summaryrefslogtreecommitdiff
path: root/contrib/seg/seg.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/seg/seg.c')
-rw-r--r--contrib/seg/seg.c1049
1 files changed, 1049 insertions, 0 deletions
diff --git a/contrib/seg/seg.c b/contrib/seg/seg.c
new file mode 100644
index 00000000000..1609b42b1ea
--- /dev/null
+++ b/contrib/seg/seg.c
@@ -0,0 +1,1049 @@
+/******************************************************************************
+ This file contains routines that can be bound to a Postgres backend and
+ called by the backend in the process of processing queries. The calling
+ format for these routines is dictated by Postgres architecture.
+******************************************************************************/
+
+#include "postgres.h"
+
+#include <float.h>
+
+#include "access/gist.h"
+#include "access/rtree.h"
+#include "utils/elog.h"
+#include "utils/palloc.h"
+#include "utils/builtins.h"
+
+#include "segdata.h"
+
+#define max(a,b) ((a) > (b) ? (a) : (b))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define abs(a) ((a) < (0) ? (-a) : (a))
+
+/*
+#define GIST_DEBUG
+#define GIST_QUERY_DEBUG
+*/
+
+extern void set_parse_buffer(char *str);
+extern int seg_yyparse();
+/*
+extern int seg_yydebug;
+*/
+
+/*
+** Input/Output routines
+*/
+SEG * seg_in(char *str);
+char * seg_out(SEG *seg);
+float32 seg_lower(SEG *seg);
+float32 seg_upper(SEG *seg);
+float32 seg_center(SEG *seg);
+
+/*
+** GiST support methods
+*/
+bool gseg_consistent(GISTENTRY *entry, SEG *query, StrategyNumber strategy);
+GISTENTRY * gseg_compress(GISTENTRY *entry);
+GISTENTRY * gseg_decompress(GISTENTRY *entry);
+float * gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
+GIST_SPLITVEC * gseg_picksplit(bytea *entryvec, GIST_SPLITVEC *v);
+bool gseg_leaf_consistent(SEG *key, SEG *query, StrategyNumber strategy);
+bool gseg_internal_consistent(SEG *key, SEG *query, StrategyNumber strategy);
+SEG * gseg_union(bytea *entryvec, int *sizep);
+SEG * gseg_binary_union(SEG *r1, SEG *r2, int *sizep);
+bool * gseg_same(SEG *b1, SEG *b2, bool *result);
+
+
+/*
+** R-tree suport functions
+*/
+bool seg_same(SEG *a, SEG *b);
+bool seg_contains_int(SEG *a, int *b);
+bool seg_contains_float4(SEG *a, float4 *b);
+bool seg_contains_float8(SEG *a, float8 *b);
+bool seg_contains(SEG *a, SEG *b);
+bool seg_contained(SEG *a, SEG *b);
+bool seg_overlap(SEG *a, SEG *b);
+bool seg_left(SEG *a, SEG *b);
+bool seg_over_left(SEG *a, SEG *b);
+bool seg_right(SEG *a, SEG *b);
+bool seg_over_right(SEG *a, SEG *b);
+SEG * seg_union(SEG *a, SEG *b);
+SEG * seg_inter(SEG *a, SEG *b);
+void rt_seg_size(SEG *a, float* sz);
+float * seg_size(SEG *a);
+
+/*
+** Various operators
+*/
+int32 seg_cmp(SEG *a, SEG *b);
+bool seg_lt(SEG *a, SEG *b);
+bool seg_le(SEG *a, SEG *b);
+bool seg_gt(SEG *a, SEG *b);
+bool seg_ge(SEG *a, SEG *b);
+bool seg_different(SEG *a, SEG *b);
+
+/*
+** Auxiliary funxtions
+*/
+static int restore(char *s, float val, int n);
+int significant_digits (char* s);
+
+
+/*****************************************************************************
+ * Input/Output functions
+ *****************************************************************************/
+
+SEG *
+seg_in(char *str)
+{
+ SEG * result = palloc(sizeof(SEG));
+ set_parse_buffer( str );
+
+ /*
+ seg_yydebug = 1;
+ */
+ if ( seg_yyparse(result) != 0 ) {
+ pfree ( result );
+ return NULL;
+ }
+ return ( result );
+}
+
+/*
+ * You might have noticed a slight inconsistency between the following
+ * declaration and the SQL definition:
+ * CREATE FUNCTION seg_out(opaque) RETURNS opaque ...
+ * The reason is that the argument passed into seg_out is really just a
+ * pointer. POSTGRES thinks all output functions are:
+ * char *out_func(char *);
+ */
+char *
+seg_out(SEG *seg)
+{
+ char *result;
+ char *p;
+
+ if (seg == NULL) return(NULL);
+
+ p = result = (char *) palloc(40);
+
+ if ( seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~' ) {
+ p += sprintf(p, "%c", seg->l_ext);
+ }
+
+ if ( seg->lower == seg->upper && seg->l_ext == seg->u_ext ) {
+ /* indicates that this interval was built by seg_in off a single point */
+ p += restore(p, seg->lower, seg->l_sigd);
+ }
+ else {
+ if ( seg->l_ext != '-' ) {
+ /* print the lower boudary if exists */
+ p += restore(p, seg->lower, seg->l_sigd);
+ p += sprintf(p, " ");
+ }
+ p += sprintf(p, "..");
+ if ( seg->u_ext != '-' ) {
+ /* print the upper boudary if exists */
+ p += sprintf(p, " ");
+ if ( seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~' ) {
+ p += sprintf(p, "%c", seg->u_ext);
+ }
+ p += restore(p, seg->upper, seg->u_sigd);
+ }
+ }
+
+ return(result);
+}
+
+float32
+seg_center(SEG *seg)
+{
+ float32 result = (float32) palloc(sizeof(float32data));
+
+ if (!seg)
+ return (float32) NULL;
+
+ *result = ((float)seg->lower + (float)seg->upper)/2.0;
+ return (result);
+}
+
+float32
+seg_lower(SEG *seg)
+{
+ float32 result = (float32) palloc(sizeof(float32data));
+
+ if (!seg)
+ return (float32) NULL;
+
+ *result = (float)seg->lower;
+ return (result);
+}
+
+float32
+seg_upper(SEG *seg)
+{
+ float32 result = (float32) palloc(sizeof(float32data));
+
+ if (!seg)
+ return (float32) NULL;
+
+ *result = (float)seg->upper;
+ return (result);
+}
+
+
+/*****************************************************************************
+ * GiST functions
+ *****************************************************************************/
+
+/*
+** The GiST Consistent method for segments
+** Should return false if for all data items x below entry,
+** the predicate x op query == FALSE, where op is the oper
+** corresponding to strategy in the pg_amop table.
+*/
+bool
+gseg_consistent(GISTENTRY *entry,
+ SEG *query,
+ StrategyNumber strategy)
+{
+ /*
+ ** if entry is not leaf, use gseg_internal_consistent,
+ ** else use gseg_leaf_consistent
+ */
+ if (GIST_LEAF(entry))
+ return(gseg_leaf_consistent((SEG *)(entry->pred), query, strategy));
+ else
+ return(gseg_internal_consistent((SEG *)(entry->pred), query, strategy));
+}
+
+/*
+** The GiST Union method for segments
+** returns the minimal bounding seg that encloses all the entries in entryvec
+*/
+SEG *
+gseg_union(bytea *entryvec, int *sizep)
+{
+ int numranges, i;
+ SEG *out = (SEG *)NULL;
+ SEG *tmp;
+
+#ifdef GIST_DEBUG
+ fprintf(stderr, "union\n");
+#endif
+
+ numranges = (VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY);
+ tmp = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[0]).pred;
+ *sizep = sizeof(SEG);
+
+ for (i = 1; i < numranges; i++) {
+ out = gseg_binary_union(tmp, (SEG *)
+ (((GISTENTRY *)(VARDATA(entryvec)))[i]).pred,
+ sizep);
+#ifdef GIST_DEBUG
+ /*
+ fprintf(stderr, "\t%s ^ %s -> %s\n", seg_out(tmp), seg_out((SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i]).pred), seg_out(out));
+ */
+#endif
+
+ if (i > 1) pfree(tmp);
+ tmp = out;
+ }
+
+ return(out);
+}
+
+/*
+** GiST Compress and Decompress methods for segments
+** do not do anything.
+*/
+GISTENTRY *
+gseg_compress(GISTENTRY *entry)
+{
+ return(entry);
+}
+
+GISTENTRY *
+gseg_decompress(GISTENTRY *entry)
+{
+ return(entry);
+}
+
+/*
+** The GiST Penalty method for segments
+** As in the R-tree paper, we use change in area as our penalty metric
+*/
+float *
+gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
+{
+ Datum ud;
+ float tmp1, tmp2;
+
+ ud = (Datum)seg_union((SEG *)(origentry->pred), (SEG *)(newentry->pred));
+ rt_seg_size((SEG *)ud, &tmp1);
+ rt_seg_size((SEG *)(origentry->pred), &tmp2);
+ *result = tmp1 - tmp2;
+ pfree((char *)ud);
+
+#ifdef GIST_DEBUG
+ fprintf(stderr, "penalty\n");
+ fprintf(stderr, "\t%g\n", *result);
+#endif
+
+ return(result);
+}
+
+
+
+/*
+** The GiST PickSplit method for segments
+** We use Guttman's poly time split algorithm
+*/
+GIST_SPLITVEC *
+gseg_picksplit(bytea *entryvec,
+ GIST_SPLITVEC *v)
+{
+ OffsetNumber i, j;
+ SEG *datum_alpha, *datum_beta;
+ SEG *datum_l, *datum_r;
+ SEG *union_d, *union_dl, *union_dr;
+ SEG *inter_d;
+ bool firsttime;
+ float size_alpha, size_beta, size_union, size_inter;
+ float size_waste, waste;
+ float size_l, size_r;
+ int nbytes;
+ OffsetNumber seed_1 = 0, seed_2 = 0;
+ OffsetNumber *left, *right;
+ OffsetNumber maxoff;
+
+#ifdef GIST_DEBUG
+ fprintf(stderr, "picksplit\n");
+#endif
+
+ maxoff = ((VARSIZE(entryvec) - VARHDRSZ)/sizeof(GISTENTRY)) - 2;
+ nbytes = (maxoff + 2) * sizeof(OffsetNumber);
+ v->spl_left = (OffsetNumber *) palloc(nbytes);
+ v->spl_right = (OffsetNumber *) palloc(nbytes);
+
+ firsttime = true;
+ waste = 0.0;
+
+ for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) {
+ datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
+ for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) {
+ datum_beta = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[j].pred);
+
+ /* compute the wasted space by unioning these guys */
+ /* size_waste = size_union - size_inter; */
+ union_d = (SEG *)seg_union(datum_alpha, datum_beta);
+ rt_seg_size(union_d, &size_union);
+ inter_d = (SEG *)seg_inter(datum_alpha, datum_beta);
+ rt_seg_size(inter_d, &size_inter);
+ size_waste = size_union - size_inter;
+
+ pfree(union_d);
+
+ if (inter_d != (SEG *) NULL)
+ pfree(inter_d);
+
+ /*
+ * are these a more promising split that what we've
+ * already seen?
+ */
+
+ if (size_waste > waste || firsttime) {
+ waste = size_waste;
+ seed_1 = i;
+ seed_2 = j;
+ firsttime = false;
+ }
+ }
+ }
+
+ left = v->spl_left;
+ v->spl_nleft = 0;
+ right = v->spl_right;
+ v->spl_nright = 0;
+
+ datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_1].pred);
+ datum_l = (SEG *)seg_union(datum_alpha, datum_alpha);
+ rt_seg_size((SEG *)datum_l, &size_l);
+ datum_beta = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[seed_2].pred);;
+ datum_r = (SEG *)seg_union(datum_beta, datum_beta);
+ rt_seg_size((SEG *)datum_r, &size_r);
+
+ /*
+ * Now split up the regions between the two seeds. An important
+ * property of this split algorithm is that the split vector v
+ * has the indices of items to be split in order in its left and
+ * right vectors. We exploit this property by doing a merge in
+ * the code that actually splits the page.
+ *
+ * For efficiency, we also place the new index tuple in this loop.
+ * This is handled at the very end, when we have placed all the
+ * existing tuples and i == maxoff + 1.
+ */
+
+ maxoff = OffsetNumberNext(maxoff);
+ for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) {
+
+ /*
+ * If we've already decided where to place this item, just
+ * put it on the right list. Otherwise, we need to figure
+ * out which page needs the least enlargement in order to
+ * store the item.
+ */
+
+ if (i == seed_1) {
+ *left++ = i;
+ v->spl_nleft++;
+ continue;
+ } else if (i == seed_2) {
+ *right++ = i;
+ v->spl_nright++;
+ continue;
+ }
+
+ /* okay, which page needs least enlargement? */
+ datum_alpha = (SEG *)(((GISTENTRY *)(VARDATA(entryvec)))[i].pred);
+ union_dl = (SEG *)seg_union(datum_l, datum_alpha);
+ union_dr = (SEG *)seg_union(datum_r, datum_alpha);
+ rt_seg_size((SEG *)union_dl, &size_alpha);
+ rt_seg_size((SEG *)union_dr, &size_beta);
+
+ /* pick which page to add it to */
+ if (size_alpha - size_l < size_beta - size_r) {
+ pfree(datum_l);
+ pfree(union_dr);
+ datum_l = union_dl;
+ size_l = size_alpha;
+ *left++ = i;
+ v->spl_nleft++;
+ } else {
+ pfree(datum_r);
+ pfree(union_dl);
+ datum_r = union_dr;
+ size_r = size_alpha;
+ *right++ = i;
+ v->spl_nright++;
+ }
+ }
+ *left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
+
+ v->spl_ldatum = (char *)datum_l;
+ v->spl_rdatum = (char *)datum_r;
+
+ return v;
+}
+
+/*
+** Equality methods
+*/
+bool *
+gseg_same(SEG *b1, SEG *b2, bool *result)
+{
+ if (seg_same(b1, b2))
+ *result = TRUE;
+ else *result = FALSE;
+
+#ifdef GIST_DEBUG
+ fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
+#endif
+
+ return(result);
+}
+
+/*
+** SUPPORT ROUTINES
+*/
+bool
+gseg_leaf_consistent(SEG *key,
+ SEG *query,
+ StrategyNumber strategy)
+{
+ bool retval;
+
+#ifdef GIST_QUERY_DEBUG
+ fprintf(stderr, "leaf_consistent, %d\n", strategy);
+#endif
+
+ switch(strategy) {
+ case RTLeftStrategyNumber:
+ retval = (bool)seg_left(key, query);
+ break;
+ case RTOverLeftStrategyNumber:
+ retval = (bool)seg_over_left(key,query);
+ break;
+ case RTOverlapStrategyNumber:
+ retval = (bool)seg_overlap(key, query);
+ break;
+ case RTOverRightStrategyNumber:
+ retval = (bool)seg_over_right(key, query);
+ break;
+ case RTRightStrategyNumber:
+ retval = (bool)seg_right(key, query);
+ break;
+ case RTSameStrategyNumber:
+ retval = (bool)seg_same(key, query);
+ break;
+ case RTContainsStrategyNumber:
+ retval = (bool)seg_contains(key, query);
+ break;
+ case RTContainedByStrategyNumber:
+ retval = (bool)seg_contained(key,query);
+ break;
+ default:
+ retval = FALSE;
+ }
+ return(retval);
+}
+
+bool
+gseg_internal_consistent(SEG *key,
+ SEG *query,
+ StrategyNumber strategy)
+{
+ bool retval;
+
+#ifdef GIST_QUERY_DEBUG
+ fprintf(stderr, "internal_consistent, %d\n", strategy);
+#endif
+
+ switch(strategy) {
+ case RTLeftStrategyNumber:
+ case RTOverLeftStrategyNumber:
+ retval = (bool)seg_over_left(key,query);
+ break;
+ case RTOverlapStrategyNumber:
+ retval = (bool)seg_overlap(key, query);
+ break;
+ case RTOverRightStrategyNumber:
+ case RTRightStrategyNumber:
+ retval = (bool)seg_right(key, query);
+ break;
+ case RTSameStrategyNumber:
+ case RTContainsStrategyNumber:
+ retval = (bool)seg_contains(key, query);
+ break;
+ case RTContainedByStrategyNumber:
+ retval = (bool)seg_overlap(key, query);
+ break;
+ default:
+ retval = FALSE;
+ }
+ return(retval);
+}
+
+SEG *
+gseg_binary_union(SEG *r1, SEG *r2, int *sizep)
+{
+ SEG *retval;
+
+ retval = seg_union(r1, r2);
+ *sizep = sizeof(SEG);
+
+ return (retval);
+}
+
+
+bool
+seg_contains(SEG *a, SEG *b)
+{
+ return ( (a->lower <= b->lower) && (a->upper >= b->upper) );
+}
+
+bool
+seg_contained(SEG *a, SEG *b)
+{
+ return ( seg_contains(b, a) );
+}
+
+/*****************************************************************************
+ * Operator class for R-tree indexing
+ *****************************************************************************/
+
+bool
+seg_same(SEG *a, SEG *b)
+{
+ return seg_cmp(a, b) == 0;
+}
+
+/* seg_overlap -- does a overlap b?
+ */
+bool
+seg_overlap(SEG *a, SEG *b)
+{
+ return (
+ ((a->upper >= b->upper) && (a->lower <= b->upper))
+ ||
+ ((b->upper >= a->upper) && (b->lower <= a->upper))
+ );
+}
+
+/* seg_overleft -- is the right edge of (a) located to the left of the right edge of (b)?
+ */
+bool
+seg_over_left(SEG *a, SEG *b)
+{
+ return ( a->upper <= b->upper && !seg_left(a, b) && !seg_right(a, b));
+}
+
+/* seg_left -- is (a) entirely on the left of (b)?
+ */
+bool
+seg_left(SEG *a, SEG *b)
+{
+ return ( a->upper < b->lower );
+}
+
+/* seg_right -- is (a) entirely on the right of (b)?
+ */
+bool
+seg_right(SEG *a, SEG *b)
+{
+ return ( a->lower > b->upper );
+}
+
+/* seg_overright -- is the left edge of (a) located to the right of the left edge of (b)?
+ */
+bool
+seg_over_right(SEG *a, SEG *b)
+{
+ return (a->lower >= b->lower && !seg_left(a, b) && !seg_right(a, b));
+}
+
+
+SEG *
+seg_union(SEG *a, SEG *b)
+{
+ SEG *n;
+
+ n = (SEG *) palloc(sizeof(*n));
+
+ /* take max of upper endpoints */
+ if (a->upper > b->upper)
+ {
+ n->upper = a->upper;
+ n->u_sigd = a->u_sigd;
+ n->u_ext = a->u_ext;
+ }
+ else
+ {
+ n->upper = b->upper;
+ n->u_sigd = b->u_sigd;
+ n->u_ext = b->u_ext;
+ }
+
+ /* take min of lower endpoints */
+ if (a->lower < b->lower)
+ {
+ n->lower = a->lower;
+ n->l_sigd = a->l_sigd;
+ n->l_ext = a->l_ext;
+ }
+ else
+ {
+ n->lower = b->lower;
+ n->l_sigd = b->l_sigd;
+ n->l_ext = b->l_ext;
+ }
+
+ return (n);
+}
+
+
+SEG *
+seg_inter(SEG *a, SEG *b)
+{
+ SEG *n;
+
+ n = (SEG *) palloc(sizeof(*n));
+
+ /* take min of upper endpoints */
+ if (a->upper < b->upper)
+ {
+ n->upper = a->upper;
+ n->u_sigd = a->u_sigd;
+ n->u_ext = a->u_ext;
+ }
+ else
+ {
+ n->upper = b->upper;
+ n->u_sigd = b->u_sigd;
+ n->u_ext = b->u_ext;
+ }
+
+ /* take max of lower endpoints */
+ if (a->lower > b->lower)
+ {
+ n->lower = a->lower;
+ n->l_sigd = a->l_sigd;
+ n->l_ext = a->l_ext;
+ }
+ else
+ {
+ n->lower = b->lower;
+ n->l_sigd = b->l_sigd;
+ n->l_ext = b->l_ext;
+ }
+
+ return (n);
+}
+
+void
+rt_seg_size(SEG *a, float *size)
+{
+ if (a == (SEG *) NULL || a->upper <= a->lower)
+ *size = 0.0;
+ else
+ *size = (float) abs(a->upper - a->lower);
+
+ return;
+}
+
+float *
+seg_size(SEG *a)
+{
+ float *result;
+
+ result = (float *) palloc(sizeof(float));
+
+ *result = (float) abs(a->upper - a->lower);
+
+ return(result);
+}
+
+
+/*****************************************************************************
+ * Miscellaneous operators
+ *****************************************************************************/
+int32
+seg_cmp(SEG *a, SEG *b)
+{
+ /*
+ * First compare on lower boundary position
+ */
+ if ( a->lower < b->lower )
+ return -1;
+ if ( a->lower > b->lower )
+ return 1;
+ /*
+ * a->lower == b->lower, so consider type of boundary.
+ *
+ * A '-' lower bound is < any other kind (this could only be relevant
+ * if -HUGE is used as a regular data value).
+ * A '<' lower bound is < any other kind except '-'.
+ * A '>' lower bound is > any other kind.
+ */
+ if ( a->l_ext != b->l_ext )
+ {
+ if ( a->l_ext == '-')
+ return -1;
+ if ( b->l_ext == '-')
+ return 1;
+ if ( a->l_ext == '<')
+ return -1;
+ if ( b->l_ext == '<')
+ return 1;
+ if ( a->l_ext == '>')
+ return 1;
+ if ( b->l_ext == '>')
+ return -1;
+ }
+ /*
+ * For other boundary types, consider # of significant digits first.
+ */
+ if ( a->l_sigd < b->l_sigd ) /* (a) is blurred and is likely to include (b) */
+ return -1;
+ if ( a->l_sigd > b->l_sigd ) /* (a) is less blurred and is likely to be included in (b) */
+ return 1;
+ /*
+ * For same # of digits, an approximate boundary is more blurred than
+ * exact.
+ */
+ if ( a->l_ext != b->l_ext )
+ {
+ if ( a->l_ext == '~' ) /* (a) is approximate, while (b) is exact */
+ return -1;
+ if ( b->l_ext == '~' )
+ return 1;
+ /* can't get here unless data is corrupt */
+ elog(ERROR, "seg_cmp: bogus lower boundary types %d %d",
+ (int) a->l_ext, (int) b->l_ext);
+ }
+
+ /* at this point, the lower boundaries are identical */
+
+ /*
+ * First compare on upper boundary position
+ */
+ if ( a->upper < b->upper )
+ return -1;
+ if ( a->upper > b->upper )
+ return 1;
+ /*
+ * a->upper == b->upper, so consider type of boundary.
+ *
+ * A '-' upper bound is > any other kind (this could only be relevant
+ * if HUGE is used as a regular data value).
+ * A '<' upper bound is < any other kind.
+ * A '>' upper bound is > any other kind except '-'.
+ */
+ if ( a->u_ext != b->u_ext )
+ {
+ if ( a->u_ext == '-')
+ return 1;
+ if ( b->u_ext == '-')
+ return -1;
+ if ( a->u_ext == '<')
+ return -1;
+ if ( b->u_ext == '<')
+ return 1;
+ if ( a->u_ext == '>')
+ return 1;
+ if ( b->u_ext == '>')
+ return -1;
+ }
+ /*
+ * For other boundary types, consider # of significant digits first.
+ * Note result here is converse of the lower-boundary case.
+ */
+ if ( a->u_sigd < b->u_sigd ) /* (a) is blurred and is likely to include (b) */
+ return 1;
+ if ( a->u_sigd > b->u_sigd ) /* (a) is less blurred and is likely to be included in (b) */
+ return -1;
+ /*
+ * For same # of digits, an approximate boundary is more blurred than
+ * exact. Again, result is converse of lower-boundary case.
+ */
+ if ( a->u_ext != b->u_ext )
+ {
+ if ( a->u_ext == '~' ) /* (a) is approximate, while (b) is exact */
+ return 1;
+ if ( b->u_ext == '~' )
+ return -1;
+ /* can't get here unless data is corrupt */
+ elog(ERROR, "seg_cmp: bogus upper boundary types %d %d",
+ (int) a->u_ext, (int) b->u_ext);
+ }
+
+ return 0;
+}
+
+bool
+seg_lt(SEG *a, SEG *b)
+{
+ return seg_cmp(a, b) < 0;
+}
+
+bool
+seg_le(SEG *a, SEG *b)
+{
+ return seg_cmp(a, b) <= 0;
+}
+
+bool
+seg_gt(SEG *a, SEG *b)
+{
+ return seg_cmp(a, b) > 0;
+}
+
+
+bool
+seg_ge(SEG *a, SEG *b)
+{
+ return seg_cmp(a, b) >= 0;
+}
+
+bool
+seg_different(SEG *a, SEG *b)
+{
+ return seg_cmp(a, b) != 0;
+}
+
+
+
+/*****************************************************************************
+ * Auxiliary functions
+ *****************************************************************************/
+
+/* The purpose of this routine is to print the floating point
+ * value with exact number of significant digits. Its behaviour
+ * is similar to %.ng except it prints 8.00 where %.ng would
+ * print 8
+ */
+static int restore ( char * result, float val, int n )
+{
+ static char efmt[8] = {'%', '-', '1', '5', '.', '#', 'e', 0};
+ char buf[25] = {
+ '0', '0', '0', '0', '0',
+ '0', '0', '0', '0', '0',
+ '0', '0', '0', '0', '0',
+ '0', '0', '0', '0', '0',
+ '0', '0', '0', '0', '\0'
+ };
+ char *p;
+ char *mant;
+ int exp;
+ int i, dp, sign;
+
+ /* put a cap on the number of siugnificant digits to avoid
+ nonsense in the output */
+ n = min(n, FLT_DIG);
+
+ /* remember the sign */
+ sign = ( val < 0 ? 1 : 0 );
+
+ efmt[5] = '0' + (n-1)%10; /* makes %-15.(n-1)e -- this format guarantees that
+ the exponent is always present */
+
+ sprintf(result, efmt, val);
+
+ /* trim the spaces left by the %e */
+ for( p = result; *p != ' '; p++ ); *p = '\0';
+
+ /* get the exponent */
+ mant = (char *)strtok( strdup(result), "e" );
+ exp = atoi(strtok( NULL, "e" ));
+
+ if ( exp == 0 ) {
+ /* use the supplied mantyssa with sign */
+ strcpy((char *)index(result, 'e'), "");
+ }
+ else {
+ if ( abs( exp ) <= 4 ) {
+ /* remove the decimal point from the mantyssa and write the digits to the buf array */
+ for( p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++ ) {
+ buf[i] = *p;
+ if( *p == '.' ) {
+ dp = i--; /* skip the decimal point */
+ }
+ }
+ if (dp == 0) dp = i--; /* no decimal point was found in the above for() loop */
+
+ if ( exp > 0 ) {
+ if ( dp - 10 + exp >= n ) {
+ /*
+ the decimal point is behind the last significant digit;
+ the digits in between must be converted to the exponent
+ and the decimal point placed after the first digit
+ */
+ exp = dp - 10 + exp - n;
+ buf[10+n] = '\0';
+
+ /* insert the decimal point */
+ if ( n > 1 ) {
+ dp = 11;
+ for ( i = 23; i > dp; i-- ) {
+ buf[i] = buf[i-1];
+ }
+ buf[dp] = '.';
+ }
+
+ /* adjust the exponent by the number of digits after the decimal point */
+ if ( n > 1 ) {
+ sprintf(&buf[11+n], "e%d", exp + n - 1);
+ }
+ else {
+ sprintf(&buf[11], "e%d", exp + n - 1);
+ }
+
+ if ( sign ) {
+ buf[9] = '-';
+ strcpy(result, &buf[9]);
+ }
+ else {
+ strcpy(result, &buf[10]);
+ }
+ }
+ else { /* insert the decimal point */
+ dp += exp;
+ for ( i = 23; i > dp; i-- ) {
+ buf[i] = buf[i-1];
+ }
+ buf[11+n] = '\0';
+ buf[dp] = '.';
+ if ( sign ) {
+ buf[9] = '-';
+ strcpy(result, &buf[9]);
+ }
+ else {
+ strcpy(result, &buf[10]);
+ }
+ }
+ }
+ else { /* exp <= 0 */
+ dp += exp - 1;
+ buf[10+n] = '\0';
+ buf[dp] = '.';
+ if ( sign ) {
+ buf[dp-2] = '-';
+ strcpy(result, &buf[dp-2]);
+ }
+ else {
+ strcpy(result, &buf[dp-1]);
+ }
+ }
+ }
+
+ /* do nothing for abs(exp) > 4; %e must be OK */
+ /* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */
+
+ /* ... this is not done yet. */
+ }
+ return ( strlen ( result ) );
+}
+
+
+/*
+** Miscellany
+*/
+
+bool
+seg_contains_int(SEG *a, int *b)
+{
+ return ( (a->lower <= *b) && (a->upper >= *b) );
+}
+
+bool
+seg_contains_float4(SEG *a, float4 *b)
+{
+ return ( (a->lower <= *b) && (a->upper >= *b) );
+}
+
+bool
+seg_contains_float8(SEG *a, float8 *b)
+{
+ return ( (a->lower <= *b) && (a->upper >= *b) );
+}
+
+/* find out the number of significant digits in a string representing
+ * a floating point number
+ */
+int significant_digits ( char* s )
+{
+ char * p = s;
+ int n, c, zeroes;
+
+ zeroes = 1;
+ /* skip leading zeroes and sign */
+ for ( c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p) );
+
+ /* skip decimal point and following zeroes */
+ for ( c = *p; (c == '0' || c == '.' ) && c != 0; c = *(++p) ) {
+ if ( c != '.') zeroes++;
+ }
+
+ /* count significant digits (n) */
+ for ( c = *p, n = 0; c != 0; c = *(++p) ) {
+ if ( !( (c >= '0' && c <= '9') || (c == '.') ) ) break;
+ if ( c != '.') n++;
+ }
+
+ if (!n) return ( zeroes );
+
+ return( n );
+}