECK_YES or * UNIQUE_CHECK_EXISTING) it will throw error for a duplicate. * For UNIQUE_CHECK_EXISTING we merely run the duplicate check, and * don't actually insert. @@ -129,7 +129,7 @@ top: * If the page was split between the time that we surrendered our read * lock and acquired our write lock, then this page may no longer be the * right place for the key we want to insert. In this case, we need to - * move right in the tree. See Lehman and Yao for an excruciatingly + * move right in the tree. See Lehman and Yao for an excruciatingly * precise description. */ buf = _bt_moveright(rel, buf, natts, itup_scankey, false, @@ -211,7 +211,7 @@ top: * is the first tuple on the next page. * * Returns InvalidTransactionId if there is no conflict, else an xact ID - * we must wait for to see if it commits a conflicting tuple. If an actual + * we must wait for to see if it commits a conflicting tuple. If an actual * conflict is detected, no return --- just ereport(). * * However, if checkUnique == UNIQUE_CHECK_PARTIAL, we always return @@ -293,7 +293,7 @@ _bt_check_unique(Relation rel, IndexTuple itup, Relation heapRel, /* * If we are doing a recheck, we expect to find the tuple we - * are rechecking. It's not a duplicate, but we have to keep + * are rechecking. It's not a duplicate, but we have to keep * scanning. */ if (checkUnique == UNIQUE_CHECK_EXISTING && @@ -482,7 +482,7 @@ _bt_check_unique(Relation rel, IndexTuple itup, Relation heapRel, * If the new key is equal to one or more existing keys, we can * legitimately place it anywhere in the series of equal keys --- in fact, * if the new key is equal to the page's "high key" we can place it on - * the next page. If it is equal to the high key, and there's not room + * the next page. If it is equal to the high key, and there's not room * to insert the new tuple on the current page without splitting, then * we can move right hoping to find more free space and avoid a split. * (We should not move right indefinitely, however, since that leads to @@ -494,7 +494,7 @@ _bt_check_unique(Relation rel, IndexTuple itup, Relation heapRel, * removing any LP_DEAD tuples. * * On entry, *buf and *offsetptr point to the first legal position - * where the new tuple could be inserted. The caller should hold an + * where the new tuple could be inserted. The caller should hold an * exclusive lock on *buf. *offsetptr can also be set to * InvalidOffsetNumber, in which case the function will search for the * right location within the page if needed. On exit, they point to the @@ -564,7 +564,7 @@ _bt_findinsertloc(Relation rel, * on every insert. We implement "get tired" as a random choice, * since stopping after scanning a fixed number of pages wouldn't work * well (we'd never reach the right-hand side of previously split - * pages). Currently the probability of moving right is set at 0.99, + * pages). Currently the probability of moving right is set at 0.99, * which may seem too high to change the behavior much, but it does an * excellent job of preventing O(N^2) behavior with many equal keys. *---------- @@ -574,7 +574,7 @@ _bt_findinsertloc(Relation rel, while (PageGetFreeSpace(page) < itemsz) { Buffer rbuf; - BlockNumber rblkno; + BlockNumber rblkno; /* * before considering moving right, see if we can obtain enough space @@ -620,10 +620,10 @@ _bt_findinsertloc(Relation rel, lpageop = (BTPageOpaque) PageGetSpecialPointer(page); /* - * If this page was incompletely split, finish the split now. - * We do this while holding a lock on the left sibling, which - * is not good because finishing the split could be a fairly - * lengthy operation. But this should happen very seldom. + * If this page was incompletely split, finish the split now. We + * do this while holding a lock on the left sibling, which is not + * good because finishing the split could be a fairly lengthy + * operation. But this should happen very seldom. */ if (P_INCOMPLETE_SPLIT(lpageop)) { @@ -681,7 +681,7 @@ _bt_findinsertloc(Relation rel, * + updates the metapage if a true root or fast root is split. * * On entry, we must have the correct buffer in which to do the - * insertion, and the buffer must be pinned and write-locked. On return, + * insertion, and the buffer must be pinned and write-locked. On return, * we will have dropped both the pin and the lock on the buffer. * * When inserting to a non-leaf page, 'cbuf' is the left-sibling of the @@ -978,7 +978,7 @@ _bt_split(Relation rel, Buffer buf, Buffer cbuf, OffsetNumber firstright, * origpage is the original page to be split. leftpage is a temporary * buffer that receives the left-sibling data, which will be copied back * into origpage on success. rightpage is the new page that receives the - * right-sibling data. If we fail before reaching the critical section, + * right-sibling data. If we fail before reaching the critical section, * origpage hasn't been modified and leftpage is only workspace. In * principle we shouldn't need to worry about rightpage either, because it * hasn't been linked into the btree page structure; but to avoid leaving @@ -1196,7 +1196,7 @@ _bt_split(Relation rel, Buffer buf, Buffer cbuf, OffsetNumber firstright, * page. If you're confused, imagine that page A splits to A B and * then again, yielding A C B, while vacuum is in progress. Tuples * originally in A could now be in either B or C, hence vacuum must - * examine both pages. But if D, our right sibling, has a different + * examine both pages. But if D, our right sibling, has a different * cycleid then it could not contain any tuples that were in A when * the vacuum started. */ @@ -1330,11 +1330,10 @@ _bt_split(Relation rel, Buffer buf, Buffer cbuf, OffsetNumber firstright, lastrdata++; /* - * Although we don't need to WAL-log anything on the left page, - * we still need XLogInsert to consider storing a full-page image - * of the left page, so make an empty entry referencing that - * buffer. This also ensures that the left page is always backup - * block 1. + * Although we don't need to WAL-log anything on the left page, we + * still need XLogInsert to consider storing a full-page image of + * the left page, so make an empty entry referencing that buffer. + * This also ensures that the left page is always backup block 1. */ lastrdata->data = NULL; lastrdata->len = 0; @@ -1448,7 +1447,7 @@ _bt_split(Relation rel, Buffer buf, Buffer cbuf, OffsetNumber firstright, * * We return the index of the first existing tuple that should go on the * righthand page, plus a boolean indicating whether the new tuple goes on - * the left or right page. The bool is necessary to disambiguate the case + * the left or right page. The bool is necessary to disambiguate the case * where firstright == newitemoff. */ static OffsetNumber @@ -1684,7 +1683,7 @@ _bt_checksplitloc(FindSplitData *state, * * On entry, buf and rbuf are the left and right split pages, which we * still hold write locks on per the L&Y algorithm. We release the - * write locks once we have write lock on the parent page. (Any sooner, + * write locks once we have write lock on the parent page. (Any sooner, * and it'd be possible for some other process to try to split or delete * one of these pages, and get confused because it cannot find the downlink.) * @@ -1705,7 +1704,7 @@ _bt_insert_parent(Relation rel, * Here we have to do something Lehman and Yao don't talk about: deal with * a root split and construction of a new root. If our stack is empty * then we have just split a node on what had been the root level when we - * descended the tree. If it was still the root then we perform a + * descended the tree. If it was still the root then we perform a * new-root construction. If it *wasn't* the root anymore, search to find * the next higher level that someone constructed meanwhile, and find the * right place to insert as for the normal case. @@ -1917,7 +1916,7 @@ _bt_getstackbuf(Relation rel, BTStack stack, int access) /* * These loops will check every item on the page --- but in an * order that's attuned to the probability of where it actually - * is. Scan to the right first, then to the left. + * is. Scan to the right first, then to the left. */ for (offnum = start; offnum <= maxoff; |