diff options
Diffstat (limited to 'src/backend/commands/analyze.c')
-rw-r--r-- | src/backend/commands/analyze.c | 1794 |
1 files changed, 0 insertions, 1794 deletions
diff --git a/src/backend/commands/analyze.c b/src/backend/commands/analyze.c deleted file mode 100644 index 6caa968b5d2..00000000000 --- a/src/backend/commands/analyze.c +++ /dev/null @@ -1,1794 +0,0 @@ -/*------------------------------------------------------------------------- - * - * analyze.c - * the postgres statistics generator - * - * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group - * Portions Copyright (c) 1994, Regents of the University of California - * - * - * IDENTIFICATION - * $Header: /cvsroot/pgsql/src/backend/commands/analyze.c,v 1.38 2002/06/20 20:29:26 momjian Exp $ - * - *------------------------------------------------------------------------- - */ -#include "postgres.h" - -#include <math.h> - -#include "access/heapam.h" -#include "access/tuptoaster.h" -#include "catalog/catalog.h" -#include "catalog/catname.h" -#include "catalog/indexing.h" -#include "catalog/pg_operator.h" -#include "catalog/pg_statistic.h" -#include "catalog/pg_type.h" -#include "commands/vacuum.h" -#include "miscadmin.h" -#include "parser/parse_oper.h" -#include "utils/acl.h" -#include "utils/builtins.h" -#include "utils/datum.h" -#include "utils/fmgroids.h" -#include "utils/lsyscache.h" -#include "utils/syscache.h" -#include "utils/tuplesort.h" - - -/* - * Analysis algorithms supported - */ -typedef enum -{ - ALG_MINIMAL = 1, /* Compute only most-common-values */ - ALG_SCALAR /* Compute MCV, histogram, sort - * correlation */ -} AlgCode; - -/* - * To avoid consuming too much memory during analysis and/or too much space - * in the resulting pg_statistic rows, we ignore varlena datums that are wider - * than WIDTH_THRESHOLD (after detoasting!). This is legitimate for MCV - * and distinct-value calculations since a wide value is unlikely to be - * duplicated at all, much less be a most-common value. For the same reason, - * ignoring wide values will not affect our estimates of histogram bin - * boundaries very much. - */ -#define WIDTH_THRESHOLD 256 - -/* - * We build one of these structs for each attribute (column) that is to be - * analyzed. The struct and subsidiary data are in anl_context, - * so they live until the end of the ANALYZE operation. - */ -typedef struct -{ - /* These fields are set up by examine_attribute */ - int attnum; /* attribute number */ - AlgCode algcode; /* Which algorithm to use for this column */ - int minrows; /* Minimum # of rows wanted for stats */ - Form_pg_attribute attr; /* copy of pg_attribute row for column */ - Form_pg_type attrtype; /* copy of pg_type row for column */ - Oid eqopr; /* '=' operator for datatype, if any */ - Oid eqfunc; /* and associated function */ - Oid ltopr; /* '<' operator for datatype, if any */ - - /* - * These fields are filled in by the actual statistics-gathering - * routine - */ - bool stats_valid; - float4 stanullfrac; /* fraction of entries that are NULL */ - int4 stawidth; /* average width */ - float4 stadistinct; /* # distinct values */ - int2 stakind[STATISTIC_NUM_SLOTS]; - Oid staop[STATISTIC_NUM_SLOTS]; - int numnumbers[STATISTIC_NUM_SLOTS]; - float4 *stanumbers[STATISTIC_NUM_SLOTS]; - int numvalues[STATISTIC_NUM_SLOTS]; - Datum *stavalues[STATISTIC_NUM_SLOTS]; -} VacAttrStats; - - -typedef struct -{ - Datum value; /* a data value */ - int tupno; /* position index for tuple it came from */ -} ScalarItem; - -typedef struct -{ - int count; /* # of duplicates */ - int first; /* values[] index of first occurrence */ -} ScalarMCVItem; - - -#define swapInt(a,b) do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0) -#define swapDatum(a,b) do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0) - -static int elevel = -1; - -static MemoryContext anl_context = NULL; - -/* context information for compare_scalars() */ -static FmgrInfo *datumCmpFn; -static SortFunctionKind datumCmpFnKind; -static int *datumCmpTupnoLink; - - -static VacAttrStats *examine_attribute(Relation onerel, int attnum); -static int acquire_sample_rows(Relation onerel, HeapTuple *rows, - int targrows, double *totalrows); -static double random_fract(void); -static double init_selection_state(int n); -static double select_next_random_record(double t, int n, double *stateptr); -static int compare_rows(const void *a, const void *b); -static int compare_scalars(const void *a, const void *b); -static int compare_mcvs(const void *a, const void *b); -static void compute_minimal_stats(VacAttrStats *stats, - TupleDesc tupDesc, double totalrows, - HeapTuple *rows, int numrows); -static void compute_scalar_stats(VacAttrStats *stats, - TupleDesc tupDesc, double totalrows, - HeapTuple *rows, int numrows); -static void update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats); - - -/* - * analyze_rel() -- analyze one relation - */ -void -analyze_rel(Oid relid, VacuumStmt *vacstmt) -{ - Relation onerel; - Form_pg_attribute *attr; - int attr_cnt, - tcnt, - i; - VacAttrStats **vacattrstats; - int targrows, - numrows; - double totalrows; - HeapTuple *rows; - - if (vacstmt->verbose) - elevel = INFO; - else - elevel = DEBUG1; - - /* - * Use the current context for storing analysis info. vacuum.c ensures - * that this context will be cleared when I return, thus releasing the - * memory allocated here. - */ - anl_context = CurrentMemoryContext; - - /* - * Check for user-requested abort. Note we want this to be inside a - * transaction, so xact.c doesn't issue useless WARNING. - */ - CHECK_FOR_INTERRUPTS(); - - /* - * Race condition -- if the pg_class tuple has gone away since the - * last time we saw it, we don't need to process it. - */ - if (!SearchSysCacheExists(RELOID, - ObjectIdGetDatum(relid), - 0, 0, 0)) - return; - - /* - * Open the class, getting only a read lock on it, and check - * permissions. Permissions check should match vacuum's check! - */ - onerel = relation_open(relid, AccessShareLock); - - if (!(pg_class_ownercheck(RelationGetRelid(onerel), GetUserId()) || - (is_dbadmin(MyDatabaseId) && !onerel->rd_rel->relisshared))) - { - /* No need for a WARNING if we already complained during VACUUM */ - if (!vacstmt->vacuum) - elog(WARNING, "Skipping \"%s\" --- only table or database owner can ANALYZE it", - RelationGetRelationName(onerel)); - relation_close(onerel, AccessShareLock); - return; - } - - /* - * Check that it's a plain table; we used to do this in getrels() but - * seems safer to check after we've locked the relation. - */ - if (onerel->rd_rel->relkind != RELKIND_RELATION) - { - /* No need for a WARNING if we already complained during VACUUM */ - if (!vacstmt->vacuum) - elog(WARNING, "Skipping \"%s\" --- can not process indexes, views or special system tables", - RelationGetRelationName(onerel)); - relation_close(onerel, AccessShareLock); - return; - } - - /* - * We can ANALYZE any table except pg_statistic. See update_attstats - */ - if (IsSystemNamespace(RelationGetNamespace(onerel)) && - strcmp(RelationGetRelationName(onerel), StatisticRelationName) == 0) - { - relation_close(onerel, AccessShareLock); - return; - } - - elog(elevel, "Analyzing %s.%s", - get_namespace_name(RelationGetNamespace(onerel)), - RelationGetRelationName(onerel)); - - /* - * Determine which columns to analyze - * - * Note that system attributes are never analyzed. - */ - attr = onerel->rd_att->attrs; - attr_cnt = onerel->rd_att->natts; - - if (vacstmt->va_cols != NIL) - { - List *le; - - vacattrstats = (VacAttrStats **) palloc(length(vacstmt->va_cols) * - sizeof(VacAttrStats *)); - tcnt = 0; - foreach(le, vacstmt->va_cols) - { - char *col = strVal(lfirst(le)); - - for (i = 0; i < attr_cnt; i++) - { - if (namestrcmp(&(attr[i]->attname), col) == 0) - break; - } - if (i >= attr_cnt) - elog(ERROR, "ANALYZE: there is no attribute %s in %s", - col, RelationGetRelationName(onerel)); - vacattrstats[tcnt] = examine_attribute(onerel, i + 1); - if (vacattrstats[tcnt] != NULL) - tcnt++; - } - attr_cnt = tcnt; - } - else - { - vacattrstats = (VacAttrStats **) palloc(attr_cnt * - sizeof(VacAttrStats *)); - tcnt = 0; - for (i = 0; i < attr_cnt; i++) - { - vacattrstats[tcnt] = examine_attribute(onerel, i + 1); - if (vacattrstats[tcnt] != NULL) - tcnt++; - } - attr_cnt = tcnt; - } - - /* - * Quit if no analyzable columns - */ - if (attr_cnt <= 0) - { - relation_close(onerel, NoLock); - return; - } - - /* - * Determine how many rows we need to sample, using the worst case - * from all analyzable columns. We use a lower bound of 100 rows to - * avoid possible overflow in Vitter's algorithm. - */ - targrows = 100; - for (i = 0; i < attr_cnt; i++) - { - if (targrows < vacattrstats[i]->minrows) - targrows = vacattrstats[i]->minrows; - } - - /* - * Acquire the sample rows - */ - rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple)); - numrows = acquire_sample_rows(onerel, rows, targrows, &totalrows); - - /* - * If we are running a standalone ANALYZE, update pages/tuples stats - * in pg_class. We have the accurate page count from heap_beginscan, - * but only an approximate number of tuples; therefore, if we are part - * of VACUUM ANALYZE do *not* overwrite the accurate count already - * inserted by VACUUM. - */ - if (!vacstmt->vacuum) - vac_update_relstats(RelationGetRelid(onerel), - onerel->rd_nblocks, - totalrows, - RelationGetForm(onerel)->relhasindex); - - /* - * Compute the statistics. Temporary results during the calculations - * for each column are stored in a child context. The calc routines - * are responsible to make sure that whatever they store into the - * VacAttrStats structure is allocated in anl_context. - */ - if (numrows > 0) - { - MemoryContext col_context, - old_context; - - col_context = AllocSetContextCreate(anl_context, - "Analyze Column", - ALLOCSET_DEFAULT_MINSIZE, - ALLOCSET_DEFAULT_INITSIZE, - ALLOCSET_DEFAULT_MAXSIZE); - old_context = MemoryContextSwitchTo(col_context); - for (i = 0; i < attr_cnt; i++) - { - switch (vacattrstats[i]->algcode) - { - case ALG_MINIMAL: - compute_minimal_stats(vacattrstats[i], - onerel->rd_att, totalrows, - rows, numrows); - break; - case ALG_SCALAR: - compute_scalar_stats(vacattrstats[i], - onerel->rd_att, totalrows, - rows, numrows); - break; - } - MemoryContextResetAndDeleteChildren(col_context); - } - MemoryContextSwitchTo(old_context); - MemoryContextDelete(col_context); - - /* - * Emit the completed stats rows into pg_statistic, replacing any - * previous statistics for the target columns. (If there are - * stats in pg_statistic for columns we didn't process, we leave - * them alone.) - */ - update_attstats(relid, attr_cnt, vacattrstats); - } - - /* - * Close source relation now, but keep lock so that no one deletes it - * before we commit. (If someone did, they'd fail to clean up the - * entries we made in pg_statistic.) - */ - relation_close(onerel, NoLock); -} - -/* - * examine_attribute -- pre-analysis of a single column - * - * Determine whether the column is analyzable; if so, create and initialize - * a VacAttrStats struct for it. If not, return NULL. - */ -static VacAttrStats * -examine_attribute(Relation onerel, int attnum) -{ - Form_pg_attribute attr = onerel->rd_att->attrs[attnum - 1]; - Operator func_operator; - Oid oprrest; - HeapTuple typtuple; - Oid eqopr = InvalidOid; - Oid eqfunc = InvalidOid; - Oid ltopr = InvalidOid; - VacAttrStats *stats; - - /* Don't analyze column if user has specified not to */ - if (attr->attstattarget <= 0) - return NULL; - - /* If column has no "=" operator, we can't do much of anything */ - func_operator = compatible_oper(makeList1(makeString("=")), - attr->atttypid, - attr->atttypid, - true); - if (func_operator != NULL) - { - oprrest = ((Form_pg_operator) GETSTRUCT(func_operator))->oprrest; - if (oprrest == F_EQSEL) - { - eqopr = oprid(func_operator); - eqfunc = oprfuncid(func_operator); - } - ReleaseSysCache(func_operator); - } - if (!OidIsValid(eqfunc)) - return NULL; - - /* - * If we have "=" then we're at least able to do the minimal - * algorithm, so start filling in a VacAttrStats struct. - */ - stats = (VacAttrStats *) palloc(sizeof(VacAttrStats)); - MemSet(stats, 0, sizeof(VacAttrStats)); - stats->attnum = attnum; - stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_TUPLE_SIZE); - memcpy(stats->attr, attr, ATTRIBUTE_TUPLE_SIZE); - typtuple = SearchSysCache(TYPEOID, - ObjectIdGetDatum(attr->atttypid), - 0, 0, 0); - if (!HeapTupleIsValid(typtuple)) - elog(ERROR, "cache lookup of type %u failed", attr->atttypid); - stats->attrtype = (Form_pg_type) palloc(sizeof(FormData_pg_type)); - memcpy(stats->attrtype, GETSTRUCT(typtuple), sizeof(FormData_pg_type)); - ReleaseSysCache(typtuple); - stats->eqopr = eqopr; - stats->eqfunc = eqfunc; - - /* Is there a "<" operator with suitable semantics? */ - func_operator = compatible_oper(makeList1(makeString("<")), - attr->atttypid, - attr->atttypid, - true); - if (func_operator != NULL) - { - oprrest = ((Form_pg_operator) GETSTRUCT(func_operator))->oprrest; - if (oprrest == F_SCALARLTSEL) - ltopr = oprid(func_operator); - ReleaseSysCache(func_operator); - } - stats->ltopr = ltopr; - - /* - * Determine the algorithm to use (this will get more complicated - * later) - */ - if (OidIsValid(ltopr)) - { - /* Seems to be a scalar datatype */ - stats->algcode = ALG_SCALAR; - /*-------------------- - * The following choice of minrows is based on the paper - * "Random sampling for histogram construction: how much is enough?" - * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in - * Proceedings of ACM SIGMOD International Conference on Management - * of Data, 1998, Pages 436-447. Their Corollary 1 to Theorem 5 - * says that for table size n, histogram size k, maximum relative - * error in bin size f, and error probability gamma, the minimum - * random sample size is - * r = 4 * k * ln(2*n/gamma) / f^2 - * Taking f = 0.5, gamma = 0.01, n = 1 million rows, we obtain - * r = 305.82 * k - * Note that because of the log function, the dependence on n is - * quite weak; even at n = 1 billion, a 300*k sample gives <= 0.59 - * bin size error with probability 0.99. So there's no real need to - * scale for n, which is a good thing because we don't necessarily - * know it at this point. - *-------------------- - */ - stats->minrows = 300 * attr->attstattarget; - } - else - { - /* Can't do much but the minimal stuff */ - stats->algcode = ALG_MINIMAL; - /* Might as well use the same minrows as above */ - stats->minrows = 300 * attr->attstattarget; - } - - return stats; -} - -/* - * acquire_sample_rows -- acquire a random sample of rows from the table - * - * Up to targrows rows are collected (if there are fewer than that many - * rows in the table, all rows are collected). When the table is larger - * than targrows, a truly random sample is collected: every row has an - * equal chance of ending up in the final sample. - * - * We also estimate the total number of rows in the table, and return that - * into *totalrows. - * - * The returned list of tuples is in order by physical position in the table. - * (We will rely on this later to derive correlation estimates.) - */ -static int -acquire_sample_rows(Relation onerel, HeapTuple *rows, int targrows, - double *totalrows) -{ - int numrows = 0; - HeapScanDesc scan; - HeapTuple tuple; - ItemPointer lasttuple; - BlockNumber lastblock, - estblock; - OffsetNumber lastoffset; - int numest; - double tuplesperpage; - double t; - double rstate; - - Assert(targrows > 1); - - /* - * Do a simple linear scan until we reach the target number of rows. - */ - scan = heap_beginscan(onerel, SnapshotNow, 0, NULL); - while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL) - { - rows[numrows++] = heap_copytuple(tuple); - if (numrows >= targrows) - break; - CHECK_FOR_INTERRUPTS(); - } - heap_endscan(scan); - - /* - * If we ran out of tuples then we're done, no matter how few we - * collected. No sort is needed, since they're already in order. - */ - if (!HeapTupleIsValid(tuple)) - { - *totalrows = (double) numrows; - return numrows; - } - - /* - * Otherwise, start replacing tuples in the sample until we reach the - * end of the relation. This algorithm is from Jeff Vitter's paper - * (see full citation below). It works by repeatedly computing the - * number of the next tuple we want to fetch, which will replace a - * randomly chosen element of the reservoir (current set of tuples). - * At all times the reservoir is a true random sample of the tuples - * we've passed over so far, so when we fall off the end of the - * relation we're done. - * - * A slight difficulty is that since we don't want to fetch tuples or - * even pages that we skip over, it's not possible to fetch *exactly* - * the N'th tuple at each step --- we don't know how many valid tuples - * are on the skipped pages. We handle this by assuming that the - * average number of valid tuples/page on the pages already scanned - * over holds good for the rest of the relation as well; this lets us - * estimate which page the next tuple should be on and its position in - * the page. Then we fetch the first valid tuple at or after that - * position, being careful not to use the same tuple twice. This - * approach should still give a good random sample, although it's not - * perfect. - */ - lasttuple = &(rows[numrows - 1]->t_self); - lastblock = ItemPointerGetBlockNumber(lasttuple); - lastoffset = ItemPointerGetOffsetNumber(lasttuple); - - /* - * If possible, estimate tuples/page using only completely-scanned - * pages. - */ - for (numest = numrows; numest > 0; numest--) - { - if (ItemPointerGetBlockNumber(&(rows[numest - 1]->t_self)) != lastblock) - break; - } - if (numest == 0) - { - numest = numrows; /* don't have a full page? */ - estblock = lastblock + 1; - } - else - estblock = lastblock; - tuplesperpage = (double) numest / (double) estblock; - - t = (double) numrows; /* t is the # of records processed so far */ - rstate = init_selection_state(targrows); - for (;;) - { - double targpos; - BlockNumber targblock; - Buffer targbuffer; - Page targpage; - OffsetNumber targoffset, - maxoffset; - - CHECK_FOR_INTERRUPTS(); - - t = select_next_random_record(t, targrows, &rstate); - /* Try to read the t'th record in the table */ - targpos = t / tuplesperpage; - targblock = (BlockNumber) targpos; - targoffset = ((int) ((targpos - targblock) * tuplesperpage)) + - FirstOffsetNumber; - /* Make sure we are past the last selected record */ - if (targblock <= lastblock) - { - targblock = lastblock; - if (targoffset <= lastoffset) - targoffset = lastoffset + 1; - } - /* Loop to find first valid record at or after given position */ -pageloop:; - - /* - * Have we fallen off the end of the relation? (We rely on - * heap_beginscan to have updated rd_nblocks.) - */ - if (targblock >= onerel->rd_nblocks) - break; - - /* - * We must maintain a pin on the target page's buffer to ensure - * that the maxoffset value stays good (else concurrent VACUUM - * might delete tuples out from under us). Hence, pin the page - * until we are done looking at it. We don't maintain a lock on - * the page, so tuples could get added to it, but we ignore such - * tuples. - */ - targbuffer = ReadBuffer(onerel, targblock); - if (!BufferIsValid(targbuffer)) - elog(ERROR, "acquire_sample_rows: ReadBuffer(%s,%u) failed", - RelationGetRelationName(onerel), targblock); - LockBuffer(targbuffer, BUFFER_LOCK_SHARE); - targpage = BufferGetPage(targbuffer); - maxoffset = PageGetMaxOffsetNumber(targpage); - LockBuffer(targbuffer, BUFFER_LOCK_UNLOCK); - - for (;;) - { - HeapTupleData targtuple; - Buffer tupbuffer; - - if (targoffset > maxoffset) - { - /* Fell off end of this page, try next */ - ReleaseBuffer(targbuffer); - targblock++; - targoffset = FirstOffsetNumber; - goto pageloop; - } - ItemPointerSet(&targtuple.t_self, targblock, targoffset); - if (heap_fetch(onerel, SnapshotNow, &targtuple, &tupbuffer, - false, NULL)) - { - /* - * Found a suitable tuple, so save it, replacing one old - * tuple at random - */ - int k = (int) (targrows * random_fract()); - - Assert(k >= 0 && k < targrows); - heap_freetuple(rows[k]); - rows[k] = heap_copytuple(&targtuple); - /* this releases the second pin acquired by heap_fetch: */ - ReleaseBuffer(tupbuffer); - /* this releases the initial pin: */ - ReleaseBuffer(targbuffer); - lastblock = targblock; - lastoffset = targoffset; - break; - } - /* this tuple is dead, so advance to next one on same page */ - targoffset++; - } - } - - /* - * Now we need to sort the collected tuples by position (itempointer). - */ - qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows); - - /* - * Estimate total number of valid rows in relation. - */ - *totalrows = floor((double) onerel->rd_nblocks * tuplesperpage + 0.5); - - return numrows; -} - -/* Select a random value R uniformly distributed in 0 < R < 1 */ -static double -random_fract(void) -{ - long z; - - /* random() can produce endpoint values, try again if so */ - do - { - z = random(); - } while (!(z > 0 && z < MAX_RANDOM_VALUE)); - return (double) z / (double) MAX_RANDOM_VALUE; -} - -/* - * These two routines embody Algorithm Z from "Random sampling with a - * reservoir" by Jeffrey S. Vitter, in ACM Trans. Math. Softw. 11, 1 - * (Mar. 1985), Pages 37-57. While Vitter describes his algorithm in terms - * of the count S of records to skip before processing another record, - * it is convenient to work primarily with t, the index (counting from 1) - * of the last record processed and next record to process. The only extra - * state needed between calls is W, a random state variable. - * - * Note: the original algorithm defines t, S, numer, and denom as integers. - * Here we express them as doubles to avoid overflow if the number of rows - * in the table exceeds INT_MAX. The algorithm should work as long as the - * row count does not become so large that it is not represented accurately - * in a double (on IEEE-math machines this would be around 2^52 rows). - * - * init_selection_state computes the initial W value. - * - * Given that we've already processed t records (t >= n), - * select_next_random_record determines the number of the next record to - * process. - */ -static double -init_selection_state(int n) -{ - /* Initial value of W (for use when Algorithm Z is first applied) */ - return exp(-log(random_fract()) / n); -} - -static double -select_next_random_record(double t, int n, double *stateptr) -{ - /* The magic constant here is T from Vitter's paper */ - if (t <= (22.0 * n)) - { - /* Process records using Algorithm X until t is large enough */ - double V, - quot; - - V = random_fract(); /* Generate V */ - t += 1; - quot = (t - (double) n) / t; - /* Find min S satisfying (4.1) */ - while (quot > V) - { - t += 1; - quot *= (t - (double) n) / t; - } - } - else - { - /* Now apply Algorithm Z */ - double W = *stateptr; - double term = t - (double) n + 1; - double S; - - for (;;) - { - double numer, - numer_lim, - denom; - double U, - X, - lhs, - rhs, - y, - tmp; - - /* Generate U and X */ - U = random_fract(); - X = t * (W - 1.0); - S = floor(X); /* S is tentatively set to floor(X) */ - /* Test if U <= h(S)/cg(X) in the manner of (6.3) */ - tmp = (t + 1) / term; - lhs = exp(log(((U * tmp * tmp) * (term + S)) / (t + X)) / n); - rhs = (((t + X) / (term + S)) * term) / t; - if (lhs <= rhs) - { - W = rhs / lhs; - break; - } - /* Test if U <= f(S)/cg(X) */ - y = (((U * (t + 1)) / term) * (t + S + 1)) / (t + X); - if ((double) n < S) - { - denom = t; - numer_lim = term + S; - } - else - { - denom = t - (double) n + S; - numer_lim = t + 1; - } - for (numer = t + S; numer >= numer_lim; numer -= 1) - { - y *= numer / denom; - denom -= 1; - } - W = exp(-log(random_fract()) / n); /* Generate W in advance */ - if (exp(log(y) / n) <= (t + X) / t) - break; - } - t += S + 1; - *stateptr = W; - } - return t; -} - -/* - * qsort comparator for sorting rows[] array - */ -static int -compare_rows(const void *a, const void *b) -{ - HeapTuple ha = *(HeapTuple *) a; - HeapTuple hb = *(HeapTuple *) b; - BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self); - OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self); - BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self); - OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self); - - if (ba < bb) - return -1; - if (ba > bb) - return 1; - if (oa < ob) - return -1; - if (oa > ob) - return 1; - return 0; -} - - -/* - * compute_minimal_stats() -- compute minimal column statistics - * - * We use this when we can find only an "=" operator for the datatype. - * - * We determine the fraction of non-null rows, the average width, the - * most common values, and the (estimated) number of distinct values. - * - * The most common values are determined by brute force: we keep a list - * of previously seen values, ordered by number of times seen, as we scan - * the samples. A newly seen value is inserted just after the last - * multiply-seen value, causing the bottommost (oldest) singly-seen value - * to drop off the list. The accuracy of this method, and also its cost, - * depend mainly on the length of the list we are willing to keep. - */ -static void -compute_minimal_stats(VacAttrStats *stats, - TupleDesc tupDesc, double totalrows, - HeapTuple *rows, int numrows) -{ - int i; - int null_cnt = 0; - int nonnull_cnt = 0; - int toowide_cnt = 0; - double total_width = 0; - bool is_varlena = (!stats->attr->attbyval && - stats->attr->attlen == -1); - FmgrInfo f_cmpeq; - typedef struct - { - Datum value; - int count; - } TrackItem; - TrackItem *track; - int track_cnt, - track_max; - int num_mcv = stats->attr->attstattarget; - - /* - * We track up to 2*n values for an n-element MCV list; but at least - * 10 - */ - track_max = 2 * num_mcv; - if (track_max < 10) - track_max = 10; - track = (TrackItem *) palloc(track_max * sizeof(TrackItem)); - track_cnt = 0; - - fmgr_info(stats->eqfunc, &f_cmpeq); - - for (i = 0; i < numrows; i++) - { - HeapTuple tuple = rows[i]; - Datum value; - bool isnull; - bool match; - int firstcount1, - j; - - CHECK_FOR_INTERRUPTS(); - - value = heap_getattr(tuple, stats->attnum, tupDesc, &isnull); - - /* Check for null/nonnull */ - if (isnull) - { - null_cnt++; - continue; - } - nonnull_cnt++; - - /* - * If it's a varlena field, add up widths for average width - * calculation. Note that if the value is toasted, we use the - * toasted width. We don't bother with this calculation if it's a - * fixed-width type. - */ - if (is_varlena) - { - total_width += VARSIZE(DatumGetPointer(value)); - - /* - * If the value is toasted, we want to detoast it just once to - * avoid repeated detoastings and resultant excess memory - * usage during the comparisons. Also, check to see if the - * value is excessively wide, and if so don't detoast at all - * --- just ignore the value. - */ - if (toast_raw_datum_size(value) > WIDTH_THRESHOLD) - { - toowide_cnt++; - continue; - } - value = PointerGetDatum(PG_DETOAST_DATUM(value)); - } - - /* - * See if the value matches anything we're already tracking. - */ - match = false; - firstcount1 = track_cnt; - for (j = 0; j < track_cnt; j++) - { - if (DatumGetBool(FunctionCall2(&f_cmpeq, value, track[j].value))) - { - match = true; - break; - } - if (j < firstcount1 && track[j].count == 1) - firstcount1 = j; - } - - if (match) - { - /* Found a match */ - track[j].count++; - /* This value may now need to "bubble up" in the track list */ - while (j > 0 && track[j].count > track[j - 1].count) - { - swapDatum(track[j].value, track[j - 1].value); - swapInt(track[j].count, track[j - 1].count); - j--; - } - } - else - { - /* No match. Insert at head of count-1 list */ - if (track_cnt < track_max) - track_cnt++; - for (j = track_cnt - 1; j > firstcount1; j--) - { - track[j].value = track[j - 1].value; - track[j].count = track[j - 1].count; - } - if (firstcount1 < track_cnt) - { - track[firstcount1].value = value; - track[firstcount1].count = 1; - } - } - } - - /* We can only compute valid stats if we found some non-null values. */ - if (nonnull_cnt > 0) - { - int nmultiple, - summultiple; - - stats->stats_valid = true; - /* Do the simple null-frac and width stats */ - stats->stanullfrac = (double) null_cnt / (double) numrows; - if (is_varlena) - stats->stawidth = total_width / (double) nonnull_cnt; - else - stats->stawidth = stats->attrtype->typlen; - - /* Count the number of values we found multiple times */ - summultiple = 0; - for (nmultiple = 0; nmultiple < track_cnt; nmultiple++) - { - if (track[nmultiple].count == 1) - break; - summultiple += track[nmultiple].count; - } - - if (nmultiple == 0) - { - /* If we found no repeated values, assume it's a unique column */ - stats->stadistinct = -1.0; - } - else if (track_cnt < track_max && toowide_cnt == 0 && - nmultiple == track_cnt) - { - /* - * Our track list includes every value in the sample, and - * every value appeared more than once. Assume the column has - * just these values. - */ - stats->stadistinct = track_cnt; - } - else - { - /*---------- - * Estimate the number of distinct values using the estimator - * proposed by Haas and Stokes in IBM Research Report RJ 10025: - * n*d / (n - f1 + f1*n/N) - * where f1 is the number of distinct values that occurred - * exactly once in our sample of n rows (from a total of N), - * and d is the total number of distinct values in the sample. - * This is their Duj1 estimator; the other estimators they - * recommend are considerably more complex, and are numerically - * very unstable when n is much smaller than N. - * - * We assume (not very reliably!) that all the multiply-occurring - * values are reflected in the final track[] list, and the other - * nonnull values all appeared but once. (XXX this usually - * results in a drastic overestimate of ndistinct. Can we do - * any better?) - *---------- - */ - int f1 = nonnull_cnt - summultiple; - int d = f1 + nmultiple; - double numer, denom, stadistinct; - - numer = (double) numrows * (double) d; - denom = (double) (numrows - f1) + - (double) f1 * (double) numrows / totalrows; - stadistinct = numer / denom; - /* Clamp to sane range in case of roundoff error */ - if (stadistinct < (double) d) - stadistinct = (double) d; - if (stadistinct > totalrows) - stadistinct = totalrows; - stats->stadistinct = floor(stadistinct + 0.5); - } - - /* - * If we estimated the number of distinct values at more than 10% - * of the total row count (a very arbitrary limit), then assume - * that stadistinct should scale with the row count rather than be - * a fixed value. - */ - if (stats->stadistinct > 0.1 * totalrows) - stats->stadistinct = -(stats->stadistinct / totalrows); - - /* - * Decide how many values are worth storing as most-common values. - * If we are able to generate a complete MCV list (all the values - * in the sample will fit, and we think these are all the ones in - * the table), then do so. Otherwise, store only those values - * that are significantly more common than the (estimated) - * average. We set the threshold rather arbitrarily at 25% more - * than average, with at least 2 instances in the sample. - */ - if (track_cnt < track_max && toowide_cnt == 0 && - stats->stadistinct > 0 && - track_cnt <= num_mcv) - { - /* Track list includes all values seen, and all will fit */ - num_mcv = track_cnt; - } - else - { - double ndistinct = stats->stadistinct; - double avgcount, - mincount; - - if (ndistinct < 0) - ndistinct = -ndistinct * totalrows; - /* estimate # of occurrences in sample of a typical value */ - avgcount = (double) numrows / ndistinct; - /* set minimum threshold count to store a value */ - mincount = avgcount * 1.25; - if (mincount < 2) - mincount = 2; - if (num_mcv > track_cnt) - num_mcv = track_cnt; - for (i = 0; i < num_mcv; i++) - { - if (track[i].count < mincount) - { - num_mcv = i; - break; - } - } - } - - /* Generate MCV slot entry */ - if (num_mcv > 0) - { - MemoryContext old_context; - Datum *mcv_values; - float4 *mcv_freqs; - - /* Must copy the target values into anl_context */ - old_context = MemoryContextSwitchTo(anl_context); - mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum)); - mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4)); - for (i = 0; i < num_mcv; i++) - { - mcv_values[i] = datumCopy(track[i].value, - stats->attr->attbyval, - stats->attr->attlen); - mcv_freqs[i] = (double) track[i].count / (double) numrows; - } - MemoryContextSwitchTo(old_context); - - stats->stakind[0] = STATISTIC_KIND_MCV; - stats->staop[0] = stats->eqopr; - stats->stanumbers[0] = mcv_freqs; - stats->numnumbers[0] = num_mcv; - stats->stavalues[0] = mcv_values; - stats->numvalues[0] = num_mcv; - } - } - - /* We don't need to bother cleaning up any of our temporary palloc's */ -} - - -/* - * compute_scalar_stats() -- compute column statistics - * - * We use this when we can find "=" and "<" operators for the datatype. - * - * We determine the fraction of non-null rows, the average width, the - * most common values, the (estimated) number of distinct values, the - * distribution histogram, and the correlation of physical to logical order. - * - * The desired stats can be determined fairly easily after sorting the - * data values into order. - */ -static void -compute_scalar_stats(VacAttrStats *stats, - TupleDesc tupDesc, double totalrows, - HeapTuple *rows, int numrows) -{ - int i; - int null_cnt = 0; - int nonnull_cnt = 0; - int toowide_cnt = 0; - double total_width = 0; - bool is_varlena = (!stats->attr->attbyval && - stats->attr->attlen == -1); - double corr_xysum; - RegProcedure cmpFn; - SortFunctionKind cmpFnKind; - FmgrInfo f_cmpfn; - ScalarItem *values; - int values_cnt = 0; - int *tupnoLink; - ScalarMCVItem *track; - int track_cnt = 0; - int num_mcv = stats->attr->attstattarget; - int num_bins = stats->attr->attstattarget; - - values = (ScalarItem *) palloc(numrows * sizeof(ScalarItem)); - tupnoLink = (int *) palloc(numrows * sizeof(int)); - track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem)); - - SelectSortFunction(stats->ltopr, &cmpFn, &cmpFnKind); - fmgr_info(cmpFn, &f_cmpfn); - - /* Initial scan to find sortable values */ - for (i = 0; i < numrows; i++) - { - HeapTuple tuple = rows[i]; - Datum value; - bool isnull; - - CHECK_FOR_INTERRUPTS(); - - value = heap_getattr(tuple, stats->attnum, tupDesc, &isnull); - - /* Check for null/nonnull */ - if (isnull) - { - null_cnt++; - continue; - } - nonnull_cnt++; - - /* - * If it's a varlena field, add up widths for average width - * calculation. Note that if the value is toasted, we use the - * toasted width. We don't bother with this calculation if it's a - * fixed-width type. - */ - if (is_varlena) - { - total_width += VARSIZE(DatumGetPointer(value)); - - /* - * If the value is toasted, we want to detoast it just once to - * avoid repeated detoastings and resultant excess memory - * usage during the comparisons. Also, check to see if the - * value is excessively wide, and if so don't detoast at all - * --- just ignore the value. - */ - if (toast_raw_datum_size(value) > WIDTH_THRESHOLD) - { - toowide_cnt++; - continue; - } - value = PointerGetDatum(PG_DETOAST_DATUM(value)); - } - - /* Add it to the list to be sorted */ - values[values_cnt].value = value; - values[values_cnt].tupno = values_cnt; - tupnoLink[values_cnt] = values_cnt; - values_cnt++; - } - - /* We can only compute valid stats if we found some sortable values. */ - if (values_cnt > 0) - { - int ndistinct, /* # distinct values in sample */ - nmultiple, /* # that appear multiple times */ - num_hist, - dups_cnt; - int slot_idx = 0; - - /* Sort the collected values */ - datumCmpFn = &f_cmpfn; - datumCmpFnKind = cmpFnKind; - datumCmpTupnoLink = tupnoLink; - qsort((void *) values, values_cnt, - sizeof(ScalarItem), compare_scalars); - - /* - * Now scan the values in order, find the most common ones, and - * also accumulate ordering-correlation statistics. - * - * To determine which are most common, we first have to count the - * number of duplicates of each value. The duplicates are - * adjacent in the sorted list, so a brute-force approach is to - * compare successive datum values until we find two that are not - * equal. However, that requires N-1 invocations of the datum - * comparison routine, which are completely redundant with work - * that was done during the sort. (The sort algorithm must at - * some point have compared each pair of items that are adjacent - * in the sorted order; otherwise it could not know that it's - * ordered the pair correctly.) We exploit this by having - * compare_scalars remember the highest tupno index that each - * ScalarItem has been found equal to. At the end of the sort, a - * ScalarItem's tupnoLink will still point to itself if and only - * if it is the last item of its group of duplicates (since the - * group will be ordered by tupno). - */ - corr_xysum = 0; - ndistinct = 0; - nmultiple = 0; - dups_cnt = 0; - for (i = 0; i < values_cnt; i++) - { - int tupno = values[i].tupno; - - corr_xysum += ((double) i) * ((double) tupno); - dups_cnt++; - if (tupnoLink[tupno] == tupno) - { - /* Reached end of duplicates of this value */ - ndistinct++; - if (dups_cnt > 1) - { - nmultiple++; - if (track_cnt < num_mcv || - dups_cnt > track[track_cnt - 1].count) - { - /* - * Found a new item for the mcv list; find its - * position, bubbling down old items if needed. - * Loop invariant is that j points at an empty/ - * replaceable slot. - */ - int j; - - if (track_cnt < num_mcv) - track_cnt++; - for (j = track_cnt - 1; j > 0; j--) - { - if (dups_cnt <= track[j - 1].count) - break; - track[j].count = track[j - 1].count; - track[j].first = track[j - 1].first; - } - track[j].count = dups_cnt; - track[j].first = i + 1 - dups_cnt; - } - } - dups_cnt = 0; - } - } - - stats->stats_valid = true; - /* Do the simple null-frac and width stats */ - stats->stanullfrac = (double) null_cnt / (double) numrows; - if (is_varlena) - stats->stawidth = total_width / (double) nonnull_cnt; - else - stats->stawidth = stats->attrtype->typlen; - - if (nmultiple == 0) - { - /* If we found no repeated values, assume it's a unique column */ - stats->stadistinct = -1.0; - } - else if (toowide_cnt == 0 && nmultiple == ndistinct) - { - /* - * Every value in the sample appeared more than once. Assume - * the column has just these values. - */ - stats->stadistinct = ndistinct; - } - else - { - /*---------- - * Estimate the number of distinct values using the estimator - * proposed by Haas and Stokes in IBM Research Report RJ 10025: - * n*d / (n - f1 + f1*n/N) - * where f1 is the number of distinct values that occurred - * exactly once in our sample of n rows (from a total of N), - * and d is the total number of distinct values in the sample. - * This is their Duj1 estimator; the other estimators they - * recommend are considerably more complex, and are numerically - * very unstable when n is much smaller than N. - * - * Overwidth values are assumed to have been distinct. - *---------- - */ - int f1 = ndistinct - nmultiple + toowide_cnt; - int d = f1 + nmultiple; - double numer, denom, stadistinct; - - numer = (double) numrows * (double) d; - denom = (double) (numrows - f1) + - (double) f1 * (double) numrows / totalrows; - stadistinct = numer / denom; - /* Clamp to sane range in case of roundoff error */ - if (stadistinct < (double) d) - stadistinct = (double) d; - if (stadistinct > totalrows) - stadistinct = totalrows; - stats->stadistinct = floor(stadistinct + 0.5); - } - - /* - * If we estimated the number of distinct values at more than 10% - * of the total row count (a very arbitrary limit), then assume - * that stadistinct should scale with the row count rather than be - * a fixed value. - */ - if (stats->stadistinct > 0.1 * totalrows) - stats->stadistinct = -(stats->stadistinct / totalrows); - - /* - * Decide how many values are worth storing as most-common values. - * If we are able to generate a complete MCV list (all the values - * in the sample will fit, and we think these are all the ones in - * the table), then do so. Otherwise, store only those values - * that are significantly more common than the (estimated) - * average. We set the threshold rather arbitrarily at 25% more - * than average, with at least 2 instances in the sample. Also, - * we won't suppress values that have a frequency of at least 1/K - * where K is the intended number of histogram bins; such values - * might otherwise cause us to emit duplicate histogram bin - * boundaries. - */ - if (track_cnt == ndistinct && toowide_cnt == 0 && - stats->stadistinct > 0 && - track_cnt <= num_mcv) - { - /* Track list includes all values seen, and all will fit */ - num_mcv = track_cnt; - } - else - { - double ndistinct = stats->stadistinct; - double avgcount, - mincount, - maxmincount; - - if (ndistinct < 0) - ndistinct = -ndistinct * totalrows; - /* estimate # of occurrences in sample of a typical value */ - avgcount = (double) numrows / ndistinct; - /* set minimum threshold count to store a value */ - mincount = avgcount * 1.25; - if (mincount < 2) - mincount = 2; - /* don't let threshold exceed 1/K, however */ - maxmincount = (double) numrows / (double) num_bins; - if (mincount > maxmincount) - mincount = maxmincount; - if (num_mcv > track_cnt) - num_mcv = track_cnt; - for (i = 0; i < num_mcv; i++) - { - if (track[i].count < mincount) - { - num_mcv = i; - break; - } - } - } - - /* Generate MCV slot entry */ - if (num_mcv > 0) - { - MemoryContext old_context; - Datum *mcv_values; - float4 *mcv_freqs; - - /* Must copy the target values into anl_context */ - old_context = MemoryContextSwitchTo(anl_context); - mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum)); - mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4)); - for (i = 0; i < num_mcv; i++) - { - mcv_values[i] = datumCopy(values[track[i].first].value, - stats->attr->attbyval, - stats->attr->attlen); - mcv_freqs[i] = (double) track[i].count / (double) numrows; - } - MemoryContextSwitchTo(old_context); - - stats->stakind[slot_idx] = STATISTIC_KIND_MCV; - stats->staop[slot_idx] = stats->eqopr; - stats->stanumbers[slot_idx] = mcv_freqs; - stats->numnumbers[slot_idx] = num_mcv; - stats->stavalues[slot_idx] = mcv_values; - stats->numvalues[slot_idx] = num_mcv; - slot_idx++; - } - - /* - * Generate a histogram slot entry if there are at least two - * distinct values not accounted for in the MCV list. (This - * ensures the histogram won't collapse to empty or a singleton.) - */ - num_hist = ndistinct - num_mcv; - if (num_hist > num_bins) - num_hist = num_bins + 1; - if (num_hist >= 2) - { - MemoryContext old_context; - Datum *hist_values; - int nvals; - - /* Sort the MCV items into position order to speed next loop */ - qsort((void *) track, num_mcv, - sizeof(ScalarMCVItem), compare_mcvs); - - /* - * Collapse out the MCV items from the values[] array. - * - * Note we destroy the values[] array here... but we don't need - * it for anything more. We do, however, still need - * values_cnt. nvals will be the number of remaining entries - * in values[]. - */ - if (num_mcv > 0) - { - int src, - dest; - int j; - - src = dest = 0; - j = 0; /* index of next interesting MCV item */ - while (src < values_cnt) - { - int ncopy; - - if (j < num_mcv) - { - int first = track[j].first; - - if (src >= first) - { - /* advance past this MCV item */ - src = first + track[j].count; - j++; - continue; - } - ncopy = first - src; - } - else - ncopy = values_cnt - src; - memmove(&values[dest], &values[src], - ncopy * sizeof(ScalarItem)); - src += ncopy; - dest += ncopy; - } - nvals = dest; - } - else - nvals = values_cnt; - Assert(nvals >= num_hist); - - /* Must copy the target values into anl_context */ - old_context = MemoryContextSwitchTo(anl_context); - hist_values = (Datum *) palloc(num_hist * sizeof(Datum)); - for (i = 0; i < num_hist; i++) - { - int pos; - - pos = (i * (nvals - 1)) / (num_hist - 1); - hist_values[i] = datumCopy(values[pos].value, - stats->attr->attbyval, - stats->attr->attlen); - } - MemoryContextSwitchTo(old_context); - - stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM; - stats->staop[slot_idx] = stats->ltopr; - stats->stavalues[slot_idx] = hist_values; - stats->numvalues[slot_idx] = num_hist; - slot_idx++; - } - - /* Generate a correlation entry if there are multiple values */ - if (values_cnt > 1) - { - MemoryContext old_context; - float4 *corrs; - double corr_xsum, - corr_x2sum; - - /* Must copy the target values into anl_context */ - old_context = MemoryContextSwitchTo(anl_context); - corrs = (float4 *) palloc(sizeof(float4)); - MemoryContextSwitchTo(old_context); - - /*---------- - * Since we know the x and y value sets are both - * 0, 1, ..., values_cnt-1 - * we have sum(x) = sum(y) = - * (values_cnt-1)*values_cnt / 2 - * and sum(x^2) = sum(y^2) = - * (values_cnt-1)*values_cnt*(2*values_cnt-1) / 6. - *---------- - */ - corr_xsum = ((double) (values_cnt - 1)) * - ((double) values_cnt) / 2.0; - corr_x2sum = ((double) (values_cnt - 1)) * - ((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0; - - /* And the correlation coefficient reduces to */ - corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) / - (values_cnt * corr_x2sum - corr_xsum * corr_xsum); - - stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION; - stats->staop[slot_idx] = stats->ltopr; - stats->stanumbers[slot_idx] = corrs; - stats->numnumbers[slot_idx] = 1; - slot_idx++; - } - } - - /* We don't need to bother cleaning up any of our temporary palloc's */ -} - -/* - * qsort comparator for sorting ScalarItems - * - * Aside from sorting the items, we update the datumCmpTupnoLink[] array - * whenever two ScalarItems are found to contain equal datums. The array - * is indexed by tupno; for each ScalarItem, it contains the highest - * tupno that that item's datum has been found to be equal to. This allows - * us to avoid additional comparisons in compute_scalar_stats(). - */ -static int -compare_scalars(const void *a, const void *b) -{ - Datum da = ((ScalarItem *) a)->value; - int ta = ((ScalarItem *) a)->tupno; - Datum db = ((ScalarItem *) b)->value; - int tb = ((ScalarItem *) b)->tupno; - int32 compare; - - compare = ApplySortFunction(datumCmpFn, datumCmpFnKind, - da, false, db, false); - if (compare != 0) - return compare; - - /* - * The two datums are equal, so update datumCmpTupnoLink[]. - */ - if (datumCmpTupnoLink[ta] < tb) - datumCmpTupnoLink[ta] = tb; - if (datumCmpTupnoLink[tb] < ta) - datumCmpTupnoLink[tb] = ta; - - /* - * For equal datums, sort by tupno - */ - return ta - tb; -} - -/* - * qsort comparator for sorting ScalarMCVItems by position - */ -static int -compare_mcvs(const void *a, const void *b) -{ - int da = ((ScalarMCVItem *) a)->first; - int db = ((ScalarMCVItem *) b)->first; - - return da - db; -} - - -/* - * update_attstats() -- update attribute statistics for one relation - * - * Statistics are stored in several places: the pg_class row for the - * relation has stats about the whole relation, and there is a - * pg_statistic row for each (non-system) attribute that has ever - * been analyzed. The pg_class values are updated by VACUUM, not here. - * - * pg_statistic rows are just added or updated normally. This means - * that pg_statistic will probably contain some deleted rows at the - * completion of a vacuum cycle, unless it happens to get vacuumed last. - * - * To keep things simple, we punt for pg_statistic, and don't try - * to compute or store rows for pg_statistic itself in pg_statistic. - * This could possibly be made to work, but it's not worth the trouble. - * Note analyze_rel() has seen to it that we won't come here when - * vacuuming pg_statistic itself. - */ -static void -update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats) -{ - Relation sd; - int attno; - - /* - * We use an ExclusiveLock on pg_statistic to ensure that only one - * backend is writing it at a time --- without that, we might have to - * deal with concurrent updates here, and it's not worth the trouble. - */ - sd = heap_openr(StatisticRelationName, ExclusiveLock); - - for (attno = 0; attno < natts; attno++) - { - VacAttrStats *stats = vacattrstats[attno]; - FmgrInfo out_function; - HeapTuple stup, - oldtup; - int i, - k, - n; - Datum values[Natts_pg_statistic]; - char nulls[Natts_pg_statistic]; - char replaces[Natts_pg_statistic]; - Relation irelations[Num_pg_statistic_indices]; - - /* Ignore attr if we weren't able to collect stats */ - if (!stats->stats_valid) - continue; - - fmgr_info(stats->attrtype->typoutput, &out_function); - - /* - * Construct a new pg_statistic tuple - */ - for (i = 0; i < Natts_pg_statistic; ++i) - { - nulls[i] = ' '; - replaces[i] = 'r'; - } - - i = 0; - values[i++] = ObjectIdGetDatum(relid); /* starelid */ - values[i++] = Int16GetDatum(stats->attnum); /* staattnum */ - values[i++] = Float4GetDatum(stats->stanullfrac); /* stanullfrac */ - values[i++] = Int32GetDatum(stats->stawidth); /* stawidth */ - values[i++] = Float4GetDatum(stats->stadistinct); /* stadistinct */ - for (k = 0; k < STATISTIC_NUM_SLOTS; k++) - { - values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */ - } - for (k = 0; k < STATISTIC_NUM_SLOTS; k++) - { - values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */ - } - for (k = 0; k < STATISTIC_NUM_SLOTS; k++) - { - int nnum = stats->numnumbers[k]; - - if (nnum > 0) - { - Datum *numdatums = (Datum *) palloc(nnum * sizeof(Datum)); - ArrayType *arry; - - for (n = 0; n < nnum; n++) - numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]); - /* XXX knows more than it should about type float4: */ - arry = construct_array(numdatums, nnum, - false, sizeof(float4), 'i'); - values[i++] = PointerGetDatum(arry); /* stanumbersN */ - } - else - { - nulls[i] = 'n'; - values[i++] = (Datum) 0; - } - } - for (k = 0; k < STATISTIC_NUM_SLOTS; k++) - { - int ntxt = stats->numvalues[k]; - - if (ntxt > 0) - { - Datum *txtdatums = (Datum *) palloc(ntxt * sizeof(Datum)); - ArrayType *arry; - - for (n = 0; n < ntxt; n++) - { - /* - * Convert data values to a text string to be inserted - * into the text array. - */ - Datum stringdatum; - - stringdatum = - FunctionCall3(&out_function, - stats->stavalues[k][n], - ObjectIdGetDatum(stats->attrtype->typelem), - Int32GetDatum(stats->attr->atttypmod)); - txtdatums[n] = DirectFunctionCall1(textin, stringdatum); - pfree(DatumGetPointer(stringdatum)); - } - /* XXX knows more than it should about type text: */ - arry = construct_array(txtdatums, ntxt, - false, -1, 'i'); - values[i++] = PointerGetDatum(arry); /* stavaluesN */ - } - else - { - nulls[i] = 'n'; - values[i++] = (Datum) 0; - } - } - - /* Is there already a pg_statistic tuple for this attribute? */ - oldtup = SearchSysCache(STATRELATT, - ObjectIdGetDatum(relid), - Int16GetDatum(stats->attnum), - 0, 0); - - if (HeapTupleIsValid(oldtup)) - { - /* Yes, replace it */ - stup = heap_modifytuple(oldtup, - sd, - values, - nulls, - replaces); - ReleaseSysCache(oldtup); - simple_heap_update(sd, &stup->t_self, stup); - } - else - { - /* No, insert new tuple */ - stup = heap_formtuple(sd->rd_att, values, nulls); - simple_heap_insert(sd, stup); - } - - /* update indices too */ - CatalogOpenIndices(Num_pg_statistic_indices, Name_pg_statistic_indices, - irelations); - CatalogIndexInsert(irelations, Num_pg_statistic_indices, sd, stup); - CatalogCloseIndices(Num_pg_statistic_indices, irelations); - - heap_freetuple(stup); - } - - /* close rel, but hold lock till upcoming commit */ - heap_close(sd, NoLock); -} |