summaryrefslogtreecommitdiff
path: root/src/backend/storage/lmgr/predicate.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/storage/lmgr/predicate.c')
-rw-r--r--src/backend/storage/lmgr/predicate.c48
1 files changed, 24 insertions, 24 deletions
diff --git a/src/backend/storage/lmgr/predicate.c b/src/backend/storage/lmgr/predicate.c
index b7364787037..b9c6d8edee2 100644
--- a/src/backend/storage/lmgr/predicate.c
+++ b/src/backend/storage/lmgr/predicate.c
@@ -32,11 +32,11 @@
* examining the MVCC data.)
*
* (1) Besides tuples actually read, they must cover ranges of tuples
- * which would have been read based on the predicate. This will
+ * which would have been read based on the predicate. This will
* require modelling the predicates through locks against database
* objects such as pages, index ranges, or entire tables.
*
- * (2) They must be kept in RAM for quick access. Because of this, it
+ * (2) They must be kept in RAM for quick access. Because of this, it
* isn't possible to always maintain tuple-level granularity -- when
* the space allocated to store these approaches exhaustion, a
* request for a lock may need to scan for situations where a single
@@ -49,7 +49,7 @@
*
* (4) While they are associated with a transaction, they must survive
* a successful COMMIT of that transaction, and remain until all
- * overlapping transactions complete. This even means that they
+ * overlapping transactions complete. This even means that they
* must survive termination of the transaction's process. If a
* top level transaction is rolled back, however, it is immediately
* flagged so that it can be ignored, and its SIREAD locks can be
@@ -90,7 +90,7 @@
* may yet matter because they overlap still-active transactions.
*
* SerializablePredicateLockListLock
- * - Protects the linked list of locks held by a transaction. Note
+ * - Protects the linked list of locks held by a transaction. Note
* that the locks themselves are also covered by the partition
* locks of their respective lock targets; this lock only affects
* the linked list connecting the locks related to a transaction.
@@ -101,11 +101,11 @@
* - It is relatively infrequent that another process needs to
* modify the list for a transaction, but it does happen for such
* things as index page splits for pages with predicate locks and
- * freeing of predicate locked pages by a vacuum process. When
+ * freeing of predicate locked pages by a vacuum process. When
* removing a lock in such cases, the lock itself contains the
* pointers needed to remove it from the list. When adding a
* lock in such cases, the lock can be added using the anchor in
- * the transaction structure. Neither requires walking the list.
+ * the transaction structure. Neither requires walking the list.
* - Cleaning up the list for a terminated transaction is sometimes
* not done on a retail basis, in which case no lock is required.
* - Due to the above, a process accessing its active transaction's
@@ -348,7 +348,7 @@ int max_predicate_locks_per_xact; /* set by guc.c */
/*
* This provides a list of objects in order to track transactions
- * participating in predicate locking. Entries in the list are fixed size,
+ * participating in predicate locking. Entries in the list are fixed size,
* and reside in shared memory. The memory address of an entry must remain
* fixed during its lifetime. The list will be protected from concurrent
* update externally; no provision is made in this code to manage that. The
@@ -538,7 +538,7 @@ SerializationNeededForWrite(Relation relation)
/*
* These functions are a simple implementation of a list for this specific
- * type of struct. If there is ever a generalized shared memory list, we
+ * type of struct. If there is ever a generalized shared memory list, we
* should probably switch to that.
*/
static SERIALIZABLEXACT *
@@ -758,7 +758,7 @@ OldSerXidPagePrecedesLogically(int p, int q)
int diff;
/*
- * We have to compare modulo (OLDSERXID_MAX_PAGE+1)/2. Both inputs should
+ * We have to compare modulo (OLDSERXID_MAX_PAGE+1)/2. Both inputs should
* be in the range 0..OLDSERXID_MAX_PAGE.
*/
Assert(p >= 0 && p <= OLDSERXID_MAX_PAGE);
@@ -920,7 +920,7 @@ OldSerXidAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
}
/*
- * Get the minimum commitSeqNo for any conflict out for the given xid. For
+ * Get the minimum commitSeqNo for any conflict out for the given xid. For
* a transaction which exists but has no conflict out, InvalidSerCommitSeqNo
* will be returned.
*/
@@ -973,7 +973,7 @@ OldSerXidSetActiveSerXmin(TransactionId xid)
/*
* When no sxacts are active, nothing overlaps, set the xid values to
* invalid to show that there are no valid entries. Don't clear headPage,
- * though. A new xmin might still land on that page, and we don't want to
+ * though. A new xmin might still land on that page, and we don't want to
* repeatedly zero out the same page.
*/
if (!TransactionIdIsValid(xid))
@@ -1458,7 +1458,7 @@ SummarizeOldestCommittedSxact(void)
/*
* Grab the first sxact off the finished list -- this will be the earliest
- * commit. Remove it from the list.
+ * commit. Remove it from the list.
*/
sxact = (SERIALIZABLEXACT *)
SHMQueueNext(FinishedSerializableTransactions,
@@ -1974,7 +1974,7 @@ RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, uint32 targettaghash)
/*
* Delete child target locks owned by this process.
* This implementation is assuming that the usage of each target tag field
- * is uniform. No need to make this hard if we don't have to.
+ * is uniform. No need to make this hard if we don't have to.
*
* We aren't acquiring lightweight locks for the predicate lock or lock
* target structures associated with this transaction unless we're going
@@ -2420,7 +2420,7 @@ PredicateLockTuple(Relation relation, HeapTuple tuple, Snapshot snapshot)
}
/*
- * Do quick-but-not-definitive test for a relation lock first. This will
+ * Do quick-but-not-definitive test for a relation lock first. This will
* never cause a return when the relation is *not* locked, but will
* occasionally let the check continue when there really *is* a relation
* level lock.
@@ -2732,7 +2732,7 @@ exit:
* transaction which is not serializable.
*
* NOTE: This is currently only called with transfer set to true, but that may
- * change. If we decide to clean up the locks from a table on commit of a
+ * change. If we decide to clean up the locks from a table on commit of a
* transaction which executed DROP TABLE, the false condition will be useful.
*/
static void
@@ -2813,7 +2813,7 @@ DropAllPredicateLocksFromTable(Relation relation, bool transfer)
continue; /* already the right lock */
/*
- * If we made it here, we have work to do. We make sure the heap
+ * If we made it here, we have work to do. We make sure the heap
* relation lock exists, then we walk the list of predicate locks for
* the old target we found, moving all locks to the heap relation lock
* -- unless they already hold that.
@@ -3158,7 +3158,7 @@ ReleasePredicateLocks(bool isCommit)
* If this value is changing, we don't care that much whether we get the
* old or new value -- it is just used to determine how far
* GlobalSerizableXmin must advance before this transaction can be fully
- * cleaned up. The worst that could happen is we wait for one more
+ * cleaned up. The worst that could happen is we wait for one more
* transaction to complete before freeing some RAM; correctness of visible
* behavior is not affected.
*/
@@ -3260,7 +3260,7 @@ ReleasePredicateLocks(bool isCommit)
}
/*
- * Release all outConflicts to committed transactions. If we're rolling
+ * Release all outConflicts to committed transactions. If we're rolling
* back clear them all. Set SXACT_FLAG_CONFLICT_OUT if any point to
* previously committed transactions.
*/
@@ -3579,7 +3579,7 @@ ClearOldPredicateLocks(void)
* matter -- but keep the transaction entry itself and any outConflicts.
*
* When the summarize flag is set, we've run short of room for sxact data
- * and must summarize to the SLRU. Predicate locks are transferred to a
+ * and must summarize to the SLRU. Predicate locks are transferred to a
* dummy "old" transaction, with duplicate locks on a single target
* collapsing to a single lock with the "latest" commitSeqNo from among
* the conflicting locks..
@@ -3772,7 +3772,7 @@ XidIsConcurrent(TransactionId xid)
/*
* CheckForSerializableConflictOut
* We are reading a tuple which has been modified. If it is visible to
- * us but has been deleted, that indicates a rw-conflict out. If it's
+ * us but has been deleted, that indicates a rw-conflict out. If it's
* not visible and was created by a concurrent (overlapping)
* serializable transaction, that is also a rw-conflict out,
*
@@ -3859,7 +3859,7 @@ CheckForSerializableConflictOut(bool visible, Relation relation,
Assert(TransactionIdFollowsOrEquals(xid, TransactionXmin));
/*
- * Find top level xid. Bail out if xid is too early to be a conflict, or
+ * Find top level xid. Bail out if xid is too early to be a conflict, or
* if it's our own xid.
*/
if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
@@ -3924,7 +3924,7 @@ CheckForSerializableConflictOut(bool visible, Relation relation,
/*
* We have a conflict out to a transaction which has a conflict out to a
- * summarized transaction. That summarized transaction must have
+ * summarized transaction. That summarized transaction must have
* committed first, and we can't tell when it committed in relation to our
* snapshot acquisition, so something needs to be canceled.
*/
@@ -3958,7 +3958,7 @@ CheckForSerializableConflictOut(bool visible, Relation relation,
&& (!SxactHasConflictOut(sxact)
|| MySerializableXact->SeqNo.lastCommitBeforeSnapshot < sxact->SeqNo.earliestOutConflictCommit))
{
- /* Read-only transaction will appear to run first. No conflict. */
+ /* Read-only transaction will appear to run first. No conflict. */
LWLockRelease(SerializableXactHashLock);
return;
}
@@ -4549,7 +4549,7 @@ OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
*
* If a dangerous structure is found, the pivot (the near conflict) is
* marked for death, because rolling back another transaction might mean
- * that we flail without ever making progress. This transaction is
+ * that we flail without ever making progress. This transaction is
* committing writes, so letting it commit ensures progress. If we
* canceled the far conflict, it might immediately fail again on retry.
*/