summaryrefslogtreecommitdiff
path: root/doc/src
diff options
context:
space:
mode:
Diffstat (limited to 'doc/src')
-rw-r--r--doc/src/sgml/ref/pgbench.sgml283
1 files changed, 185 insertions, 98 deletions
diff --git a/doc/src/sgml/ref/pgbench.sgml b/doc/src/sgml/ref/pgbench.sgml
index c6d1454b1e9..4ceddae681b 100644
--- a/doc/src/sgml/ref/pgbench.sgml
+++ b/doc/src/sgml/ref/pgbench.sgml
@@ -815,9 +815,10 @@ pgbench <optional> <replaceable>options</> </optional> <replaceable>dbname</>
<listitem>
<para>
- Sets variable <replaceable>varname</> to an integer value calculated
+ Sets variable <replaceable>varname</> to a value calculated
from <replaceable>expression</>.
The expression may contain integer constants such as <literal>5432</>,
+ double constants such as <literal>3.14159</>,
references to variables <literal>:</><replaceable>variablename</>,
unary operators (<literal>+</>, <literal>-</>) and binary operators
(<literal>+</>, <literal>-</>, <literal>*</>, <literal>/</>,
@@ -830,7 +831,7 @@ pgbench <optional> <replaceable>options</> </optional> <replaceable>dbname</>
Examples:
<programlisting>
\set ntellers 10 * :scale
-\set aid (1021 * :aid) % (100000 * :scale) + 1
+\set aid (1021 * random(1, 100000 * :scale)) % (100000 * :scale) + 1
</programlisting></para>
</listitem>
</varlistentry>
@@ -850,66 +851,35 @@ pgbench <optional> <replaceable>options</> </optional> <replaceable>dbname</>
</para>
<para>
- By default, or when <literal>uniform</> is specified, all values in the
- range are drawn with equal probability. Specifying <literal>gaussian</>
- or <literal>exponential</> options modifies this behavior; each
- requires a mandatory parameter which determines the precise shape of the
- distribution.
- </para>
+ <itemizedlist>
+ <listitem>
+ <para>
+ <literal>\setrandom n 1 10</> or <literal>\setrandom n 1 10 uniform</>
+ is equivalent to <literal>\set n random(1, 10)</> and uses a uniform
+ distribution.
+ </para>
+ </listitem>
- <para>
- For a Gaussian distribution, the interval is mapped onto a standard
- normal distribution (the classical bell-shaped Gaussian curve) truncated
- at <literal>-parameter</> on the left and <literal>+parameter</>
- on the right.
- Values in the middle of the interval are more likely to be drawn.
- To be precise, if <literal>PHI(x)</> is the cumulative distribution
- function of the standard normal distribution, with mean <literal>mu</>
- defined as <literal>(max + min) / 2.0</>, with
-<literallayout>
- f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /
- (2.0 * PHI(parameter) - 1.0)
-</literallayout>
- then value <replaceable>i</> between <replaceable>min</> and
- <replaceable>max</> inclusive is drawn with probability:
- <literal>f(i + 0.5) - f(i - 0.5)</>.
- Intuitively, the larger <replaceable>parameter</>, the more
- frequently values close to the middle of the interval are drawn, and the
- less frequently values close to the <replaceable>min</> and
- <replaceable>max</> bounds. About 67% of values are drawn from the
- middle <literal>1.0 / parameter</>, that is a relative
- <literal>0.5 / parameter</> around the mean, and 95% in the middle
- <literal>2.0 / parameter</>, that is a relative
- <literal>1.0 / parameter</> around the mean; for instance, if
- <replaceable>parameter</> is 4.0, 67% of values are drawn from the
- middle quarter (1.0 / 4.0) of the interval (i.e. from
- <literal>3.0 / 8.0</> to <literal>5.0 / 8.0</>) and 95% from
- the middle half (<literal>2.0 / 4.0</>) of the interval (second and
- third quartiles). The minimum <replaceable>parameter</> is 2.0 for
- performance of the Box-Muller transform.
- </para>
+ <listitem>
+ <para>
+ <literal>\setrandom n 1 10 exponential 3.0</> is equivalent to
+ <literal>\set n random_exponential(1, 10, 3.0)</> and uses an
+ exponential distribution.
+ </para>
+ </listitem>
- <para>
- For an exponential distribution, <replaceable>parameter</>
- controls the distribution by truncating a quickly-decreasing
- exponential distribution at <replaceable>parameter</>, and then
- projecting onto integers between the bounds.
- To be precise, with
-<literallayout>
-f(x) = exp(-parameter * (x - min) / (max - min + 1)) / (1.0 - exp(-parameter))
-</literallayout>
- Then value <replaceable>i</> between <replaceable>min</> and
- <replaceable>max</> inclusive is drawn with probability:
- <literal>f(x) - f(x + 1)</>.
- Intuitively, the larger <replaceable>parameter</>, the more
- frequently values close to <replaceable>min</> are accessed, and the
- less frequently values close to <replaceable>max</> are accessed.
- The closer to 0 <replaceable>parameter</>, the flatter (more uniform)
- the access distribution.
- A crude approximation of the distribution is that the most frequent 1%
- values in the range, close to <replaceable>min</>, are drawn
- <replaceable>parameter</>% of the time.
- <replaceable>parameter</> value must be strictly positive.
+ <listitem>
+ <para>
+ <literal>\setrandom n 1 10 gaussian 2.0</> is equivalent to
+ <literal>\set n random_gaussian(1, 10, 2.0)</>, and uses a gaussian
+ distribution.
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ See the documentation of these functions below for further information
+ about the precise shape of these distributions, depending on the value
+ of the parameter.
</para>
<para>
@@ -990,34 +960,6 @@ f(x) = exp(-parameter * (x - min) / (max - min + 1)) / (1.0 - exp(-parameter))
</listitem>
</varlistentry>
</variablelist>
-
- <para>
- As an example, the full definition of the built-in TPC-B-like
- transaction is:
-
-<programlisting>
-\set nbranches :scale
-\set ntellers 10 * :scale
-\set naccounts 100000 * :scale
-\setrandom aid 1 :naccounts
-\setrandom bid 1 :nbranches
-\setrandom tid 1 :ntellers
-\setrandom delta -5000 5000
-BEGIN;
-UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
-SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
-UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
-UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
-INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
-END;
-</programlisting>
-
- This script allows each iteration of the transaction to reference
- different, randomly-chosen rows. (This example also shows why it's
- important for each client session to have its own variables &mdash;
- otherwise they'd not be independently touching different rows.)
- </para>
-
</refsect2>
<refsect2 id="pgbench-builtin-functions">
@@ -1046,7 +988,7 @@ END;
<row>
<entry><literal><function>abs(<replaceable>a</>)</></></>
<entry>same as <replaceable>a</></>
- <entry>integer value</>
+ <entry>integer or double absolute value</>
<entry><literal>abs(-17)</></>
<entry><literal>17</></>
</row>
@@ -1054,8 +996,22 @@ END;
<entry><literal><function>debug(<replaceable>a</>)</></></>
<entry>same as <replaceable>a</> </>
<entry>print to <systemitem>stderr</systemitem> the given argument</>
- <entry><literal>debug(5432)</></>
- <entry><literal>5432</></>
+ <entry><literal>debug(5432.1)</></>
+ <entry><literal>5432.1</></>
+ </row>
+ <row>
+ <entry><literal><function>double(<replaceable>i</>)</></></>
+ <entry>double</>
+ <entry>cast to double</>
+ <entry><literal>double(5432)</></>
+ <entry><literal>5432.0</></>
+ </row>
+ <row>
+ <entry><literal><function>int(<replaceable>x</>)</></></>
+ <entry>integer</>
+ <entry>cast to int</>
+ <entry><literal>int(5.4 + 3.8)</></>
+ <entry><literal>9</></>
</row>
<row>
<entry><literal><function>max(<replaceable>i</> [, <replaceable>...</> ] )</></></>
@@ -1071,9 +1027,143 @@ END;
<entry><literal>min(5, 4, 3, 2)</></>
<entry><literal>2</></>
</row>
+ <row>
+ <entry><literal><function>pi()</></></>
+ <entry>double</>
+ <entry>value of the PI constant</>
+ <entry><literal>pi()</></>
+ <entry><literal>3.14159265358979323846</></>
+ </row>
+ <row>
+ <entry><literal><function>random(<replaceable>lb</>, <replaceable>ub</>)</></></>
+ <entry>integer</>
+ <entry>uniformly-distributed random integer in <literal>[lb, ub]</></>
+ <entry><literal>random(1, 10)</></>
+ <entry>an integer between <literal>1</> and <literal>10</></>
+ </row>
+ <row>
+ <entry><literal><function>random_exponential(<replaceable>lb</>, <replaceable>ub</>, <replaceable>parameter</>)</></></>
+ <entry>integer</>
+ <entry>exponentially-distributed random integer in <literal>[lb, ub]</>,
+ see below</>
+ <entry><literal>random_exponential(1, 10, 3.0)</></>
+ <entry>an integer between <literal>1</> and <literal>10</></>
+ </row>
+ <row>
+ <entry><literal><function>random_gaussian(<replaceable>lb</>, <replaceable>ub</>, <replaceable>parameter</>)</></></>
+ <entry>integer</>
+ <entry>gaussian-distributed random integer in <literal>[lb, ub]</>,
+ see below</>
+ <entry><literal>random_gaussian(1, 10, 2.5)</></>
+ <entry>an integer between <literal>1</> and <literal>10</></>
+ </row>
+ <row>
+ <entry><literal><function>sqrt(<replaceable>x</>)</></></>
+ <entry>double</>
+ <entry>square root</>
+ <entry><literal>sqrt(2.0)</></>
+ <entry><literal>1.414213562</></>
+ </row>
</tbody>
</tgroup>
</table>
+
+ <para>
+ The <literal>random</> function generates values using a uniform
+ distribution, that is all the values are drawn within the specified
+ range with equal probability. The <literal>random_exponential</> and
+ <literal>random_gaussian</> functions require an additional double
+ parameter which determines the precise shape of the distribution.
+ </para>
+
+ <itemizedlist>
+ <listitem>
+ <para>
+ For an exponential distribution, <replaceable>parameter</>
+ controls the distribution by truncating a quickly-decreasing
+ exponential distribution at <replaceable>parameter</>, and then
+ projecting onto integers between the bounds.
+ To be precise, with
+<literallayout>
+f(x) = exp(-parameter * (x - min) / (max - min + 1)) / (1 - exp(-parameter))
+</literallayout>
+ Then value <replaceable>i</> between <replaceable>min</> and
+ <replaceable>max</> inclusive is drawn with probability:
+ <literal>f(x) - f(x + 1)</>.
+ </para>
+
+ <para>
+ Intuitively, the larger the <replaceable>parameter</>, the more
+ frequently values close to <replaceable>min</> are accessed, and the
+ less frequently values close to <replaceable>max</> are accessed.
+ The closer to 0 <replaceable>parameter</> is, the flatter (more
+ uniform) the access distribution.
+ A crude approximation of the distribution is that the most frequent 1%
+ values in the range, close to <replaceable>min</>, are drawn
+ <replaceable>parameter</>% of the time.
+ The <replaceable>parameter</> value must be strictly positive.
+ </para>
+ </listitem>
+
+ <listitem>
+ <para>
+ For a Gaussian distribution, the interval is mapped onto a standard
+ normal distribution (the classical bell-shaped Gaussian curve) truncated
+ at <literal>-parameter</> on the left and <literal>+parameter</>
+ on the right.
+ Values in the middle of the interval are more likely to be drawn.
+ To be precise, if <literal>PHI(x)</> is the cumulative distribution
+ function of the standard normal distribution, with mean <literal>mu</>
+ defined as <literal>(max + min) / 2.0</>, with
+<literallayout>
+ f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /
+ (2.0 * PHI(parameter) - 1)
+</literallayout>
+ then value <replaceable>i</> between <replaceable>min</> and
+ <replaceable>max</> inclusive is drawn with probability:
+ <literal>f(i + 0.5) - f(i - 0.5)</>.
+ Intuitively, the larger the <replaceable>parameter</>, the more
+ frequently values close to the middle of the interval are drawn, and the
+ less frequently values close to the <replaceable>min</> and
+ <replaceable>max</> bounds. About 67% of values are drawn from the
+ middle <literal>1.0 / parameter</>, that is a relative
+ <literal>0.5 / parameter</> around the mean, and 95% in the middle
+ <literal>2.0 / parameter</>, that is a relative
+ <literal>1.0 / parameter</> around the mean; for instance, if
+ <replaceable>parameter</> is 4.0, 67% of values are drawn from the
+ middle quarter (1.0 / 4.0) of the interval (i.e. from
+ <literal>3.0 / 8.0</> to <literal>5.0 / 8.0</>) and 95% from
+ the middle half (<literal>2.0 / 4.0</>) of the interval (second and third
+ quartiles). The minimum <replaceable>parameter</> is 2.0 for performance
+ of the Box-Muller transform.
+ </para>
+ </listitem>
+ </itemizedlist>
+
+ <para>
+ As an example, the full definition of the built-in TPC-B-like
+ transaction is:
+
+<programlisting>
+\set aid random(1, 100000 * :scale)
+\set bid random(1, 1 * :scale)
+\set tid random(1, 10 * :scale)
+\set delta random(-5000, 5000)
+BEGIN;
+UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
+SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
+UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
+UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
+INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
+END;
+</programlisting>
+
+ This script allows each iteration of the transaction to reference
+ different, randomly-chosen rows. (This example also shows why it's
+ important for each client session to have its own variables &mdash;
+ otherwise they'd not be independently touching different rows.)
+ </para>
+
</refsect2>
<refsect2>
@@ -1223,13 +1313,10 @@ tps = 618.764555 (including connections establishing)
tps = 622.977698 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
- 0.004386 \set nbranches 1 * :scale
- 0.001343 \set ntellers 10 * :scale
- 0.001212 \set naccounts 100000 * :scale
- 0.001310 \setrandom aid 1 :naccounts
- 0.001073 \setrandom bid 1 :nbranches
- 0.001005 \setrandom tid 1 :ntellers
- 0.001078 \setrandom delta -5000 5000
+ 0.002522 \set aid random(1, 100000 * :scale)
+ 0.005459 \set bid random(1, 1 * :scale)
+ 0.002348 \set tid random(1, 10 * :scale)
+ 0.001078 \set delta random(-5000, 5000)
0.326152 BEGIN;
0.603376 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
0.454643 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;