summaryrefslogtreecommitdiff
path: root/contrib/seg/seg.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/seg/seg.c')
-rw-r--r--contrib/seg/seg.c1119
1 files changed, 0 insertions, 1119 deletions
diff --git a/contrib/seg/seg.c b/contrib/seg/seg.c
deleted file mode 100644
index 097304b6385..00000000000
--- a/contrib/seg/seg.c
+++ /dev/null
@@ -1,1119 +0,0 @@
-/******************************************************************************
- This file contains routines that can be bound to a Postgres backend and
- called by the backend in the process of processing queries. The calling
- format for these routines is dictated by Postgres architecture.
-******************************************************************************/
-
-#include "postgres.h"
-
-#include <float.h>
-
-#include "access/gist.h"
-#include "access/rtree.h"
-#include "utils/elog.h"
-#include "utils/palloc.h"
-#include "utils/builtins.h"
-
-#include "segdata.h"
-
-#define max(a,b) ((a) > (b) ? (a) : (b))
-#define min(a,b) ((a) <= (b) ? (a) : (b))
-#define abs(a) ((a) < (0) ? (-a) : (a))
-
-/*
-#define GIST_DEBUG
-#define GIST_QUERY_DEBUG
-*/
-
-extern void set_parse_buffer(char *str);
-extern int seg_yyparse();
-
-/*
-extern int seg_yydebug;
-*/
-
-/*
-** Input/Output routines
-*/
-SEG *seg_in(char *str);
-char *seg_out(SEG * seg);
-float32 seg_lower(SEG * seg);
-float32 seg_upper(SEG * seg);
-float32 seg_center(SEG * seg);
-
-/*
-** GiST support methods
-*/
-bool gseg_consistent(GISTENTRY *entry, SEG * query, StrategyNumber strategy);
-GISTENTRY *gseg_compress(GISTENTRY *entry);
-GISTENTRY *gseg_decompress(GISTENTRY *entry);
-float *gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
-GIST_SPLITVEC *gseg_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
-bool gseg_leaf_consistent(SEG * key, SEG * query, StrategyNumber strategy);
-bool gseg_internal_consistent(SEG * key, SEG * query, StrategyNumber strategy);
-SEG *gseg_union(bytea *entryvec, int *sizep);
-SEG *gseg_binary_union(SEG * r1, SEG * r2, int *sizep);
-bool *gseg_same(SEG * b1, SEG * b2, bool *result);
-
-
-/*
-** R-tree suport functions
-*/
-bool seg_same(SEG * a, SEG * b);
-bool seg_contains_int(SEG * a, int *b);
-bool seg_contains_float4(SEG * a, float4 *b);
-bool seg_contains_float8(SEG * a, float8 *b);
-bool seg_contains(SEG * a, SEG * b);
-bool seg_contained(SEG * a, SEG * b);
-bool seg_overlap(SEG * a, SEG * b);
-bool seg_left(SEG * a, SEG * b);
-bool seg_over_left(SEG * a, SEG * b);
-bool seg_right(SEG * a, SEG * b);
-bool seg_over_right(SEG * a, SEG * b);
-SEG *seg_union(SEG * a, SEG * b);
-SEG *seg_inter(SEG * a, SEG * b);
-void rt_seg_size(SEG * a, float *sz);
-float *seg_size(SEG * a);
-
-/*
-** Various operators
-*/
-int32 seg_cmp(SEG * a, SEG * b);
-bool seg_lt(SEG * a, SEG * b);
-bool seg_le(SEG * a, SEG * b);
-bool seg_gt(SEG * a, SEG * b);
-bool seg_ge(SEG * a, SEG * b);
-bool seg_different(SEG * a, SEG * b);
-
-/*
-** Auxiliary funxtions
-*/
-static int restore(char *s, float val, int n);
-int significant_digits(char *s);
-
-
-/*****************************************************************************
- * Input/Output functions
- *****************************************************************************/
-
-SEG *
-seg_in(char *str)
-{
- SEG *result = palloc(sizeof(SEG));
-
- set_parse_buffer(str);
-
- /*
- * seg_yydebug = 1;
- */
- if (seg_yyparse(result) != 0)
- {
- pfree(result);
- return NULL;
- }
- return (result);
-}
-
-/*
- * You might have noticed a slight inconsistency between the following
- * declaration and the SQL definition:
- * CREATE FUNCTION seg_out(opaque) RETURNS opaque ...
- * The reason is that the argument passed into seg_out is really just a
- * pointer. POSTGRES thinks all output functions are:
- * char *out_func(char *);
- */
-char *
-seg_out(SEG * seg)
-{
- char *result;
- char *p;
-
- if (seg == NULL)
- return (NULL);
-
- p = result = (char *) palloc(40);
-
- if (seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~')
- p += sprintf(p, "%c", seg->l_ext);
-
- if (seg->lower == seg->upper && seg->l_ext == seg->u_ext)
- {
- /*
- * indicates that this interval was built by seg_in off a single
- * point
- */
- p += restore(p, seg->lower, seg->l_sigd);
- }
- else
- {
- if (seg->l_ext != '-')
- {
- /* print the lower boudary if exists */
- p += restore(p, seg->lower, seg->l_sigd);
- p += sprintf(p, " ");
- }
- p += sprintf(p, "..");
- if (seg->u_ext != '-')
- {
- /* print the upper boudary if exists */
- p += sprintf(p, " ");
- if (seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~')
- p += sprintf(p, "%c", seg->u_ext);
- p += restore(p, seg->upper, seg->u_sigd);
- }
- }
-
- return (result);
-}
-
-float32
-seg_center(SEG * seg)
-{
- float32 result = (float32) palloc(sizeof(float32data));
-
- if (!seg)
- return (float32) NULL;
-
- *result = ((float) seg->lower + (float) seg->upper) / 2.0;
- return (result);
-}
-
-float32
-seg_lower(SEG * seg)
-{
- float32 result = (float32) palloc(sizeof(float32data));
-
- if (!seg)
- return (float32) NULL;
-
- *result = (float) seg->lower;
- return (result);
-}
-
-float32
-seg_upper(SEG * seg)
-{
- float32 result = (float32) palloc(sizeof(float32data));
-
- if (!seg)
- return (float32) NULL;
-
- *result = (float) seg->upper;
- return (result);
-}
-
-
-/*****************************************************************************
- * GiST functions
- *****************************************************************************/
-
-/*
-** The GiST Consistent method for segments
-** Should return false if for all data items x below entry,
-** the predicate x op query == FALSE, where op is the oper
-** corresponding to strategy in the pg_amop table.
-*/
-bool
-gseg_consistent(GISTENTRY *entry,
- SEG * query,
- StrategyNumber strategy)
-{
- /*
- * * if entry is not leaf, use gseg_internal_consistent, * else use
- * gseg_leaf_consistent
- */
- if (GIST_LEAF(entry))
- return (gseg_leaf_consistent((SEG *) DatumGetPointer(entry->key), query, strategy));
- else
- return (gseg_internal_consistent((SEG *) DatumGetPointer(entry->key), query, strategy));
-}
-
-/*
-** The GiST Union method for segments
-** returns the minimal bounding seg that encloses all the entries in entryvec
-*/
-SEG *
-gseg_union(bytea *entryvec, int *sizep)
-{
- int numranges,
- i;
- SEG *out = (SEG *) NULL;
- SEG *tmp;
-
-#ifdef GIST_DEBUG
- fprintf(stderr, "union\n");
-#endif
-
- numranges = (VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY);
- tmp = (SEG *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[0].key);
- *sizep = sizeof(SEG);
-
- for (i = 1; i < numranges; i++)
- {
- out = gseg_binary_union(tmp, (SEG *)
- DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[i].key),
- sizep);
- if (i > 1)
- pfree(tmp);
- tmp = out;
- }
-
- return (out);
-}
-
-/*
-** GiST Compress and Decompress methods for segments
-** do not do anything.
-*/
-GISTENTRY *
-gseg_compress(GISTENTRY *entry)
-{
- return (entry);
-}
-
-GISTENTRY *
-gseg_decompress(GISTENTRY *entry)
-{
- return (entry);
-}
-
-/*
-** The GiST Penalty method for segments
-** As in the R-tree paper, we use change in area as our penalty metric
-*/
-float *
-gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
-{
- SEG *ud;
- float tmp1,
- tmp2;
-
- ud = seg_union((SEG *) DatumGetPointer(origentry->key),
- (SEG *) DatumGetPointer(newentry->key));
- rt_seg_size(ud, &tmp1);
- rt_seg_size((SEG *) DatumGetPointer(origentry->key), &tmp2);
- *result = tmp1 - tmp2;
- pfree(ud);
-
-#ifdef GIST_DEBUG
- fprintf(stderr, "penalty\n");
- fprintf(stderr, "\t%g\n", *result);
-#endif
-
- return (result);
-}
-
-
-
-/*
-** The GiST PickSplit method for segments
-** We use Guttman's poly time split algorithm
-*/
-GIST_SPLITVEC *
-gseg_picksplit(bytea *entryvec,
- GIST_SPLITVEC *v)
-{
- OffsetNumber i,
- j;
- SEG *datum_alpha,
- *datum_beta;
- SEG *datum_l,
- *datum_r;
- SEG *union_d,
- *union_dl,
- *union_dr;
- SEG *inter_d;
- bool firsttime;
- float size_alpha,
- size_beta,
- size_union,
- size_inter;
- float size_waste,
- waste;
- float size_l,
- size_r;
- int nbytes;
- OffsetNumber seed_1 = 0,
- seed_2 = 0;
- OffsetNumber *left,
- *right;
- OffsetNumber maxoff;
-
-#ifdef GIST_DEBUG
- fprintf(stderr, "picksplit\n");
-#endif
-
- maxoff = ((VARSIZE(entryvec) - VARHDRSZ) / sizeof(GISTENTRY)) - 2;
- nbytes = (maxoff + 2) * sizeof(OffsetNumber);
- v->spl_left = (OffsetNumber *) palloc(nbytes);
- v->spl_right = (OffsetNumber *) palloc(nbytes);
-
- firsttime = true;
- waste = 0.0;
-
- for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
- {
- datum_alpha = (SEG *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[i].key);
- for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
- {
- datum_beta = (SEG *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[j].key);
-
- /* compute the wasted space by unioning these guys */
- /* size_waste = size_union - size_inter; */
- union_d = seg_union(datum_alpha, datum_beta);
- rt_seg_size(union_d, &size_union);
- inter_d = seg_inter(datum_alpha, datum_beta);
- rt_seg_size(inter_d, &size_inter);
- size_waste = size_union - size_inter;
-
- pfree(union_d);
-
- if (inter_d != (SEG *) NULL)
- pfree(inter_d);
-
- /*
- * are these a more promising split that what we've already
- * seen?
- */
-
- if (size_waste > waste || firsttime)
- {
- waste = size_waste;
- seed_1 = i;
- seed_2 = j;
- firsttime = false;
- }
- }
- }
-
- left = v->spl_left;
- v->spl_nleft = 0;
- right = v->spl_right;
- v->spl_nright = 0;
-
- datum_alpha = (SEG *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[seed_1].key);
- datum_l = seg_union(datum_alpha, datum_alpha);
- rt_seg_size(datum_l, &size_l);
- datum_beta = (SEG *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[seed_2].key);
- datum_r = seg_union(datum_beta, datum_beta);
- rt_seg_size(datum_r, &size_r);
-
- /*
- * Now split up the regions between the two seeds. An important
- * property of this split algorithm is that the split vector v has the
- * indices of items to be split in order in its left and right
- * vectors. We exploit this property by doing a merge in the code
- * that actually splits the page.
- *
- * For efficiency, we also place the new index tuple in this loop. This
- * is handled at the very end, when we have placed all the existing
- * tuples and i == maxoff + 1.
- */
-
- maxoff = OffsetNumberNext(maxoff);
- for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
- {
- /*
- * If we've already decided where to place this item, just put it
- * on the right list. Otherwise, we need to figure out which page
- * needs the least enlargement in order to store the item.
- */
-
- if (i == seed_1)
- {
- *left++ = i;
- v->spl_nleft++;
- continue;
- }
- else if (i == seed_2)
- {
- *right++ = i;
- v->spl_nright++;
- continue;
- }
-
- /* okay, which page needs least enlargement? */
- datum_alpha = (SEG *) DatumGetPointer(((GISTENTRY *) VARDATA(entryvec))[i].key);
- union_dl = seg_union(datum_l, datum_alpha);
- union_dr = seg_union(datum_r, datum_alpha);
- rt_seg_size(union_dl, &size_alpha);
- rt_seg_size(union_dr, &size_beta);
-
- /* pick which page to add it to */
- if (size_alpha - size_l < size_beta - size_r)
- {
- pfree(datum_l);
- pfree(union_dr);
- datum_l = union_dl;
- size_l = size_alpha;
- *left++ = i;
- v->spl_nleft++;
- }
- else
- {
- pfree(datum_r);
- pfree(union_dl);
- datum_r = union_dr;
- size_r = size_alpha;
- *right++ = i;
- v->spl_nright++;
- }
- }
- *left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
-
- v->spl_ldatum = PointerGetDatum(datum_l);
- v->spl_rdatum = PointerGetDatum(datum_r);
-
- return v;
-}
-
-/*
-** Equality methods
-*/
-bool *
-gseg_same(SEG * b1, SEG * b2, bool *result)
-{
- if (seg_same(b1, b2))
- *result = TRUE;
- else
- *result = FALSE;
-
-#ifdef GIST_DEBUG
- fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE"));
-#endif
-
- return (result);
-}
-
-/*
-** SUPPORT ROUTINES
-*/
-bool
-gseg_leaf_consistent(SEG * key,
- SEG * query,
- StrategyNumber strategy)
-{
- bool retval;
-
-#ifdef GIST_QUERY_DEBUG
- fprintf(stderr, "leaf_consistent, %d\n", strategy);
-#endif
-
- switch (strategy)
- {
- case RTLeftStrategyNumber:
- retval = (bool) seg_left(key, query);
- break;
- case RTOverLeftStrategyNumber:
- retval = (bool) seg_over_left(key, query);
- break;
- case RTOverlapStrategyNumber:
- retval = (bool) seg_overlap(key, query);
- break;
- case RTOverRightStrategyNumber:
- retval = (bool) seg_over_right(key, query);
- break;
- case RTRightStrategyNumber:
- retval = (bool) seg_right(key, query);
- break;
- case RTSameStrategyNumber:
- retval = (bool) seg_same(key, query);
- break;
- case RTContainsStrategyNumber:
- retval = (bool) seg_contains(key, query);
- break;
- case RTContainedByStrategyNumber:
- retval = (bool) seg_contained(key, query);
- break;
- default:
- retval = FALSE;
- }
- return (retval);
-}
-
-bool
-gseg_internal_consistent(SEG * key,
- SEG * query,
- StrategyNumber strategy)
-{
- bool retval;
-
-#ifdef GIST_QUERY_DEBUG
- fprintf(stderr, "internal_consistent, %d\n", strategy);
-#endif
-
- switch (strategy)
- {
- case RTLeftStrategyNumber:
- case RTOverLeftStrategyNumber:
- retval = (bool) seg_over_left(key, query);
- break;
- case RTOverlapStrategyNumber:
- retval = (bool) seg_overlap(key, query);
- break;
- case RTOverRightStrategyNumber:
- case RTRightStrategyNumber:
- retval = (bool) seg_right(key, query);
- break;
- case RTSameStrategyNumber:
- case RTContainsStrategyNumber:
- retval = (bool) seg_contains(key, query);
- break;
- case RTContainedByStrategyNumber:
- retval = (bool) seg_overlap(key, query);
- break;
- default:
- retval = FALSE;
- }
- return (retval);
-}
-
-SEG *
-gseg_binary_union(SEG * r1, SEG * r2, int *sizep)
-{
- SEG *retval;
-
- retval = seg_union(r1, r2);
- *sizep = sizeof(SEG);
-
- return (retval);
-}
-
-
-bool
-seg_contains(SEG * a, SEG * b)
-{
- return ((a->lower <= b->lower) && (a->upper >= b->upper));
-}
-
-bool
-seg_contained(SEG * a, SEG * b)
-{
- return (seg_contains(b, a));
-}
-
-/*****************************************************************************
- * Operator class for R-tree indexing
- *****************************************************************************/
-
-bool
-seg_same(SEG * a, SEG * b)
-{
- return seg_cmp(a, b) == 0;
-}
-
-/* seg_overlap -- does a overlap b?
- */
-bool
-seg_overlap(SEG * a, SEG * b)
-{
- return (
- ((a->upper >= b->upper) && (a->lower <= b->upper))
- ||
- ((b->upper >= a->upper) && (b->lower <= a->upper))
- );
-}
-
-/* seg_overleft -- is the right edge of (a) located to the left of the right edge of (b)?
- */
-bool
-seg_over_left(SEG * a, SEG * b)
-{
- return (a->upper <= b->upper && !seg_left(a, b) && !seg_right(a, b));
-}
-
-/* seg_left -- is (a) entirely on the left of (b)?
- */
-bool
-seg_left(SEG * a, SEG * b)
-{
- return (a->upper < b->lower);
-}
-
-/* seg_right -- is (a) entirely on the right of (b)?
- */
-bool
-seg_right(SEG * a, SEG * b)
-{
- return (a->lower > b->upper);
-}
-
-/* seg_overright -- is the left edge of (a) located to the right of the left edge of (b)?
- */
-bool
-seg_over_right(SEG * a, SEG * b)
-{
- return (a->lower >= b->lower && !seg_left(a, b) && !seg_right(a, b));
-}
-
-
-SEG *
-seg_union(SEG * a, SEG * b)
-{
- SEG *n;
-
- n = (SEG *) palloc(sizeof(*n));
-
- /* take max of upper endpoints */
- if (a->upper > b->upper)
- {
- n->upper = a->upper;
- n->u_sigd = a->u_sigd;
- n->u_ext = a->u_ext;
- }
- else
- {
- n->upper = b->upper;
- n->u_sigd = b->u_sigd;
- n->u_ext = b->u_ext;
- }
-
- /* take min of lower endpoints */
- if (a->lower < b->lower)
- {
- n->lower = a->lower;
- n->l_sigd = a->l_sigd;
- n->l_ext = a->l_ext;
- }
- else
- {
- n->lower = b->lower;
- n->l_sigd = b->l_sigd;
- n->l_ext = b->l_ext;
- }
-
- return (n);
-}
-
-
-SEG *
-seg_inter(SEG * a, SEG * b)
-{
- SEG *n;
-
- n = (SEG *) palloc(sizeof(*n));
-
- /* take min of upper endpoints */
- if (a->upper < b->upper)
- {
- n->upper = a->upper;
- n->u_sigd = a->u_sigd;
- n->u_ext = a->u_ext;
- }
- else
- {
- n->upper = b->upper;
- n->u_sigd = b->u_sigd;
- n->u_ext = b->u_ext;
- }
-
- /* take max of lower endpoints */
- if (a->lower > b->lower)
- {
- n->lower = a->lower;
- n->l_sigd = a->l_sigd;
- n->l_ext = a->l_ext;
- }
- else
- {
- n->lower = b->lower;
- n->l_sigd = b->l_sigd;
- n->l_ext = b->l_ext;
- }
-
- return (n);
-}
-
-void
-rt_seg_size(SEG * a, float *size)
-{
- if (a == (SEG *) NULL || a->upper <= a->lower)
- *size = 0.0;
- else
- *size = (float) abs(a->upper - a->lower);
-
- return;
-}
-
-float *
-seg_size(SEG * a)
-{
- float *result;
-
- result = (float *) palloc(sizeof(float));
-
- *result = (float) abs(a->upper - a->lower);
-
- return (result);
-}
-
-
-/*****************************************************************************
- * Miscellaneous operators
- *****************************************************************************/
-int32
-seg_cmp(SEG * a, SEG * b)
-{
- /*
- * First compare on lower boundary position
- */
- if (a->lower < b->lower)
- return -1;
- if (a->lower > b->lower)
- return 1;
-
- /*
- * a->lower == b->lower, so consider type of boundary.
- *
- * A '-' lower bound is < any other kind (this could only be relevant if
- * -HUGE is used as a regular data value). A '<' lower bound is < any
- * other kind except '-'. A '>' lower bound is > any other kind.
- */
- if (a->l_ext != b->l_ext)
- {
- if (a->l_ext == '-')
- return -1;
- if (b->l_ext == '-')
- return 1;
- if (a->l_ext == '<')
- return -1;
- if (b->l_ext == '<')
- return 1;
- if (a->l_ext == '>')
- return 1;
- if (b->l_ext == '>')
- return -1;
- }
-
- /*
- * For other boundary types, consider # of significant digits first.
- */
- if (a->l_sigd < b->l_sigd) /* (a) is blurred and is likely to include
- * (b) */
- return -1;
- if (a->l_sigd > b->l_sigd) /* (a) is less blurred and is likely to be
- * included in (b) */
- return 1;
-
- /*
- * For same # of digits, an approximate boundary is more blurred than
- * exact.
- */
- if (a->l_ext != b->l_ext)
- {
- if (a->l_ext == '~') /* (a) is approximate, while (b) is exact */
- return -1;
- if (b->l_ext == '~')
- return 1;
- /* can't get here unless data is corrupt */
- elog(ERROR, "seg_cmp: bogus lower boundary types %d %d",
- (int) a->l_ext, (int) b->l_ext);
- }
-
- /* at this point, the lower boundaries are identical */
-
- /*
- * First compare on upper boundary position
- */
- if (a->upper < b->upper)
- return -1;
- if (a->upper > b->upper)
- return 1;
-
- /*
- * a->upper == b->upper, so consider type of boundary.
- *
- * A '-' upper bound is > any other kind (this could only be relevant if
- * HUGE is used as a regular data value). A '<' upper bound is < any
- * other kind. A '>' upper bound is > any other kind except '-'.
- */
- if (a->u_ext != b->u_ext)
- {
- if (a->u_ext == '-')
- return 1;
- if (b->u_ext == '-')
- return -1;
- if (a->u_ext == '<')
- return -1;
- if (b->u_ext == '<')
- return 1;
- if (a->u_ext == '>')
- return 1;
- if (b->u_ext == '>')
- return -1;
- }
-
- /*
- * For other boundary types, consider # of significant digits first.
- * Note result here is converse of the lower-boundary case.
- */
- if (a->u_sigd < b->u_sigd) /* (a) is blurred and is likely to include
- * (b) */
- return 1;
- if (a->u_sigd > b->u_sigd) /* (a) is less blurred and is likely to be
- * included in (b) */
- return -1;
-
- /*
- * For same # of digits, an approximate boundary is more blurred than
- * exact. Again, result is converse of lower-boundary case.
- */
- if (a->u_ext != b->u_ext)
- {
- if (a->u_ext == '~') /* (a) is approximate, while (b) is exact */
- return 1;
- if (b->u_ext == '~')
- return -1;
- /* can't get here unless data is corrupt */
- elog(ERROR, "seg_cmp: bogus upper boundary types %d %d",
- (int) a->u_ext, (int) b->u_ext);
- }
-
- return 0;
-}
-
-bool
-seg_lt(SEG * a, SEG * b)
-{
- return seg_cmp(a, b) < 0;
-}
-
-bool
-seg_le(SEG * a, SEG * b)
-{
- return seg_cmp(a, b) <= 0;
-}
-
-bool
-seg_gt(SEG * a, SEG * b)
-{
- return seg_cmp(a, b) > 0;
-}
-
-
-bool
-seg_ge(SEG * a, SEG * b)
-{
- return seg_cmp(a, b) >= 0;
-}
-
-bool
-seg_different(SEG * a, SEG * b)
-{
- return seg_cmp(a, b) != 0;
-}
-
-
-
-/*****************************************************************************
- * Auxiliary functions
- *****************************************************************************/
-
-/* The purpose of this routine is to print the floating point
- * value with exact number of significant digits. Its behaviour
- * is similar to %.ng except it prints 8.00 where %.ng would
- * print 8
- */
-static int
-restore(char *result, float val, int n)
-{
- static char efmt[8] = {'%', '-', '1', '5', '.', '#', 'e', 0};
- char buf[25] = {
- '0', '0', '0', '0', '0',
- '0', '0', '0', '0', '0',
- '0', '0', '0', '0', '0',
- '0', '0', '0', '0', '0',
- '0', '0', '0', '0', '\0'
- };
- char *p;
- char *mant;
- int exp;
- int i,
- dp,
- sign;
-
- /*
- * put a cap on the number of siugnificant digits to avoid nonsense in
- * the output
- */
- n = min(n, FLT_DIG);
-
- /* remember the sign */
- sign = (val < 0 ? 1 : 0);
-
- efmt[5] = '0' + (n - 1) % 10; /* makes %-15.(n-1)e -- this
- * format guarantees that the
- * exponent is always present */
-
- sprintf(result, efmt, val);
-
- /* trim the spaces left by the %e */
- for (p = result; *p != ' '; p++);
- *p = '\0';
-
- /* get the exponent */
- mant = (char *) strtok(strdup(result), "e");
- exp = atoi(strtok(NULL, "e"));
-
- if (exp == 0)
- {
- /* use the supplied mantyssa with sign */
- strcpy((char *) index(result, 'e'), "");
- }
- else
- {
- if (abs(exp) <= 4)
- {
- /*
- * remove the decimal point from the mantyssa and write the
- * digits to the buf array
- */
- for (p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++)
- {
- buf[i] = *p;
- if (*p == '.')
- {
- dp = i--; /* skip the decimal point */
- }
- }
- if (dp == 0)
- dp = i--; /* no decimal point was found in the above
- * for() loop */
-
- if (exp > 0)
- {
- if (dp - 10 + exp >= n)
- {
- /*
- * the decimal point is behind the last significant
- * digit; the digits in between must be converted to
- * the exponent and the decimal point placed after the
- * first digit
- */
- exp = dp - 10 + exp - n;
- buf[10 + n] = '\0';
-
- /* insert the decimal point */
- if (n > 1)
- {
- dp = 11;
- for (i = 23; i > dp; i--)
- buf[i] = buf[i - 1];
- buf[dp] = '.';
- }
-
- /*
- * adjust the exponent by the number of digits after
- * the decimal point
- */
- if (n > 1)
- sprintf(&buf[11 + n], "e%d", exp + n - 1);
- else
- sprintf(&buf[11], "e%d", exp + n - 1);
-
- if (sign)
- {
- buf[9] = '-';
- strcpy(result, &buf[9]);
- }
- else
- strcpy(result, &buf[10]);
- }
- else
- { /* insert the decimal point */
- dp += exp;
- for (i = 23; i > dp; i--)
- buf[i] = buf[i - 1];
- buf[11 + n] = '\0';
- buf[dp] = '.';
- if (sign)
- {
- buf[9] = '-';
- strcpy(result, &buf[9]);
- }
- else
- strcpy(result, &buf[10]);
- }
- }
- else
- { /* exp <= 0 */
- dp += exp - 1;
- buf[10 + n] = '\0';
- buf[dp] = '.';
- if (sign)
- {
- buf[dp - 2] = '-';
- strcpy(result, &buf[dp - 2]);
- }
- else
- strcpy(result, &buf[dp - 1]);
- }
- }
-
- /* do nothing for abs(exp) > 4; %e must be OK */
- /* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */
-
- /* ... this is not done yet. */
- }
- return (strlen(result));
-}
-
-
-/*
-** Miscellany
-*/
-
-bool
-seg_contains_int(SEG * a, int *b)
-{
- return ((a->lower <= *b) && (a->upper >= *b));
-}
-
-bool
-seg_contains_float4(SEG * a, float4 *b)
-{
- return ((a->lower <= *b) && (a->upper >= *b));
-}
-
-bool
-seg_contains_float8(SEG * a, float8 *b)
-{
- return ((a->lower <= *b) && (a->upper >= *b));
-}
-
-/* find out the number of significant digits in a string representing
- * a floating point number
- */
-int
-significant_digits(char *s)
-{
- char *p = s;
- int n,
- c,
- zeroes;
-
- zeroes = 1;
- /* skip leading zeroes and sign */
- for (c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p));
-
- /* skip decimal point and following zeroes */
- for (c = *p; (c == '0' || c == '.') && c != 0; c = *(++p))
- {
- if (c != '.')
- zeroes++;
- }
-
- /* count significant digits (n) */
- for (c = *p, n = 0; c != 0; c = *(++p))
- {
- if (!((c >= '0' && c <= '9') || (c == '.')))
- break;
- if (c != '.')
- n++;
- }
-
- if (!n)
- return (zeroes);
-
- return (n);
-}