summaryrefslogtreecommitdiff
path: root/src/backend/access/transam/slru.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/access/transam/slru.c')
-rw-r--r--src/backend/access/transam/slru.c18
1 files changed, 9 insertions, 9 deletions
diff --git a/src/backend/access/transam/slru.c b/src/backend/access/transam/slru.c
index dd69c232eb4..450c39bbc0c 100644
--- a/src/backend/access/transam/slru.c
+++ b/src/backend/access/transam/slru.c
@@ -15,7 +15,7 @@
*
* We use a control LWLock to protect the shared data structures, plus
* per-buffer LWLocks that synchronize I/O for each buffer. The control lock
- * must be held to examine or modify any shared state. A process that is
+ * must be held to examine or modify any shared state. A process that is
* reading in or writing out a page buffer does not hold the control lock,
* only the per-buffer lock for the buffer it is working on.
*
@@ -34,7 +34,7 @@
* could have happened while we didn't have the lock).
*
* As with the regular buffer manager, it is possible for another process
- * to re-dirty a page that is currently being written out. This is handled
+ * to re-dirty a page that is currently being written out. This is handled
* by re-setting the page's page_dirty flag.
*
*
@@ -96,7 +96,7 @@ typedef struct SlruFlushData *SlruFlush;
* page_lru_count entries to be "reset" to lower values than they should have,
* in case a process is delayed while it executes this macro. With care in
* SlruSelectLRUPage(), this does little harm, and in any case the absolute
- * worst possible consequence is a nonoptimal choice of page to evict. The
+ * worst possible consequence is a nonoptimal choice of page to evict. The
* gain from allowing concurrent reads of SLRU pages seems worth it.
*/
#define SlruRecentlyUsed(shared, slotno) \
@@ -481,7 +481,7 @@ SimpleLruReadPage_ReadOnly(SlruCtl ctl, int pageno, TransactionId xid)
*
* NOTE: only one write attempt is made here. Hence, it is possible that
* the page is still dirty at exit (if someone else re-dirtied it during
- * the write). However, we *do* attempt a fresh write even if the page
+ * the write). However, we *do* attempt a fresh write even if the page
* is already being written; this is for checkpoints.
*
* Control lock must be held at entry, and will be held at exit.
@@ -590,7 +590,7 @@ SlruPhysicalReadPage(SlruCtl ctl, int pageno, int slotno)
* In a crash-and-restart situation, it's possible for us to receive
* commands to set the commit status of transactions whose bits are in
* already-truncated segments of the commit log (see notes in
- * SlruPhysicalWritePage). Hence, if we are InRecovery, allow the case
+ * SlruPhysicalWritePage). Hence, if we are InRecovery, allow the case
* where the file doesn't exist, and return zeroes instead.
*/
fd = BasicOpenFile(path, O_RDWR | PG_BINARY, S_IRUSR | S_IWUSR);
@@ -920,9 +920,9 @@ SlruSelectLRUPage(SlruCtl ctl, int pageno)
/*
* If we find any EMPTY slot, just select that one. Else choose a
- * victim page to replace. We normally take the least recently used
+ * victim page to replace. We normally take the least recently used
* valid page, but we will never take the slot containing
- * latest_page_number, even if it appears least recently used. We
+ * latest_page_number, even if it appears least recently used. We
* will select a slot that is already I/O busy only if there is no
* other choice: a read-busy slot will not be least recently used once
* the read finishes, and waiting for an I/O on a write-busy slot is
@@ -997,7 +997,7 @@ SlruSelectLRUPage(SlruCtl ctl, int pageno)
/*
* If all pages (except possibly the latest one) are I/O busy, we'll
- * have to wait for an I/O to complete and then retry. In that
+ * have to wait for an I/O to complete and then retry. In that
* unhappy case, we choose to wait for the I/O on the least recently
* used slot, on the assumption that it was likely initiated first of
* all the I/Os in progress and may therefore finish first.
@@ -1149,7 +1149,7 @@ restart:;
/*
* Hmm, we have (or may have) I/O operations acting on the page, so
* we've got to wait for them to finish and then start again. This is
- * the same logic as in SlruSelectLRUPage. (XXX if page is dirty,
+ * the same logic as in SlruSelectLRUPage. (XXX if page is dirty,
* wouldn't it be OK to just discard it without writing it? For now,
* keep the logic the same as it was.)
*/