diff options
Diffstat (limited to 'src/backend/access/tablesample/bernoulli.c')
-rw-r--r-- | src/backend/access/tablesample/bernoulli.c | 326 |
1 files changed, 162 insertions, 164 deletions
diff --git a/src/backend/access/tablesample/bernoulli.c b/src/backend/access/tablesample/bernoulli.c index 0a539008221..cf88f95e757 100644 --- a/src/backend/access/tablesample/bernoulli.c +++ b/src/backend/access/tablesample/bernoulli.c @@ -1,233 +1,231 @@ /*------------------------------------------------------------------------- * * bernoulli.c - * interface routines for BERNOULLI tablesample method + * support routines for BERNOULLI tablesample method * - * Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group + * To ensure repeatability of samples, it is necessary that selection of a + * given tuple be history-independent; otherwise syncscanning would break + * repeatability, to say nothing of logically-irrelevant maintenance such + * as physical extension or shortening of the relation. + * + * To achieve that, we proceed by hashing each candidate TID together with + * the active seed, and then selecting it if the hash is less than the + * cutoff value computed from the selection probability by BeginSampleScan. + * + * + * Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION - * src/backend/utils/tablesample/bernoulli.c + * src/backend/access/tablesample/bernoulli.c * *------------------------------------------------------------------------- */ #include "postgres.h" -#include "fmgr.h" +#ifdef _MSC_VER +#include <float.h> /* for _isnan */ +#endif +#include <math.h> -#include "access/tablesample.h" -#include "access/relscan.h" -#include "nodes/execnodes.h" -#include "nodes/relation.h" +#include "access/hash.h" +#include "access/tsmapi.h" +#include "catalog/pg_type.h" #include "optimizer/clauses.h" -#include "storage/bufmgr.h" -#include "utils/sampling.h" +#include "optimizer/cost.h" +#include "utils/builtins.h" -/* tsdesc */ +/* Private state */ typedef struct { + uint64 cutoff; /* select tuples with hash less than this */ uint32 seed; /* random seed */ - BlockNumber startblock; /* starting block, we use ths for syncscan - * support */ - BlockNumber nblocks; /* number of blocks */ - BlockNumber blockno; /* current block */ - float4 probability; /* probabilty that tuple will be returned - * (0.0-1.0) */ OffsetNumber lt; /* last tuple returned from current block */ - SamplerRandomState randstate; /* random generator tsdesc */ } BernoulliSamplerData; + +static void bernoulli_samplescangetsamplesize(PlannerInfo *root, + RelOptInfo *baserel, + List *paramexprs, + BlockNumber *pages, + double *tuples); +static void bernoulli_initsamplescan(SampleScanState *node, + int eflags); +static void bernoulli_beginsamplescan(SampleScanState *node, + Datum *params, + int nparams, + uint32 seed); +static OffsetNumber bernoulli_nextsampletuple(SampleScanState *node, + BlockNumber blockno, + OffsetNumber maxoffset); + + /* - * Initialize the state. + * Create a TsmRoutine descriptor for the BERNOULLI method. */ Datum -tsm_bernoulli_init(PG_FUNCTION_ARGS) +tsm_bernoulli_handler(PG_FUNCTION_ARGS) { - TableSampleDesc *tsdesc = (TableSampleDesc *) PG_GETARG_POINTER(0); - uint32 seed = PG_GETARG_UINT32(1); - float4 percent = PG_ARGISNULL(2) ? -1 : PG_GETARG_FLOAT4(2); - HeapScanDesc scan = tsdesc->heapScan; - BernoulliSamplerData *sampler; + TsmRoutine *tsm = makeNode(TsmRoutine); + + tsm->parameterTypes = list_make1_oid(FLOAT4OID); + tsm->repeatable_across_queries = true; + tsm->repeatable_across_scans = true; + tsm->SampleScanGetSampleSize = bernoulli_samplescangetsamplesize; + tsm->InitSampleScan = bernoulli_initsamplescan; + tsm->BeginSampleScan = bernoulli_beginsamplescan; + tsm->NextSampleBlock = NULL; + tsm->NextSampleTuple = bernoulli_nextsampletuple; + tsm->EndSampleScan = NULL; + + PG_RETURN_POINTER(tsm); +} - if (percent < 0 || percent > 100) - ereport(ERROR, - (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), - errmsg("invalid sample size"), - errhint("Sample size must be numeric value between 0 and 100 (inclusive)."))); +/* + * Sample size estimation. + */ +static void +bernoulli_samplescangetsamplesize(PlannerInfo *root, + RelOptInfo *baserel, + List *paramexprs, + BlockNumber *pages, + double *tuples) +{ + Node *pctnode; + float4 samplefract; - sampler = palloc0(sizeof(BernoulliSamplerData)); + /* Try to extract an estimate for the sample percentage */ + pctnode = (Node *) linitial(paramexprs); + pctnode = estimate_expression_value(root, pctnode); - /* Remember initial values for reinit */ - sampler->seed = seed; - sampler->startblock = scan->rs_startblock; - sampler->nblocks = scan->rs_nblocks; - sampler->blockno = InvalidBlockNumber; - sampler->probability = percent / 100; - sampler->lt = InvalidOffsetNumber; - sampler_random_init_state(sampler->seed, sampler->randstate); + if (IsA(pctnode, Const) && + !((Const *) pctnode)->constisnull) + { + samplefract = DatumGetFloat4(((Const *) pctnode)->constvalue); + if (samplefract >= 0 && samplefract <= 100 && !isnan(samplefract)) + samplefract /= 100.0f; + else + { + /* Default samplefract if the value is bogus */ + samplefract = 0.1f; + } + } + else + { + /* Default samplefract if we didn't obtain a non-null Const */ + samplefract = 0.1f; + } + + /* We'll visit all pages of the baserel */ + *pages = baserel->pages; - tsdesc->tsmdata = (void *) sampler; + *tuples = clamp_row_est(baserel->tuples * samplefract); +} - PG_RETURN_VOID(); +/* + * Initialize during executor setup. + */ +static void +bernoulli_initsamplescan(SampleScanState *node, int eflags) +{ + node->tsm_state = palloc0(sizeof(BernoulliSamplerData)); } /* - * Get next block number to read or InvalidBlockNumber if we are at the - * end of the relation. + * Examine parameters and prepare for a sample scan. */ -Datum -tsm_bernoulli_nextblock(PG_FUNCTION_ARGS) +static void +bernoulli_beginsamplescan(SampleScanState *node, + Datum *params, + int nparams, + uint32 seed) { - TableSampleDesc *tsdesc = (TableSampleDesc *) PG_GETARG_POINTER(0); - BernoulliSamplerData *sampler = (BernoulliSamplerData *) tsdesc->tsmdata; + BernoulliSamplerData *sampler = (BernoulliSamplerData *) node->tsm_state; + double percent = DatumGetFloat4(params[0]); + + if (percent < 0 || percent > 100 || isnan(percent)) + ereport(ERROR, + (errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT), + errmsg("sample percentage must be between 0 and 100"))); /* - * Bernoulli sampling scans all blocks on the table and supports syncscan - * so loop from startblock to startblock instead of from 0 to nblocks. + * The cutoff is sample probability times (PG_UINT32_MAX + 1); we have to + * store that as a uint64, of course. Note that this gives strictly + * correct behavior at the limits of zero or one probability. */ - if (sampler->blockno == InvalidBlockNumber) - sampler->blockno = sampler->startblock; - else - { - sampler->blockno++; - - if (sampler->blockno >= sampler->nblocks) - sampler->blockno = 0; - - if (sampler->blockno == sampler->startblock) - PG_RETURN_UINT32(InvalidBlockNumber); - } + sampler->cutoff = rint(((double) PG_UINT32_MAX + 1) * percent / 100); + sampler->seed = seed; + sampler->lt = InvalidOffsetNumber; - PG_RETURN_UINT32(sampler->blockno); + /* + * Use bulkread, since we're scanning all pages. But pagemode visibility + * checking is a win only at larger sampling fractions. The 25% cutoff + * here is based on very limited experimentation. + */ + node->use_bulkread = true; + node->use_pagemode = (percent >= 25); } /* - * Get next tuple from current block. - * - * This method implements the main logic in bernoulli sampling. - * The algorithm simply generates new random number (in 0.0-1.0 range) and if - * it falls within user specified probability (in the same range) return the - * tuple offset. - * - * It is ok here to return tuple offset without knowing if tuple is visible - * and not check it via examinetuple. The reason for that is that we do the - * coinflip (random number generation) for every tuple in the table. Since all - * tuples have same probability of being returned the visible and invisible - * tuples will be returned in same ratio as they have in the actual table. - * This means that there is no skew towards either visible or invisible tuples - * and the number of visible tuples returned from the executor node should - * match the fraction of visible tuples which was specified by user. + * Select next sampled tuple in current block. * - * This is faster than doing the coinflip in examinetuple because we don't - * have to do visibility checks on uninteresting tuples. + * It is OK here to return an offset without knowing if the tuple is visible + * (or even exists). The reason is that we do the coinflip for every tuple + * offset in the table. Since all tuples have the same probability of being + * returned, it doesn't matter if we do extra coinflips for invisible tuples. * - * If we reach end of the block return InvalidOffsetNumber which tells + * When we reach end of the block, return InvalidOffsetNumber which tells * SampleScan to go to next block. */ -Datum -tsm_bernoulli_nexttuple(PG_FUNCTION_ARGS) +static OffsetNumber +bernoulli_nextsampletuple(SampleScanState *node, + BlockNumber blockno, + OffsetNumber maxoffset) { - TableSampleDesc *tsdesc = (TableSampleDesc *) PG_GETARG_POINTER(0); - OffsetNumber maxoffset = PG_GETARG_UINT16(2); - BernoulliSamplerData *sampler = (BernoulliSamplerData *) tsdesc->tsmdata; + BernoulliSamplerData *sampler = (BernoulliSamplerData *) node->tsm_state; OffsetNumber tupoffset = sampler->lt; - float4 probability = sampler->probability; + uint32 hashinput[3]; + /* Advance to first/next tuple in block */ if (tupoffset == InvalidOffsetNumber) tupoffset = FirstOffsetNumber; else tupoffset++; /* - * Loop over tuple offsets until the random generator returns value that - * is within the probability of returning the tuple or until we reach end - * of the block. + * We compute the hash by applying hash_any to an array of 3 uint32's + * containing the block, offset, and seed. This is efficient to set up, + * and with the current implementation of hash_any, it gives + * machine-independent results, which is a nice property for regression + * testing. * - * (This is our implementation of bernoulli trial) + * These words in the hash input are the same throughout the block: */ - while (sampler_random_fract(sampler->randstate) > probability) + hashinput[0] = blockno; + hashinput[2] = sampler->seed; + + /* + * Loop over tuple offsets until finding suitable TID or reaching end of + * block. + */ + for (; tupoffset <= maxoffset; tupoffset++) { - tupoffset++; + uint32 hash; - if (tupoffset > maxoffset) + hashinput[1] = tupoffset; + + hash = DatumGetUInt32(hash_any((const unsigned char *) hashinput, + (int) sizeof(hashinput))); + if (hash < sampler->cutoff) break; } if (tupoffset > maxoffset) - /* Tell SampleScan that we want next block. */ tupoffset = InvalidOffsetNumber; sampler->lt = tupoffset; - PG_RETURN_UINT16(tupoffset); -} - -/* - * Cleanup method. - */ -Datum -tsm_bernoulli_end(PG_FUNCTION_ARGS) -{ - TableSampleDesc *tsdesc = (TableSampleDesc *) PG_GETARG_POINTER(0); - - pfree(tsdesc->tsmdata); - - PG_RETURN_VOID(); -} - -/* - * Reset tsdesc (called by ReScan). - */ -Datum -tsm_bernoulli_reset(PG_FUNCTION_ARGS) -{ - TableSampleDesc *tsdesc = (TableSampleDesc *) PG_GETARG_POINTER(0); - BernoulliSamplerData *sampler = (BernoulliSamplerData *) tsdesc->tsmdata; - - sampler->blockno = InvalidBlockNumber; - sampler->lt = InvalidOffsetNumber; - sampler_random_init_state(sampler->seed, sampler->randstate); - - PG_RETURN_VOID(); -} - -/* - * Costing function. - */ -Datum -tsm_bernoulli_cost(PG_FUNCTION_ARGS) -{ - PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); - Path *path = (Path *) PG_GETARG_POINTER(1); - RelOptInfo *baserel = (RelOptInfo *) PG_GETARG_POINTER(2); - List *args = (List *) PG_GETARG_POINTER(3); - BlockNumber *pages = (BlockNumber *) PG_GETARG_POINTER(4); - double *tuples = (double *) PG_GETARG_POINTER(5); - Node *pctnode; - float4 samplesize; - - *pages = baserel->pages; - - pctnode = linitial(args); - pctnode = estimate_expression_value(root, pctnode); - - if (IsA(pctnode, RelabelType)) - pctnode = (Node *) ((RelabelType *) pctnode)->arg; - - if (IsA(pctnode, Const)) - { - samplesize = DatumGetFloat4(((Const *) pctnode)->constvalue); - samplesize /= 100.0; - } - else - { - /* Default samplesize if the estimation didn't return Const. */ - samplesize = 0.1f; - } - - *tuples = path->rows * samplesize; - path->rows = *tuples; - - PG_RETURN_VOID(); + return tupoffset; } |