summaryrefslogtreecommitdiff
path: root/contrib/pgcrypto/crypt-des.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/pgcrypto/crypt-des.c')
-rw-r--r--contrib/pgcrypto/crypt-des.c768
1 files changed, 0 insertions, 768 deletions
diff --git a/contrib/pgcrypto/crypt-des.c b/contrib/pgcrypto/crypt-des.c
deleted file mode 100644
index cadbcfd182f..00000000000
--- a/contrib/pgcrypto/crypt-des.c
+++ /dev/null
@@ -1,768 +0,0 @@
-/*
- * FreeSec: libcrypt for NetBSD
- *
- * Copyright (c) 1994 David Burren
- * All rights reserved.
- *
- * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
- * this file should now *only* export crypt(), in order to make
- * binaries of libcrypt exportable from the USA
- *
- * Adapted for FreeBSD-4.0 by Mark R V Murray
- * this file should now *only* export crypt_des(), in order to make
- * a module that can be optionally included in libcrypt.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the author nor the names of other contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * $FreeBSD: src/secure/lib/libcrypt/crypt-des.c,v 1.12 1999/09/20 12:39:20 markm Exp $
- *
- * This is an original implementation of the DES and the crypt(3) interfaces
- * by David Burren <davidb@werj.com.au>.
- *
- * An excellent reference on the underlying algorithm (and related
- * algorithms) is:
- *
- * B. Schneier, Applied Cryptography: protocols, algorithms,
- * and source code in C, John Wiley & Sons, 1994.
- *
- * Note that in that book's description of DES the lookups for the initial,
- * pbox, and final permutations are inverted (this has been brought to the
- * attention of the author). A list of errata for this book has been
- * posted to the sci.crypt newsgroup by the author and is available for FTP.
- *
- * ARCHITECTURE ASSUMPTIONS:
- * It is assumed that the 8-byte arrays passed by reference can be
- * addressed as arrays of uint32's (ie. the CPU is not picky about
- * alignment).
- */
-
-#include "postgres.h"
-
-#include "px.h"
-#include "px-crypt.h"
-
-/* for ntohl/htonl */
-#include <netinet/in.h>
-
-#define _PASSWORD_EFMT1 '_'
-
-static uint8 IP[64] = {
- 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
- 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
- 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
- 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
-};
-
-static uint8 inv_key_perm[64];
-static uint8 u_key_perm[56];
-static uint8 key_perm[56] = {
- 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
- 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
- 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
- 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
-};
-
-static uint8 key_shifts[16] = {
- 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
-};
-
-static uint8 inv_comp_perm[56];
-static uint8 comp_perm[48] = {
- 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
- 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
- 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
- 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
-};
-
-/*
- * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
- */
-
-static uint8 u_sbox[8][64];
-static uint8 sbox[8][64] = {
- {
- 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
- 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
- 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
- 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
- },
- {
- 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
- 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
- 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
- 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
- },
- {
- 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
- 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
- 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
- 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
- },
- {
- 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
- 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
- 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
- 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
- },
- {
- 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
- 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
- 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
- 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
- },
- {
- 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
- 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
- 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
- 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
- },
- {
- 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
- 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
- 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
- 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
- },
- {
- 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
- 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
- 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
- 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
- }
-};
-
-static uint8 un_pbox[32];
-static uint8 pbox[32] = {
- 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
- 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
-};
-
-static uint32 _crypt_bits32[32] =
-{
- 0x80000000, 0x40000000, 0x20000000, 0x10000000,
- 0x08000000, 0x04000000, 0x02000000, 0x01000000,
- 0x00800000, 0x00400000, 0x00200000, 0x00100000,
- 0x00080000, 0x00040000, 0x00020000, 0x00010000,
- 0x00008000, 0x00004000, 0x00002000, 0x00001000,
- 0x00000800, 0x00000400, 0x00000200, 0x00000100,
- 0x00000080, 0x00000040, 0x00000020, 0x00000010,
- 0x00000008, 0x00000004, 0x00000002, 0x00000001
-};
-
-static uint8 _crypt_bits8[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
-
-static uint32 saltbits;
-static long old_salt;
-static uint32 *bits28,
- *bits24;
-static uint8 init_perm[64],
- final_perm[64];
-static uint32 en_keysl[16],
- en_keysr[16];
-static uint32 de_keysl[16],
- de_keysr[16];
-static int des_initialised = 0;
-static uint8 m_sbox[4][4096];
-static uint32 psbox[4][256];
-static uint32 ip_maskl[8][256],
- ip_maskr[8][256];
-static uint32 fp_maskl[8][256],
- fp_maskr[8][256];
-static uint32 key_perm_maskl[8][128],
- key_perm_maskr[8][128];
-static uint32 comp_maskl[8][128],
- comp_maskr[8][128];
-static uint32 old_rawkey0,
- old_rawkey1;
-
-static inline int
-ascii_to_bin(char ch)
-{
- if (ch > 'z')
- return (0);
- if (ch >= 'a')
- return (ch - 'a' + 38);
- if (ch > 'Z')
- return (0);
- if (ch >= 'A')
- return (ch - 'A' + 12);
- if (ch > '9')
- return (0);
- if (ch >= '.')
- return (ch - '.');
- return (0);
-}
-
-static void
-des_init()
-{
- int i,
- j,
- b,
- k,
- inbit,
- obit;
- uint32 *p,
- *il,
- *ir,
- *fl,
- *fr;
-
- old_rawkey0 = old_rawkey1 = 0L;
- saltbits = 0L;
- old_salt = 0L;
- bits24 = (bits28 = _crypt_bits32 + 4) + 4;
-
- /*
- * Invert the S-boxes, reordering the input bits.
- */
- for (i = 0; i < 8; i++)
- for (j = 0; j < 64; j++)
- {
- b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
- u_sbox[i][j] = sbox[i][b];
- }
-
- /*
- * Convert the inverted S-boxes into 4 arrays of 8 bits. Each will
- * handle 12 bits of the S-box input.
- */
- for (b = 0; b < 4; b++)
- for (i = 0; i < 64; i++)
- for (j = 0; j < 64; j++)
- m_sbox[b][(i << 6) | j] =
- (u_sbox[(b << 1)][i] << 4) |
- u_sbox[(b << 1) + 1][j];
-
- /*
- * Set up the initial & final permutations into a useful form, and
- * initialise the inverted key permutation.
- */
- for (i = 0; i < 64; i++)
- {
- init_perm[final_perm[i] = IP[i] - 1] = i;
- inv_key_perm[i] = 255;
- }
-
- /*
- * Invert the key permutation and initialise the inverted key
- * compression permutation.
- */
- for (i = 0; i < 56; i++)
- {
- u_key_perm[i] = key_perm[i] - 1;
- inv_key_perm[key_perm[i] - 1] = i;
- inv_comp_perm[i] = 255;
- }
-
- /*
- * Invert the key compression permutation.
- */
- for (i = 0; i < 48; i++)
- inv_comp_perm[comp_perm[i] - 1] = i;
-
- /*
- * Set up the OR-mask arrays for the initial and final permutations,
- * and for the key initial and compression permutations.
- */
- for (k = 0; k < 8; k++)
- {
- for (i = 0; i < 256; i++)
- {
- *(il = &ip_maskl[k][i]) = 0L;
- *(ir = &ip_maskr[k][i]) = 0L;
- *(fl = &fp_maskl[k][i]) = 0L;
- *(fr = &fp_maskr[k][i]) = 0L;
- for (j = 0; j < 8; j++)
- {
- inbit = 8 * k + j;
- if (i & _crypt_bits8[j])
- {
- if ((obit = init_perm[inbit]) < 32)
- *il |= _crypt_bits32[obit];
- else
- *ir |= _crypt_bits32[obit - 32];
- if ((obit = final_perm[inbit]) < 32)
- *fl |= _crypt_bits32[obit];
- else
- *fr |= _crypt_bits32[obit - 32];
- }
- }
- }
- for (i = 0; i < 128; i++)
- {
- *(il = &key_perm_maskl[k][i]) = 0L;
- *(ir = &key_perm_maskr[k][i]) = 0L;
- for (j = 0; j < 7; j++)
- {
- inbit = 8 * k + j;
- if (i & _crypt_bits8[j + 1])
- {
- if ((obit = inv_key_perm[inbit]) == 255)
- continue;
- if (obit < 28)
- *il |= bits28[obit];
- else
- *ir |= bits28[obit - 28];
- }
- }
- *(il = &comp_maskl[k][i]) = 0L;
- *(ir = &comp_maskr[k][i]) = 0L;
- for (j = 0; j < 7; j++)
- {
- inbit = 7 * k + j;
- if (i & _crypt_bits8[j + 1])
- {
- if ((obit = inv_comp_perm[inbit]) == 255)
- continue;
- if (obit < 24)
- *il |= bits24[obit];
- else
- *ir |= bits24[obit - 24];
- }
- }
- }
- }
-
- /*
- * Invert the P-box permutation, and convert into OR-masks for
- * handling the output of the S-box arrays setup above.
- */
- for (i = 0; i < 32; i++)
- un_pbox[pbox[i] - 1] = i;
-
- for (b = 0; b < 4; b++)
- for (i = 0; i < 256; i++)
- {
- *(p = &psbox[b][i]) = 0L;
- for (j = 0; j < 8; j++)
- {
- if (i & _crypt_bits8[j])
- *p |= _crypt_bits32[un_pbox[8 * b + j]];
- }
- }
-
- des_initialised = 1;
-}
-
-static void
-setup_salt(long salt)
-{
- uint32 obit,
- saltbit;
- int i;
-
- if (salt == old_salt)
- return;
- old_salt = salt;
-
- saltbits = 0L;
- saltbit = 1;
- obit = 0x800000;
- for (i = 0; i < 24; i++)
- {
- if (salt & saltbit)
- saltbits |= obit;
- saltbit <<= 1;
- obit >>= 1;
- }
-}
-
-static int
-des_setkey(const char *key)
-{
- uint32 k0,
- k1,
- rawkey0,
- rawkey1;
- int shifts,
- round;
-
- if (!des_initialised)
- des_init();
-
- rawkey0 = ntohl(*(uint32 *) key);
- rawkey1 = ntohl(*(uint32 *) (key + 4));
-
- if ((rawkey0 | rawkey1)
- && rawkey0 == old_rawkey0
- && rawkey1 == old_rawkey1)
- {
- /*
- * Already setup for this key. This optimisation fails on a zero
- * key (which is weak and has bad parity anyway) in order to
- * simplify the starting conditions.
- */
- return (0);
- }
- old_rawkey0 = rawkey0;
- old_rawkey1 = rawkey1;
-
- /*
- * Do key permutation and split into two 28-bit subkeys.
- */
- k0 = key_perm_maskl[0][rawkey0 >> 25]
- | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
- | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
- | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
- | key_perm_maskl[4][rawkey1 >> 25]
- | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
- | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
- | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
- k1 = key_perm_maskr[0][rawkey0 >> 25]
- | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
- | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
- | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
- | key_perm_maskr[4][rawkey1 >> 25]
- | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
- | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
- | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
-
- /*
- * Rotate subkeys and do compression permutation.
- */
- shifts = 0;
- for (round = 0; round < 16; round++)
- {
- uint32 t0,
- t1;
-
- shifts += key_shifts[round];
-
- t0 = (k0 << shifts) | (k0 >> (28 - shifts));
- t1 = (k1 << shifts) | (k1 >> (28 - shifts));
-
- de_keysl[15 - round] =
- en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
- | comp_maskl[1][(t0 >> 14) & 0x7f]
- | comp_maskl[2][(t0 >> 7) & 0x7f]
- | comp_maskl[3][t0 & 0x7f]
- | comp_maskl[4][(t1 >> 21) & 0x7f]
- | comp_maskl[5][(t1 >> 14) & 0x7f]
- | comp_maskl[6][(t1 >> 7) & 0x7f]
- | comp_maskl[7][t1 & 0x7f];
-
- de_keysr[15 - round] =
- en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
- | comp_maskr[1][(t0 >> 14) & 0x7f]
- | comp_maskr[2][(t0 >> 7) & 0x7f]
- | comp_maskr[3][t0 & 0x7f]
- | comp_maskr[4][(t1 >> 21) & 0x7f]
- | comp_maskr[5][(t1 >> 14) & 0x7f]
- | comp_maskr[6][(t1 >> 7) & 0x7f]
- | comp_maskr[7][t1 & 0x7f];
- }
- return (0);
-}
-
-static int
-do_des(uint32 l_in, uint32 r_in, uint32 *l_out, uint32 *r_out, int count)
-{
- /*
- * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
- */
- uint32 l,
- r,
- *kl,
- *kr,
- *kl1,
- *kr1;
- uint32 f,
- r48l,
- r48r;
- int round;
-
- if (count == 0)
- return (1);
- else if (count > 0)
- {
- /*
- * Encrypting
- */
- kl1 = en_keysl;
- kr1 = en_keysr;
- }
- else
- {
- /*
- * Decrypting
- */
- count = -count;
- kl1 = de_keysl;
- kr1 = de_keysr;
- }
-
- /*
- * Do initial permutation (IP).
- */
- l = ip_maskl[0][l_in >> 24]
- | ip_maskl[1][(l_in >> 16) & 0xff]
- | ip_maskl[2][(l_in >> 8) & 0xff]
- | ip_maskl[3][l_in & 0xff]
- | ip_maskl[4][r_in >> 24]
- | ip_maskl[5][(r_in >> 16) & 0xff]
- | ip_maskl[6][(r_in >> 8) & 0xff]
- | ip_maskl[7][r_in & 0xff];
- r = ip_maskr[0][l_in >> 24]
- | ip_maskr[1][(l_in >> 16) & 0xff]
- | ip_maskr[2][(l_in >> 8) & 0xff]
- | ip_maskr[3][l_in & 0xff]
- | ip_maskr[4][r_in >> 24]
- | ip_maskr[5][(r_in >> 16) & 0xff]
- | ip_maskr[6][(r_in >> 8) & 0xff]
- | ip_maskr[7][r_in & 0xff];
-
- while (count--)
- {
- /*
- * Do each round.
- */
- kl = kl1;
- kr = kr1;
- round = 16;
- while (round--)
- {
- /*
- * Expand R to 48 bits (simulate the E-box).
- */
- r48l = ((r & 0x00000001) << 23)
- | ((r & 0xf8000000) >> 9)
- | ((r & 0x1f800000) >> 11)
- | ((r & 0x01f80000) >> 13)
- | ((r & 0x001f8000) >> 15);
-
- r48r = ((r & 0x0001f800) << 7)
- | ((r & 0x00001f80) << 5)
- | ((r & 0x000001f8) << 3)
- | ((r & 0x0000001f) << 1)
- | ((r & 0x80000000) >> 31);
-
- /*
- * Do salting for crypt() and friends, and XOR with the
- * permuted key.
- */
- f = (r48l ^ r48r) & saltbits;
- r48l ^= f ^ *kl++;
- r48r ^= f ^ *kr++;
-
- /*
- * Do sbox lookups (which shrink it back to 32 bits) and do
- * the pbox permutation at the same time.
- */
- f = psbox[0][m_sbox[0][r48l >> 12]]
- | psbox[1][m_sbox[1][r48l & 0xfff]]
- | psbox[2][m_sbox[2][r48r >> 12]]
- | psbox[3][m_sbox[3][r48r & 0xfff]];
-
- /*
- * Now that we've permuted things, complete f().
- */
- f ^= l;
- l = r;
- r = f;
- }
- r = l;
- l = f;
- }
-
- /*
- * Do final permutation (inverse of IP).
- */
- *l_out = fp_maskl[0][l >> 24]
- | fp_maskl[1][(l >> 16) & 0xff]
- | fp_maskl[2][(l >> 8) & 0xff]
- | fp_maskl[3][l & 0xff]
- | fp_maskl[4][r >> 24]
- | fp_maskl[5][(r >> 16) & 0xff]
- | fp_maskl[6][(r >> 8) & 0xff]
- | fp_maskl[7][r & 0xff];
- *r_out = fp_maskr[0][l >> 24]
- | fp_maskr[1][(l >> 16) & 0xff]
- | fp_maskr[2][(l >> 8) & 0xff]
- | fp_maskr[3][l & 0xff]
- | fp_maskr[4][r >> 24]
- | fp_maskr[5][(r >> 16) & 0xff]
- | fp_maskr[6][(r >> 8) & 0xff]
- | fp_maskr[7][r & 0xff];
- return (0);
-}
-
-static int
-des_cipher(const char *in, char *out, long salt, int count)
-{
- uint32 buffer[2];
- uint32 l_out,
- r_out,
- rawl,
- rawr;
- int retval;
-
- if (!des_initialised)
- des_init();
-
- setup_salt(salt);
-
- /* copy data to avoid assuming input is word-aligned */
- memcpy(buffer, in, sizeof(buffer));
-
- rawl = ntohl(buffer[0]);
- rawr = ntohl(buffer[1]);
-
- retval = do_des(rawl, rawr, &l_out, &r_out, count);
-
- buffer[0] = htonl(l_out);
- buffer[1] = htonl(r_out);
-
- /* copy data to avoid assuming output is word-aligned */
- memcpy(out, buffer, sizeof(buffer));
-
- return (retval);
-}
-
-char *
-px_crypt_des(const char *key, const char *setting)
-{
- int i;
- uint32 count,
- salt,
- l,
- r0,
- r1,
- keybuf[2];
- uint8 *p,
- *q;
- static uint8 output[21];
-
- if (!des_initialised)
- des_init();
-
-
- /*
- * Copy the key, shifting each character up by one bit and padding
- * with zeros.
- */
- q = (uint8 *) keybuf;
- while (q - (uint8 *) keybuf - 8)
- {
- if ((*q++ = *key << 1))
- key++;
- }
- if (des_setkey((uint8 *) keybuf))
- return (NULL);
-
-#ifndef DISABLE_XDES
- if (*setting == _PASSWORD_EFMT1)
- {
- /*
- * "new"-style: setting - underscore, 4 bytes of count, 4 bytes of
- * salt key - unlimited characters
- */
- for (i = 1, count = 0L; i < 5; i++)
- count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
-
- for (i = 5, salt = 0L; i < 9; i++)
- salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
-
- while (*key)
- {
- /*
- * Encrypt the key with itself.
- */
- if (des_cipher((uint8 *) keybuf, (uint8 *) keybuf, 0L, 1))
- return (NULL);
-
- /*
- * And XOR with the next 8 characters of the key.
- */
- q = (uint8 *) keybuf;
- while (q - (uint8 *) keybuf - 8 && *key)
- *q++ ^= *key++ << 1;
-
- if (des_setkey((uint8 *) keybuf))
- return (NULL);
- }
- strncpy(output, setting, 9);
-
- /*
- * Double check that we weren't given a short setting. If we were,
- * the above code will probably have created wierd values for
- * count and salt, but we don't really care. Just make sure the
- * output string doesn't have an extra NUL in it.
- */
- output[9] = '\0';
- p = output + strlen(output);
- }
- else
-#endif /* !DISABLE_XDES */
- {
- /*
- * "old"-style: setting - 2 bytes of salt key - up to 8 characters
- */
- count = 25;
-
- salt = (ascii_to_bin(setting[1]) << 6)
- | ascii_to_bin(setting[0]);
-
- output[0] = setting[0];
-
- /*
- * If the encrypted password that the salt was extracted from is
- * only 1 character long, the salt will be corrupted. We need to
- * ensure that the output string doesn't have an extra NUL in it!
- */
- output[1] = setting[1] ? setting[1] : output[0];
-
- p = output + 2;
- }
- setup_salt(salt);
-
- /*
- * Do it.
- */
- if (do_des(0L, 0L, &r0, &r1, count))
- return (NULL);
-
- /*
- * Now encode the result...
- */
- l = (r0 >> 8);
- *p++ = _crypt_a64[(l >> 18) & 0x3f];
- *p++ = _crypt_a64[(l >> 12) & 0x3f];
- *p++ = _crypt_a64[(l >> 6) & 0x3f];
- *p++ = _crypt_a64[l & 0x3f];
-
- l = (r0 << 16) | ((r1 >> 16) & 0xffff);
- *p++ = _crypt_a64[(l >> 18) & 0x3f];
- *p++ = _crypt_a64[(l >> 12) & 0x3f];
- *p++ = _crypt_a64[(l >> 6) & 0x3f];
- *p++ = _crypt_a64[l & 0x3f];
-
- l = r1 << 2;
- *p++ = _crypt_a64[(l >> 12) & 0x3f];
- *p++ = _crypt_a64[(l >> 6) & 0x3f];
- *p++ = _crypt_a64[l & 0x3f];
- *p = 0;
-
- return (output);
-}