summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-bus-event_source-devices-vpa-dtl25
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt5
-rw-r--r--Documentation/admin-guide/perf/dwc_pcie_pmu.rst4
-rw-r--r--Documentation/admin-guide/perf/fujitsu_uncore_pmu.rst110
-rw-r--r--Documentation/admin-guide/perf/hisi-pmu.rst49
-rw-r--r--Documentation/admin-guide/perf/index.rst1
-rw-r--r--Documentation/admin-guide/xfs.rst69
-rw-r--r--Documentation/arch/arm64/booting.rst11
-rw-r--r--Documentation/arch/arm64/elf_hwcaps.rst4
-rw-r--r--Documentation/arch/arm64/silicon-errata.rst2
-rw-r--r--Documentation/arch/arm64/sme.rst14
-rw-r--r--Documentation/arch/powerpc/index.rst1
-rw-r--r--Documentation/arch/powerpc/vpa-dtl.rst156
-rw-r--r--Documentation/arch/riscv/hwprobe.rst9
-rw-r--r--Documentation/devicetree/bindings/perf/fsl-imx-ddr.yaml1
-rw-r--r--Documentation/devicetree/bindings/riscv/extensions.yaml6
-rw-r--r--Documentation/filesystems/bcachefs/CodingStyle.rst186
-rw-r--r--Documentation/filesystems/bcachefs/SubmittingPatches.rst105
-rw-r--r--Documentation/filesystems/bcachefs/casefolding.rst108
-rw-r--r--Documentation/filesystems/bcachefs/errorcodes.rst30
-rw-r--r--Documentation/filesystems/bcachefs/future/idle_work.rst78
-rw-r--r--Documentation/filesystems/bcachefs/index.rst38
-rw-r--r--Documentation/filesystems/index.rst1
-rw-r--r--Documentation/filesystems/porting.rst12
-rw-r--r--Documentation/kbuild/kconfig-language.rst32
-rw-r--r--Documentation/staging/crc32.rst4
-rw-r--r--Documentation/userspace-api/ioctl/ioctl-number.rst2
27 files changed, 442 insertions, 621 deletions
diff --git a/Documentation/ABI/testing/sysfs-bus-event_source-devices-vpa-dtl b/Documentation/ABI/testing/sysfs-bus-event_source-devices-vpa-dtl
new file mode 100644
index 000000000000..7b7c789a5cf5
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-event_source-devices-vpa-dtl
@@ -0,0 +1,25 @@
+What: /sys/bus/event_source/devices/vpa_dtl/format
+Date: February 2025
+Contact: Linux on PowerPC Developer List <linuxppc-dev at lists.ozlabs.org>
+Description: Read-only. Attribute group to describe the magic bits
+ that go into perf_event_attr.config for a particular pmu.
+ (See ABI/testing/sysfs-bus-event_source-devices-format).
+
+ Each attribute under this group defines a bit range of the
+ perf_event_attr.config. Supported attribute are listed
+ below::
+
+ event = "config:0-7" - event ID
+
+ For example::
+
+ dtl_cede = "event=0x1"
+
+What: /sys/bus/event_source/devices/vpa_dtl/events
+Date: February 2025
+Contact: Linux on PowerPC Developer List <linuxppc-dev at lists.ozlabs.org>
+Description: (RO) Attribute group to describe performance monitoring events
+ for the Virtual Processor Dispatch Trace Log. Each attribute in
+ this group describes a single performance monitoring event
+ supported by vpa_dtl pmu. The name of the file is the name of
+ the event (See ABI/testing/sysfs-bus-event_source-devices-events).
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index e92c0056e4e0..a3f358fbcbfc 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -6406,8 +6406,9 @@
rodata= [KNL,EARLY]
on Mark read-only kernel memory as read-only (default).
off Leave read-only kernel memory writable for debugging.
- full Mark read-only kernel memory and aliases as read-only
- [arm64]
+ noalias Mark read-only kernel memory as read-only but retain
+ writable aliases in the direct map for regions outside
+ of the kernel image. [arm64]
rockchip.usb_uart
[EARLY]
diff --git a/Documentation/admin-guide/perf/dwc_pcie_pmu.rst b/Documentation/admin-guide/perf/dwc_pcie_pmu.rst
index cb376f335f40..167f9281fbf5 100644
--- a/Documentation/admin-guide/perf/dwc_pcie_pmu.rst
+++ b/Documentation/admin-guide/perf/dwc_pcie_pmu.rst
@@ -16,8 +16,8 @@ provides the following two features:
- one 64-bit counter for Time Based Analysis (RX/TX data throughput and
time spent in each low-power LTSSM state) and
-- one 32-bit counter for Event Counting (error and non-error events for
- a specified lane)
+- one 32-bit counter per event for Event Counting (error and non-error
+ events for a specified lane)
Note: There is no interrupt for counter overflow.
diff --git a/Documentation/admin-guide/perf/fujitsu_uncore_pmu.rst b/Documentation/admin-guide/perf/fujitsu_uncore_pmu.rst
new file mode 100644
index 000000000000..46595b788d3a
--- /dev/null
+++ b/Documentation/admin-guide/perf/fujitsu_uncore_pmu.rst
@@ -0,0 +1,110 @@
+.. SPDX-License-Identifier: GPL-2.0-only
+
+================================================
+Fujitsu Uncore Performance Monitoring Unit (PMU)
+================================================
+
+This driver supports the Uncore MAC PMUs and the Uncore PCI PMUs found
+in Fujitsu chips.
+Each MAC PMU on these chips is exposed as a uncore perf PMU with device name
+mac_iod<iod>_mac<mac>_ch<ch>.
+And each PCI PMU on these chips is exposed as a uncore perf PMU with device name
+pci_iod<iod>_pci<pci>.
+
+The driver provides a description of its available events and configuration
+options in sysfs, see /sys/bus/event_sources/devices/mac_iod<iod>_mac<mac>_ch<ch>/
+and /sys/bus/event_sources/devices/pci_iod<iod>_pci<pci>/.
+This driver exports:
+- formats, used by perf user space and other tools to configure events
+- events, used by perf user space and other tools to create events
+ symbolically, e.g.:
+ perf stat -a -e mac_iod0_mac0_ch0/event=0x21/ ls
+ perf stat -a -e pci_iod0_pci0/event=0x24/ ls
+- cpumask, used by perf user space and other tools to know on which CPUs
+ to open the events
+
+This driver supports the following events for MAC:
+- cycles
+ This event counts MAC cycles at MAC frequency.
+- read-count
+ This event counts the number of read requests to MAC.
+- read-count-request
+ This event counts the number of read requests including retry to MAC.
+- read-count-return
+ This event counts the number of responses to read requests to MAC.
+- read-count-request-pftgt
+ This event counts the number of read requests including retry with PFTGT
+ flag.
+- read-count-request-normal
+ This event counts the number of read requests including retry without PFTGT
+ flag.
+- read-count-return-pftgt-hit
+ This event counts the number of responses to read requests which hit the
+ PFTGT buffer.
+- read-count-return-pftgt-miss
+ This event counts the number of responses to read requests which miss the
+ PFTGT buffer.
+- read-wait
+ This event counts outstanding read requests issued by DDR memory controller
+ per cycle.
+- write-count
+ This event counts the number of write requests to MAC (including zero write,
+ full write, partial write, write cancel).
+- write-count-write
+ This event counts the number of full write requests to MAC (not including
+ zero write).
+- write-count-pwrite
+ This event counts the number of partial write requests to MAC.
+- memory-read-count
+ This event counts the number of read requests from MAC to memory.
+- memory-write-count
+ This event counts the number of full write requests from MAC to memory.
+- memory-pwrite-count
+ This event counts the number of partial write requests from MAC to memory.
+- ea-mac
+ This event counts energy consumption of MAC.
+- ea-memory
+ This event counts energy consumption of memory.
+- ea-memory-mac-write
+ This event counts the number of write requests from MAC to memory.
+- ea-ha
+ This event counts energy consumption of HA.
+
+ 'ea' is the abbreviation for 'Energy Analyzer'.
+
+Examples for use with perf::
+
+ perf stat -e mac_iod0_mac0_ch0/ea-mac/ ls
+
+And, this driver supports the following events for PCI:
+- pci-port0-cycles
+ This event counts PCI cycles at PCI frequency in port0.
+- pci-port0-read-count
+ This event counts read transactions for data transfer in port0.
+- pci-port0-read-count-bus
+ This event counts read transactions for bus usage in port0.
+- pci-port0-write-count
+ This event counts write transactions for data transfer in port0.
+- pci-port0-write-count-bus
+ This event counts write transactions for bus usage in port0.
+- pci-port1-cycles
+ This event counts PCI cycles at PCI frequency in port1.
+- pci-port1-read-count
+ This event counts read transactions for data transfer in port1.
+- pci-port1-read-count-bus
+ This event counts read transactions for bus usage in port1.
+- pci-port1-write-count
+ This event counts write transactions for data transfer in port1.
+- pci-port1-write-count-bus
+ This event counts write transactions for bus usage in port1.
+- ea-pci
+ This event counts energy consumption of PCI.
+
+ 'ea' is the abbreviation for 'Energy Analyzer'.
+
+Examples for use with perf::
+
+ perf stat -e pci_iod0_pci0/ea-pci/ ls
+
+Given that these are uncore PMUs the driver does not support sampling, therefore
+"perf record" will not work. Per-task perf sessions are not supported.
diff --git a/Documentation/admin-guide/perf/hisi-pmu.rst b/Documentation/admin-guide/perf/hisi-pmu.rst
index 48992a0b8e94..c4c2cbbf88cb 100644
--- a/Documentation/admin-guide/perf/hisi-pmu.rst
+++ b/Documentation/admin-guide/perf/hisi-pmu.rst
@@ -18,9 +18,10 @@ HiSilicon SoC uncore PMU driver
Each device PMU has separate registers for event counting, control and
interrupt, and the PMU driver shall register perf PMU drivers like L3C,
HHA and DDRC etc. The available events and configuration options shall
-be described in the sysfs, see:
+be described in the sysfs, see::
+
+/sys/bus/event_source/devices/hisi_sccl{X}_<l3c{Y}/hha{Y}/ddrc{Y}>
-/sys/bus/event_source/devices/hisi_sccl{X}_<l3c{Y}/hha{Y}/ddrc{Y}>.
The "perf list" command shall list the available events from sysfs.
Each L3C, HHA and DDRC is registered as a separate PMU with perf. The PMU
@@ -112,6 +113,50 @@ uring channel. It is 2 bits. Some important codes are as follows:
- 2'b00: default value, count the events which sent to the both uring and
uring_ext channel;
+6. ch: NoC PMU supports filtering the event counts of certain transaction
+channel with this option. The current supported channels are as follows:
+
+- 3'b010: Request channel
+- 3'b100: Snoop channel
+- 3'b110: Response channel
+- 3'b111: Data channel
+
+7. tt_en: NoC PMU supports counting only transactions that have tracetag set
+if this option is set. See the 2nd list for more information about tracetag.
+
+For HiSilicon uncore PMU v3 whose identifier is 0x40, some uncore PMUs are
+further divided into parts for finer granularity of tracing, each part has its
+own dedicated PMU, and all such PMUs together cover the monitoring job of events
+on particular uncore device. Such PMUs are described in sysfs with name format
+slightly changed::
+
+/sys/bus/event_source/devices/hisi_sccl{X}_<l3c{Y}_{Z}/ddrc{Y}_{Z}/noc{Y}_{Z}>
+
+Z is the sub-id, indicating different PMUs for part of hardware device.
+
+Usage of most PMUs with different sub-ids are identical. Specially, L3C PMU
+provides ``ext`` option to allow exploration of even finer granual statistics
+of L3C PMU. L3C PMU driver uses that as hint of termination when delivering
+perf command to hardware:
+
+- ext=0: Default, could be used with event names.
+- ext=1 and ext=2: Must be used with event codes, event names are not supported.
+
+An example of perf command could be::
+
+ $# perf stat -a -e hisi_sccl0_l3c1_0/rd_spipe/ sleep 5
+
+or::
+
+ $# perf stat -a -e hisi_sccl0_l3c1_0/event=0x1,ext=1/ sleep 5
+
+As above, ``hisi_sccl0_l3c1_0`` locates PMU of Super CPU CLuster 0, L3 cache 1
+pipe0.
+
+First command locates the first part of L3C since ``ext=0`` is implied by
+default. Second command issues the counting on another part of L3C with the
+event ``0x1``.
+
Users could configure IDs to count data come from specific CCL/ICL, by setting
srcid_cmd & srcid_msk, and data desitined for specific CCL/ICL by setting
tgtid_cmd & tgtid_msk. A set bit in srcid_msk/tgtid_msk means the PMU will not
diff --git a/Documentation/admin-guide/perf/index.rst b/Documentation/admin-guide/perf/index.rst
index 072b510385c4..47d9a3df6329 100644
--- a/Documentation/admin-guide/perf/index.rst
+++ b/Documentation/admin-guide/perf/index.rst
@@ -29,3 +29,4 @@ Performance monitor support
cxl
ampere_cspmu
mrvl-pem-pmu
+ fujitsu_uncore_pmu
diff --git a/Documentation/admin-guide/xfs.rst b/Documentation/admin-guide/xfs.rst
index a18328a5fb93..c85cd327af28 100644
--- a/Documentation/admin-guide/xfs.rst
+++ b/Documentation/admin-guide/xfs.rst
@@ -34,22 +34,6 @@ When mounting an XFS filesystem, the following options are accepted.
to the file. Specifying a fixed ``allocsize`` value turns off
the dynamic behaviour.
- attr2 or noattr2
- The options enable/disable an "opportunistic" improvement to
- be made in the way inline extended attributes are stored
- on-disk. When the new form is used for the first time when
- ``attr2`` is selected (either when setting or removing extended
- attributes) the on-disk superblock feature bit field will be
- updated to reflect this format being in use.
-
- The default behaviour is determined by the on-disk feature
- bit indicating that ``attr2`` behaviour is active. If either
- mount option is set, then that becomes the new default used
- by the filesystem.
-
- CRC enabled filesystems always use the ``attr2`` format, and so
- will reject the ``noattr2`` mount option if it is set.
-
discard or nodiscard (default)
Enable/disable the issuing of commands to let the block
device reclaim space freed by the filesystem. This is
@@ -75,12 +59,6 @@ When mounting an XFS filesystem, the following options are accepted.
across the entire filesystem rather than just on directories
configured to use it.
- ikeep or noikeep (default)
- When ``ikeep`` is specified, XFS does not delete empty inode
- clusters and keeps them around on disk. When ``noikeep`` is
- specified, empty inode clusters are returned to the free
- space pool.
-
inode32 or inode64 (default)
When ``inode32`` is specified, it indicates that XFS limits
inode creation to locations which will not result in inode
@@ -253,9 +231,8 @@ latest version and try again.
The deprecation will take place in two parts. Support for mounting V4
filesystems can now be disabled at kernel build time via Kconfig option.
-The option will default to yes until September 2025, at which time it
-will be changed to default to no. In September 2030, support will be
-removed from the codebase entirely.
+These options were changed to default to no in September 2025. In
+September 2030, support will be removed from the codebase entirely.
Note: Distributors may choose to withdraw V4 format support earlier than
the dates listed above.
@@ -268,8 +245,6 @@ Deprecated Mount Options
============================ ================
Mounting with V4 filesystem September 2030
Mounting ascii-ci filesystem September 2030
-ikeep/noikeep September 2025
-attr2/noattr2 September 2025
============================ ================
@@ -285,6 +260,8 @@ Removed Mount Options
osyncisdsync/osyncisosync v4.0
barrier v4.19
nobarrier v4.19
+ ikeep/noikeep v6.18
+ attr2/noattr2 v6.18
=========================== =======
sysctls
@@ -312,9 +289,6 @@ The following sysctls are available for the XFS filesystem:
removes unused preallocation from clean inodes and releases
the unused space back to the free pool.
- fs.xfs.speculative_cow_prealloc_lifetime
- This is an alias for speculative_prealloc_lifetime.
-
fs.xfs.error_level (Min: 0 Default: 3 Max: 11)
A volume knob for error reporting when internal errors occur.
This will generate detailed messages & backtraces for filesystem
@@ -341,17 +315,6 @@ The following sysctls are available for the XFS filesystem:
This option is intended for debugging only.
- fs.xfs.irix_symlink_mode (Min: 0 Default: 0 Max: 1)
- Controls whether symlinks are created with mode 0777 (default)
- or whether their mode is affected by the umask (irix mode).
-
- fs.xfs.irix_sgid_inherit (Min: 0 Default: 0 Max: 1)
- Controls files created in SGID directories.
- If the group ID of the new file does not match the effective group
- ID or one of the supplementary group IDs of the parent dir, the
- ISGID bit is cleared if the irix_sgid_inherit compatibility sysctl
- is set.
-
fs.xfs.inherit_sync (Min: 0 Default: 1 Max: 1)
Setting this to "1" will cause the "sync" flag set
by the **xfs_io(8)** chattr command on a directory to be
@@ -387,24 +350,20 @@ The following sysctls are available for the XFS filesystem:
Deprecated Sysctls
==================
-=========================================== ================
- Name Removal Schedule
-=========================================== ================
-fs.xfs.irix_sgid_inherit September 2025
-fs.xfs.irix_symlink_mode September 2025
-fs.xfs.speculative_cow_prealloc_lifetime September 2025
-=========================================== ================
-
+None currently.
Removed Sysctls
===============
-============================= =======
- Name Removed
-============================= =======
- fs.xfs.xfsbufd_centisec v4.0
- fs.xfs.age_buffer_centisecs v4.0
-============================= =======
+========================================== =======
+ Name Removed
+========================================== =======
+ fs.xfs.xfsbufd_centisec v4.0
+ fs.xfs.age_buffer_centisecs v4.0
+ fs.xfs.irix_symlink_mode v6.18
+ fs.xfs.irix_sgid_inherit v6.18
+ fs.xfs.speculative_cow_prealloc_lifetime v6.18
+========================================== =======
Error handling
==============
diff --git a/Documentation/arch/arm64/booting.rst b/Documentation/arch/arm64/booting.rst
index 2f666a7c303c..e4f953839f71 100644
--- a/Documentation/arch/arm64/booting.rst
+++ b/Documentation/arch/arm64/booting.rst
@@ -466,6 +466,17 @@ Before jumping into the kernel, the following conditions must be met:
- HDFGWTR2_EL2.nPMICFILTR_EL0 (bit 3) must be initialised to 0b1.
- HDFGWTR2_EL2.nPMUACR_EL1 (bit 4) must be initialised to 0b1.
+ For CPUs with SPE data source filtering (FEAT_SPE_FDS):
+
+ - If EL3 is present:
+
+ - MDCR_EL3.EnPMS3 (bit 42) must be initialised to 0b1.
+
+ - If the kernel is entered at EL1 and EL2 is present:
+
+ - HDFGRTR2_EL2.nPMSDSFR_EL1 (bit 19) must be initialised to 0b1.
+ - HDFGWTR2_EL2.nPMSDSFR_EL1 (bit 19) must be initialised to 0b1.
+
For CPUs with Memory Copy and Memory Set instructions (FEAT_MOPS):
- If the kernel is entered at EL1 and EL2 is present:
diff --git a/Documentation/arch/arm64/elf_hwcaps.rst b/Documentation/arch/arm64/elf_hwcaps.rst
index f58ada4d6cb2..a15df4956849 100644
--- a/Documentation/arch/arm64/elf_hwcaps.rst
+++ b/Documentation/arch/arm64/elf_hwcaps.rst
@@ -441,6 +441,10 @@ HWCAP3_MTE_FAR
HWCAP3_MTE_STORE_ONLY
Functionality implied by ID_AA64PFR2_EL1.MTESTOREONLY == 0b0001.
+HWCAP3_LSFE
+ Functionality implied by ID_AA64ISAR3_EL1.LSFE == 0b0001
+
+
4. Unused AT_HWCAP bits
-----------------------
diff --git a/Documentation/arch/arm64/silicon-errata.rst b/Documentation/arch/arm64/silicon-errata.rst
index b18ef4064bc0..a7ec57060f64 100644
--- a/Documentation/arch/arm64/silicon-errata.rst
+++ b/Documentation/arch/arm64/silicon-errata.rst
@@ -200,6 +200,8 @@ stable kernels.
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Neoverse-V3 | #3312417 | ARM64_ERRATUM_3194386 |
+----------------+-----------------+-----------------+-----------------------------+
+| ARM | Neoverse-V3AE | #3312417 | ARM64_ERRATUM_3194386 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | MMU-500 | #841119,826419 | ARM_SMMU_MMU_500_CPRE_ERRATA|
| | | #562869,1047329 | |
+----------------+-----------------+-----------------+-----------------------------+
diff --git a/Documentation/arch/arm64/sme.rst b/Documentation/arch/arm64/sme.rst
index 4cb38330e704..583f2ee9cb97 100644
--- a/Documentation/arch/arm64/sme.rst
+++ b/Documentation/arch/arm64/sme.rst
@@ -81,17 +81,7 @@ The ZA matrix is square with each side having as many bytes as a streaming
mode SVE vector.
-3. Sharing of streaming and non-streaming mode SVE state
----------------------------------------------------------
-
-It is implementation defined which if any parts of the SVE state are shared
-between streaming and non-streaming modes. When switching between modes
-via software interfaces such as ptrace if no register content is provided as
-part of switching no state will be assumed to be shared and everything will
-be zeroed.
-
-
-4. System call behaviour
+3. System call behaviour
-------------------------
* On syscall PSTATE.ZA is preserved, if PSTATE.ZA==1 then the contents of the
@@ -112,7 +102,7 @@ be zeroed.
exceptions for execve() described in section 6.
-5. Signal handling
+4. Signal handling
-------------------
* Signal handlers are invoked with PSTATE.SM=0, PSTATE.ZA=0, and TPIDR2_EL0=0.
diff --git a/Documentation/arch/powerpc/index.rst b/Documentation/arch/powerpc/index.rst
index 53fc9f89f3e4..1be2ee3f0361 100644
--- a/Documentation/arch/powerpc/index.rst
+++ b/Documentation/arch/powerpc/index.rst
@@ -37,6 +37,7 @@ powerpc
vas-api
vcpudispatch_stats
vmemmap_dedup
+ vpa-dtl
features
diff --git a/Documentation/arch/powerpc/vpa-dtl.rst b/Documentation/arch/powerpc/vpa-dtl.rst
new file mode 100644
index 000000000000..58d0022f993a
--- /dev/null
+++ b/Documentation/arch/powerpc/vpa-dtl.rst
@@ -0,0 +1,156 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. _vpa-dtl:
+
+===================================
+DTL (Dispatch Trace Log)
+===================================
+
+Athira Rajeev, 19 April 2025
+
+.. contents::
+ :depth: 3
+
+
+Basic overview
+==============
+
+The pseries Shared Processor Logical Partition(SPLPAR) machines can
+retrieve a log of dispatch and preempt events from the hypervisor
+using data from Disptach Trace Log(DTL) buffer. With this information,
+user can retrieve when and why each dispatch & preempt has occurred.
+The vpa-dtl PMU exposes the Virtual Processor Area(VPA) DTL counters
+via perf.
+
+Infrastructure used
+===================
+
+The VPA DTL PMU counters do not interrupt on overflow or generate any
+PMI interrupts. Therefore, hrtimer is used to poll the DTL data. The timer
+nterval can be provided by user via sample_period field in nano seconds.
+vpa dtl pmu has one hrtimer added per vpa-dtl pmu thread. DTL (Dispatch
+Trace Log) contains information about dispatch/preempt, enqueue time etc.
+We directly copy the DTL buffer data as part of auxiliary buffer and it
+will be processed later. This will avoid time taken to create samples
+in the kernel space. The PMU driver collecting Dispatch Trace Log (DTL)
+entries makes use of AUX support in perf infrastructure. On the tools side,
+this data is made available as PERF_RECORD_AUXTRACE records.
+
+To correlate each DTL entry with other events across CPU's, an auxtrace_queue
+is created for each CPU. Each auxtrace queue has a array/list of auxtrace buffers.
+All auxtrace queues is maintained in auxtrace heap. The queues are sorted
+based on timestamp. When the different PERF_RECORD_XX records are processed,
+compare the timestamp of perf record with timestamp of top element in the
+auxtrace heap so that DTL events can be co-related with other events
+Process the auxtrace queue if the timestamp of element from heap is
+lower than timestamp from entry in perf record. Sometimes it could happen that
+one buffer is only partially processed. if the timestamp of occurrence of
+another event is more than currently processed element in the queue, it will
+move on to next perf record. So keep track of position of buffer to continue
+processing next time. Update the timestamp of the auxtrace heap with the timestamp
+of last processed entry from the auxtrace buffer.
+
+This infrastructure ensures dispatch trace log entries can be correlated
+and presented along with other events like sched.
+
+vpa-dtl PMU example usage
+=========================
+
+.. code-block:: sh
+
+ # ls /sys/devices/vpa_dtl/
+ events format perf_event_mux_interval_ms power subsystem type uevent
+
+
+To capture the DTL data using perf record:
+.. code-block:: sh
+
+ # ./perf record -a -e sched:\*,vpa_dtl/dtl_all/ -c 1000000000 sleep 1
+
+The result can be interpreted using perf record. Snippet of perf report -D
+
+.. code-block:: sh
+
+ # ./perf report -D
+
+There are different PERF_RECORD_XX records. In that records corresponding to
+auxtrace buffers includes:
+
+1. PERF_RECORD_AUX
+ Conveys that new data is available in AUX area
+
+2. PERF_RECORD_AUXTRACE_INFO
+ Describes offset and size of auxtrace data in the buffers
+
+3. PERF_RECORD_AUXTRACE
+ This is the record that defines the auxtrace data which here in case of
+ vpa-dtl pmu is dispatch trace log data.
+
+Snippet from perf report -D showing the PERF_RECORD_AUXTRACE dump
+
+.. code-block:: sh
+
+0 0 0x39b10 [0x30]: PERF_RECORD_AUXTRACE size: 0x690 offset: 0 ref: 0 idx: 0 tid: -1 cpu: 0
+.
+. ... VPA DTL PMU data: size 1680 bytes, entries is 35
+. 00000000: boot_tb: 21349649546353231, tb_freq: 512000000
+. 00000030: dispatch_reason:decrementer interrupt, preempt_reason:H_CEDE, enqueue_to_dispatch_time:7064, ready_to_enqueue_time:187, waiting_to_ready_time:6611773
+. 00000060: dispatch_reason:priv doorbell, preempt_reason:H_CEDE, enqueue_to_dispatch_time:146, ready_to_enqueue_time:0, waiting_to_ready_time:15359437
+. 00000090: dispatch_reason:decrementer interrupt, preempt_reason:H_CEDE, enqueue_to_dispatch_time:4868, ready_to_enqueue_time:232, waiting_to_ready_time:5100709
+. 000000c0: dispatch_reason:priv doorbell, preempt_reason:H_CEDE, enqueue_to_dispatch_time:179, ready_to_enqueue_time:0, waiting_to_ready_time:30714243
+. 000000f0: dispatch_reason:priv doorbell, preempt_reason:H_CEDE, enqueue_to_dispatch_time:197, ready_to_enqueue_time:0, waiting_to_ready_time:15350648
+. 00000120: dispatch_reason:priv doorbell, preempt_reason:H_CEDE, enqueue_to_dispatch_time:213, ready_to_enqueue_time:0, waiting_to_ready_time:15353446
+. 00000150: dispatch_reason:priv doorbell, preempt_reason:H_CEDE, enqueue_to_dispatch_time:212, ready_to_enqueue_time:0, waiting_to_ready_time:15355126
+. 00000180: dispatch_reason:decrementer interrupt, preempt_reason:H_CEDE, enqueue_to_dispatch_time:6368, ready_to_enqueue_time:164, waiting_to_ready_time:5104665
+
+Above is representation of dtl entry of below format:
+
+struct dtl_entry {
+ u8 dispatch_reason;
+ u8 preempt_reason;
+ u16 processor_id;
+ u32 enqueue_to_dispatch_time;
+ u32 ready_to_enqueue_time;
+ u32 waiting_to_ready_time;
+ u64 timebase;
+ u64 fault_addr;
+ u64 srr0;
+ u64 srr1;
+
+};
+
+First two fields represent the dispatch reason and preempt reason. The post
+processing of PERF_RECORD_AUXTRACE records will translate to meaningful data
+for user to consume.
+
+Visualize the dispatch trace log entries with perf report
+=========================================================
+
+.. code-block:: sh
+
+ # ./perf record -a -e sched:*,vpa_dtl/dtl_all/ -c 1000000000 sleep 1
+ [ perf record: Woken up 1 times to write data ]
+ [ perf record: Captured and wrote 0.300 MB perf.data ]
+
+ # ./perf report
+ # Samples: 321 of event 'vpa-dtl'
+ # Event count (approx.): 321
+ #
+ # Children Self Command Shared Object Symbol
+ # ........ ........ ....... ................. ..............................
+ #
+ 100.00% 100.00% swapper [kernel.kallsyms] [k] plpar_hcall_norets_notrace
+
+Visualize the dispatch trace log entries with perf script
+=========================================================
+
+.. code-block:: sh
+
+ # ./perf script
+ migration/9 67 [009] 105373.359903: sched:sched_waking: comm=perf pid=13418 prio=120 target_cpu=009
+ migration/9 67 [009] 105373.359904: sched:sched_migrate_task: comm=perf pid=13418 prio=120 orig_cpu=9 dest_cpu=10
+ migration/9 67 [009] 105373.359907: sched:sched_stat_runtime: comm=migration/9 pid=67 runtime=4050 [ns]
+ migration/9 67 [009] 105373.359908: sched:sched_switch: prev_comm=migration/9 prev_pid=67 prev_prio=0 prev_state=S ==> next_comm=swapper/9 next_pid=0 next_prio=120
+ :256 256 [016] 105373.359913: vpa-dtl: timebase: 21403600706628832 dispatch_reason:decrementer interrupt, preempt_reason:H_CEDE, enqueue_to_dispatch_time:4854, ready_to_enqueue_time:139, waiting_to_ready_time:511842115 c0000000000fcd28 plpar_hcall_norets_notrace+0x18 ([kernel.kallsyms])
+ :256 256 [017] 105373.360012: vpa-dtl: timebase: 21403600706679454 dispatch_reason:priv doorbell, preempt_reason:H_CEDE, enqueue_to_dispatch_time:236, ready_to_enqueue_time:0, waiting_to_ready_time:133864583 c0000000000fcd28 plpar_hcall_norets_notrace+0x18 ([kernel.kallsyms])
+ perf 13418 [010] 105373.360048: sched:sched_stat_runtime: comm=perf pid=13418 runtime=139748 [ns]
+ perf 13418 [010] 105373.360052: sched:sched_waking: comm=migration/10 pid=72 prio=0 target_cpu=010
diff --git a/Documentation/arch/riscv/hwprobe.rst b/Documentation/arch/riscv/hwprobe.rst
index 2aa9be272d5d..2f449c9b15bd 100644
--- a/Documentation/arch/riscv/hwprobe.rst
+++ b/Documentation/arch/riscv/hwprobe.rst
@@ -327,6 +327,15 @@ The following keys are defined:
* :c:macro:`RISCV_HWPROBE_MISALIGNED_VECTOR_UNSUPPORTED`: Misaligned vector accesses are
not supported at all and will generate a misaligned address fault.
+* :c:macro:`RISCV_HWPROBE_KEY_VENDOR_EXT_MIPS_0`: A bitmask containing the
+ mips vendor extensions that are compatible with the
+ :c:macro:`RISCV_HWPROBE_BASE_BEHAVIOR_IMA`: base system behavior.
+
+ * MIPS
+
+ * :c:macro:`RISCV_HWPROBE_VENDOR_EXT_XMIPSEXECTL`: The xmipsexectl vendor
+ extension is supported in the MIPS ISA extensions spec.
+
* :c:macro:`RISCV_HWPROBE_KEY_VENDOR_EXT_THEAD_0`: A bitmask containing the
thead vendor extensions that are compatible with the
:c:macro:`RISCV_HWPROBE_BASE_BEHAVIOR_IMA`: base system behavior.
diff --git a/Documentation/devicetree/bindings/perf/fsl-imx-ddr.yaml b/Documentation/devicetree/bindings/perf/fsl-imx-ddr.yaml
index 8597ea625edb..d2e578d6b83b 100644
--- a/Documentation/devicetree/bindings/perf/fsl-imx-ddr.yaml
+++ b/Documentation/devicetree/bindings/perf/fsl-imx-ddr.yaml
@@ -33,6 +33,7 @@ properties:
- items:
- enum:
- fsl,imx91-ddr-pmu
+ - fsl,imx94-ddr-pmu
- fsl,imx95-ddr-pmu
- const: fsl,imx93-ddr-pmu
diff --git a/Documentation/devicetree/bindings/riscv/extensions.yaml b/Documentation/devicetree/bindings/riscv/extensions.yaml
index ede6a58ccf53..de41a6f074d3 100644
--- a/Documentation/devicetree/bindings/riscv/extensions.yaml
+++ b/Documentation/devicetree/bindings/riscv/extensions.yaml
@@ -662,6 +662,12 @@ properties:
Registers in the AX45MP datasheet.
https://www.andestech.com/wp-content/uploads/AX45MP-1C-Rev.-5.0.0-Datasheet.pdf
+ # MIPS
+ - const: xmipsexectl
+ description:
+ The MIPS extension for execution control as documented in
+ https://mips.com/wp-content/uploads/2025/06/P8700_Programmers_Reference_Manual_Rev1.84_5-31-2025.pdf
+
# SiFive
- const: xsfvqmaccdod
description:
diff --git a/Documentation/filesystems/bcachefs/CodingStyle.rst b/Documentation/filesystems/bcachefs/CodingStyle.rst
deleted file mode 100644
index b29562a6bf55..000000000000
--- a/Documentation/filesystems/bcachefs/CodingStyle.rst
+++ /dev/null
@@ -1,186 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-
-bcachefs coding style
-=====================
-
-Good development is like gardening, and codebases are our gardens. Tend to them
-every day; look for little things that are out of place or in need of tidying.
-A little weeding here and there goes a long way; don't wait until things have
-spiraled out of control.
-
-Things don't always have to be perfect - nitpicking often does more harm than
-good. But appreciate beauty when you see it - and let people know.
-
-The code that you are afraid to touch is the code most in need of refactoring.
-
-A little organizing here and there goes a long way.
-
-Put real thought into how you organize things.
-
-Good code is readable code, where the structure is simple and leaves nowhere
-for bugs to hide.
-
-Assertions are one of our most important tools for writing reliable code. If in
-the course of writing a patchset you encounter a condition that shouldn't
-happen (and will have unpredictable or undefined behaviour if it does), or
-you're not sure if it can happen and not sure how to handle it yet - make it a
-BUG_ON(). Don't leave undefined or unspecified behavior lurking in the codebase.
-
-By the time you finish the patchset, you should understand better which
-assertions need to be handled and turned into checks with error paths, and
-which should be logically impossible. Leave the BUG_ON()s in for the ones which
-are logically impossible. (Or, make them debug mode assertions if they're
-expensive - but don't turn everything into a debug mode assertion, so that
-we're not stuck debugging undefined behaviour should it turn out that you were
-wrong).
-
-Assertions are documentation that can't go out of date. Good assertions are
-wonderful.
-
-Good assertions drastically and dramatically reduce the amount of testing
-required to shake out bugs.
-
-Good assertions are based on state, not logic. To write good assertions, you
-have to think about what the invariants on your state are.
-
-Good invariants and assertions will hold everywhere in your codebase. This
-means that you can run them in only a few places in the checked in version, but
-should you need to debug something that caused the assertion to fail, you can
-quickly shotgun them everywhere to find the codepath that broke the invariant.
-
-A good assertion checks something that the compiler could check for us, and
-elide - if we were working in a language with embedded correctness proofs that
-the compiler could check. This is something that exists today, but it'll likely
-still be a few decades before it comes to systems programming languages. But we
-can still incorporate that kind of thinking into our code and document the
-invariants with runtime checks - much like the way people working in
-dynamically typed languages may add type annotations, gradually making their
-code statically typed.
-
-Looking for ways to make your assertions simpler - and higher level - will
-often nudge you towards making the entire system simpler and more robust.
-
-Good code is code where you can poke around and see what it's doing -
-introspection. We can't debug anything if we can't see what's going on.
-
-Whenever we're debugging, and the solution isn't immediately obvious, if the
-issue is that we don't know where the issue is because we can't see what's
-going on - fix that first.
-
-We have the tools to make anything visible at runtime, efficiently - RCU and
-percpu data structures among them. Don't let things stay hidden.
-
-The most important tool for introspection is the humble pretty printer - in
-bcachefs, this means `*_to_text()` functions, which output to printbufs.
-
-Pretty printers are wonderful, because they compose and you can use them
-everywhere. Having functions to print whatever object you're working with will
-make your error messages much easier to write (therefore they will actually
-exist) and much more informative. And they can be used from sysfs/debugfs, as
-well as tracepoints.
-
-Runtime info and debugging tools should come with clear descriptions and
-labels, and good structure - we don't want files with a list of bare integers,
-like in procfs. Part of the job of the debugging tools is to educate users and
-new developers as to how the system works.
-
-Error messages should, whenever possible, tell you everything you need to debug
-the issue. It's worth putting effort into them.
-
-Tracepoints shouldn't be the first thing you reach for. They're an important
-tool, but always look for more immediate ways to make things visible. When we
-have to rely on tracing, we have to know which tracepoints we're looking for,
-and then we have to run the troublesome workload, and then we have to sift
-through logs. This is a lot of steps to go through when a user is hitting
-something, and if it's intermittent it may not even be possible.
-
-The humble counter is an incredibly useful tool. They're cheap and simple to
-use, and many complicated internal operations with lots of things that can
-behave weirdly (anything involving memory reclaim, for example) become
-shockingly easy to debug once you have counters on every distinct codepath.
-
-Persistent counters are even better.
-
-When debugging, try to get the most out of every bug you come across; don't
-rush to fix the initial issue. Look for things that will make related bugs
-easier the next time around - introspection, new assertions, better error
-messages, new debug tools, and do those first. Look for ways to make the system
-better behaved; often one bug will uncover several other bugs through
-downstream effects.
-
-Fix all that first, and then the original bug last - even if that means keeping
-a user waiting. They'll thank you in the long run, and when they understand
-what you're doing you'll be amazed at how patient they're happy to be. Users
-like to help - otherwise they wouldn't be reporting the bug in the first place.
-
-Talk to your users. Don't isolate yourself.
-
-Users notice all sorts of interesting things, and by just talking to them and
-interacting with them you can benefit from their experience.
-
-Spend time doing support and helpdesk stuff. Don't just write code - code isn't
-finished until it's being used trouble free.
-
-This will also motivate you to make your debugging tools as good as possible,
-and perhaps even your documentation, too. Like anything else in life, the more
-time you spend at it the better you'll get, and you the developer are the
-person most able to improve the tools to make debugging quick and easy.
-
-Be wary of how you take on and commit to big projects. Don't let development
-become product-manager focused. Often time an idea is a good one but needs to
-wait for its proper time - but you won't know if it's the proper time for an
-idea until you start writing code.
-
-Expect to throw a lot of things away, or leave them half finished for later.
-Nobody writes all perfect code that all gets shipped, and you'll be much more
-productive in the long run if you notice this early and shift to something
-else. The experience gained and lessons learned will be valuable for all the
-other work you do.
-
-But don't be afraid to tackle projects that require significant rework of
-existing code. Sometimes these can be the best projects, because they can lead
-us to make existing code more general, more flexible, more multipurpose and
-perhaps more robust. Just don't hesitate to abandon the idea if it looks like
-it's going to make a mess of things.
-
-Complicated features can often be done as a series of refactorings, with the
-final change that actually implements the feature as a quite small patch at the
-end. It's wonderful when this happens, especially when those refactorings are
-things that improve the codebase in their own right. When that happens there's
-much less risk of wasted effort if the feature you were going for doesn't work
-out.
-
-Always strive to work incrementally. Always strive to turn the big projects
-into little bite sized projects that can prove their own merits.
-
-Instead of always tackling those big projects, look for little things that
-will be useful, and make the big projects easier.
-
-The question of what's likely to be useful is where junior developers most
-often go astray - doing something because it seems like it'll be useful often
-leads to overengineering. Knowing what's useful comes from many years of
-experience, or talking with people who have that experience - or from simply
-reading lots of code and looking for common patterns and issues. Don't be
-afraid to throw things away and do something simpler.
-
-Talk about your ideas with your fellow developers; often times the best things
-come from relaxed conversations where people aren't afraid to say "what if?".
-
-Don't neglect your tools.
-
-The most important tools (besides the compiler and our text editor) are the
-tools we use for testing. The shortest possible edit/test/debug cycle is
-essential for working productively. We learn, gain experience, and discover the
-errors in our thinking by running our code and seeing what happens. If your
-time is being wasted because your tools are bad or too slow - don't accept it,
-fix it.
-
-Put effort into your documentation, commit messages, and code comments - but
-don't go overboard. A good commit message is wonderful - but if the information
-was important enough to go in a commit message, ask yourself if it would be
-even better as a code comment.
-
-A good code comment is wonderful, but even better is the comment that didn't
-need to exist because the code was so straightforward as to be obvious;
-organized into small clean and tidy modules, with clear and descriptive names
-for functions and variables, where every line of code has a clear purpose.
diff --git a/Documentation/filesystems/bcachefs/SubmittingPatches.rst b/Documentation/filesystems/bcachefs/SubmittingPatches.rst
deleted file mode 100644
index 18c79d548391..000000000000
--- a/Documentation/filesystems/bcachefs/SubmittingPatches.rst
+++ /dev/null
@@ -1,105 +0,0 @@
-Submitting patches to bcachefs
-==============================
-
-Here are suggestions for submitting patches to bcachefs subsystem.
-
-Submission checklist
---------------------
-
-Patches must be tested before being submitted, either with the xfstests suite
-[0]_, or the full bcachefs test suite in ktest [1]_, depending on what's being
-touched. Note that ktest wraps xfstests and will be an easier method to running
-it for most users; it includes single-command wrappers for all the mainstream
-in-kernel local filesystems.
-
-Patches will undergo more testing after being merged (including
-lockdep/kasan/preempt/etc. variants), these are not generally required to be
-run by the submitter - but do put some thought into what you're changing and
-which tests might be relevant, e.g. are you dealing with tricky memory layout
-work? kasan, are you doing locking work? then lockdep; and ktest includes
-single-command variants for the debug build types you'll most likely need.
-
-The exception to this rule is incomplete WIP/RFC patches: if you're working on
-something nontrivial, it's encouraged to send out a WIP patch to let people
-know what you're doing and make sure you're on the right track. Just make sure
-it includes a brief note as to what's done and what's incomplete, to avoid
-confusion.
-
-Rigorous checkpatch.pl adherence is not required (many of its warnings are
-considered out of date), but try not to deviate too much without reason.
-
-Focus on writing code that reads well and is organized well; code should be
-aesthetically pleasing.
-
-CI
---
-
-Instead of running your tests locally, when running the full test suite it's
-preferable to let a server farm do it in parallel, and then have the results
-in a nice test dashboard (which can tell you which failures are new, and
-presents results in a git log view, avoiding the need for most bisecting).
-
-That exists [2]_, and community members may request an account. If you work for
-a big tech company, you'll need to help out with server costs to get access -
-but the CI is not restricted to running bcachefs tests: it runs any ktest test
-(which generally makes it easy to wrap other tests that can run in qemu).
-
-Other things to think about
----------------------------
-
-- How will we debug this code? Is there sufficient introspection to diagnose
- when something starts acting wonky on a user machine?
-
- We don't necessarily need every single field of every data structure visible
- with introspection, but having the important fields of all the core data
- types wired up makes debugging drastically easier - a bit of thoughtful
- foresight greatly reduces the need to have people build custom kernels with
- debug patches.
-
- More broadly, think about all the debug tooling that might be needed.
-
-- Does it make the codebase more or less of a mess? Can we also try to do some
- organizing, too?
-
-- Do new tests need to be written? New assertions? How do we know and verify
- that the code is correct, and what happens if something goes wrong?
-
- We don't yet have automated code coverage analysis or easy fault injection -
- but for now, pretend we did and ask what they might tell us.
-
- Assertions are hugely important, given that we don't yet have a systems
- language that can do ergonomic embedded correctness proofs. Hitting an assert
- in testing is much better than wandering off into undefined behaviour la-la
- land - use them. Use them judiciously, and not as a replacement for proper
- error handling, but use them.
-
-- Does it need to be performance tested? Should we add new performance counters?
-
- bcachefs has a set of persistent runtime counters which can be viewed with
- the 'bcachefs fs top' command; this should give users a basic idea of what
- their filesystem is currently doing. If you're doing a new feature or looking
- at old code, think if anything should be added.
-
-- If it's a new on disk format feature - have upgrades and downgrades been
- tested? (Automated tests exists but aren't in the CI, due to the hassle of
- disk image management; coordinate to have them run.)
-
-Mailing list, IRC
------------------
-
-Patches should hit the list [3]_, but much discussion and code review happens
-on IRC as well [4]_; many people appreciate the more conversational approach
-and quicker feedback.
-
-Additionally, we have a lively user community doing excellent QA work, which
-exists primarily on IRC. Please make use of that resource; user feedback is
-important for any nontrivial feature, and documenting it in commit messages
-would be a good idea.
-
-.. rubric:: References
-
-.. [0] git://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git
-.. [1] https://evilpiepirate.org/git/ktest.git/
-.. [2] https://evilpiepirate.org/~testdashboard/ci/
-.. [3] linux-bcachefs@vger.kernel.org
-.. [4] irc.oftc.net#bcache, #bcachefs-dev
diff --git a/Documentation/filesystems/bcachefs/casefolding.rst b/Documentation/filesystems/bcachefs/casefolding.rst
deleted file mode 100644
index 871a38f557e8..000000000000
--- a/Documentation/filesystems/bcachefs/casefolding.rst
+++ /dev/null
@@ -1,108 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-
-Casefolding
-===========
-
-bcachefs has support for case-insensitive file and directory
-lookups using the regular `chattr +F` (`S_CASEFOLD`, `FS_CASEFOLD_FL`)
-casefolding attributes.
-
-The main usecase for casefolding is compatibility with software written
-against other filesystems that rely on casefolded lookups
-(eg. NTFS and Wine/Proton).
-Taking advantage of file-system level casefolding can lead to great
-loading time gains in many applications and games.
-
-Casefolding support requires a kernel with the `CONFIG_UNICODE` enabled.
-Once a directory has been flagged for casefolding, a feature bit
-is enabled on the superblock which marks the filesystem as using
-casefolding.
-When the feature bit for casefolding is enabled, it is no longer possible
-to mount that filesystem on kernels without `CONFIG_UNICODE` enabled.
-
-On the lookup/query side: casefolding is implemented by allocating a new
-string of `BCH_NAME_MAX` length using the `utf8_casefold` function to
-casefold the query string.
-
-On the dirent side: casefolding is implemented by ensuring the `bkey`'s
-hash is made from the casefolded string and storing the cached casefolded
-name with the regular name in the dirent.
-
-The structure looks like this:
-
-* Regular: [dirent data][regular name][nul][nul]...
-* Casefolded: [dirent data][reg len][cf len][regular name][casefolded name][nul][nul]...
-
-(Do note, the number of NULs here is merely for illustration; their count can
-vary per-key, and they may not even be present if the key is aligned to
-`sizeof(u64)`.)
-
-This is efficient as it means that for all file lookups that require casefolding,
-it has identical performance to a regular lookup:
-a hash comparison and a `memcmp` of the name.
-
-Rationale
----------
-
-Several designs were considered for this system:
-One was to introduce a dirent_v2, however that would be painful especially as
-the hash system only has support for a single key type. This would also need
-`BCH_NAME_MAX` to change between versions, and a new feature bit.
-
-Another option was to store without the two lengths, and just take the length of
-the regular name and casefolded name contiguously / 2 as the length. This would
-assume that the regular length == casefolded length, but that could potentially
-not be true, if the uppercase unicode glyph had a different UTF-8 encoding than
-the lowercase unicode glyph.
-It would be possible to disregard the casefold cache for those cases, but it was
-decided to simply encode the two string lengths in the key to avoid random
-performance issues if this edgecase was ever hit.
-
-The option settled on was to use a free-bit in d_type to mark a dirent as having
-a casefold cache, and then treat the first 4 bytes the name block as lengths.
-You can see this in the `d_cf_name_block` member of union in `bch_dirent`.
-
-The feature bit was used to allow casefolding support to be enabled for the majority
-of users, but some allow users who have no need for the feature to still use bcachefs as
-`CONFIG_UNICODE` can increase the kernel side a significant amount due to the tables used,
-which may be decider between using bcachefs for eg. embedded platforms.
-
-Other filesystems like ext4 and f2fs have a super-block level option for casefolding
-encoding, but bcachefs currently does not provide this. ext4 and f2fs do not expose
-any encodings than a single UTF-8 version. When future encodings are desirable,
-they will be added trivially using the opts mechanism.
-
-dentry/dcache considerations
-----------------------------
-
-Currently, in casefolded directories, bcachefs (like other filesystems) will not cache
-negative dentry's.
-
-This is because currently doing so presents a problem in the following scenario:
-
- - Lookup file "blAH" in a casefolded directory
- - Creation of file "BLAH" in a casefolded directory
- - Lookup file "blAH" in a casefolded directory
-
-This would fail if negative dentry's were cached.
-
-This is slightly suboptimal, but could be fixed in future with some vfs work.
-
-
-References
-----------
-
-(from Peter Anvin, on the list)
-
-It is worth noting that Microsoft has basically declared their
-"recommended" case folding (upcase) table to be permanently frozen (for
-new filesystem instances in the case where they use an on-disk
-translation table created at format time.) As far as I know they have
-never supported anything other than 1:1 conversion of BMP code points,
-nor normalization.
-
-The exFAT specification enumerates the full recommended upcase table,
-although in a somewhat annoying format (basically a hex dump of
-compressed data):
-
-https://learn.microsoft.com/en-us/windows/win32/fileio/exfat-specification
diff --git a/Documentation/filesystems/bcachefs/errorcodes.rst b/Documentation/filesystems/bcachefs/errorcodes.rst
deleted file mode 100644
index 2cccaa0ba7cd..000000000000
--- a/Documentation/filesystems/bcachefs/errorcodes.rst
+++ /dev/null
@@ -1,30 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-
-bcachefs private error codes
-----------------------------
-
-In bcachefs, as a hard rule we do not throw or directly use standard error
-codes (-EINVAL, -EBUSY, etc.). Instead, we define private error codes as needed
-in fs/bcachefs/errcode.h.
-
-This gives us much better error messages and makes debugging much easier. Any
-direct uses of standard error codes you see in the source code are simply old
-code that has yet to be converted - feel free to clean it up!
-
-Private error codes may subtype another error code, this allows for grouping of
-related errors that should be handled similarly (e.g. transaction restart
-errors), as well as specifying which standard error code should be returned at
-the bcachefs module boundary.
-
-At the module boundary, we use bch2_err_class() to convert to a standard error
-code; this also emits a trace event so that the original error code be
-recovered even if it wasn't logged.
-
-Do not reuse error codes! Generally speaking, a private error code should only
-be thrown in one place. That means that when we see it in a log message we can
-see, unambiguously, exactly which file and line number it was returned from.
-
-Try to give error codes names that are as reasonably descriptive of the error
-as possible. Frequently, the error will be logged at a place far removed from
-where the error was generated; good names for error codes mean much more
-descriptive and useful error messages.
diff --git a/Documentation/filesystems/bcachefs/future/idle_work.rst b/Documentation/filesystems/bcachefs/future/idle_work.rst
deleted file mode 100644
index 59a332509dcd..000000000000
--- a/Documentation/filesystems/bcachefs/future/idle_work.rst
+++ /dev/null
@@ -1,78 +0,0 @@
-Idle/background work classes design doc:
-
-Right now, our behaviour at idle isn't ideal, it was designed for servers that
-would be under sustained load, to keep pending work at a "medium" level, to
-let work build up so we can process it in more efficient batches, while also
-giving headroom for bursts in load.
-
-But for desktops or mobile - scenarios where work is less sustained and power
-usage is more important - we want to operate differently, with a "rush to
-idle" so the system can go to sleep. We don't want to be dribbling out
-background work while the system should be idle.
-
-The complicating factor is that there are a number of background tasks, which
-form a heirarchy (or a digraph, depending on how you divide it up) - one
-background task may generate work for another.
-
-Thus proper idle detection needs to model this heirarchy.
-
-- Foreground writes
-- Page cache writeback
-- Copygc, rebalance
-- Journal reclaim
-
-When we implement idle detection and rush to idle, we need to be careful not
-to disturb too much the existing behaviour that works reasonably well when the
-system is under sustained load (or perhaps improve it in the case of
-rebalance, which currently does not actively attempt to let work batch up).
-
-SUSTAINED LOAD REGIME
----------------------
-
-When the system is under continuous load, we want these jobs to run
-continuously - this is perhaps best modelled with a P/D controller, where
-they'll be trying to keep a target value (i.e. fragmented disk space,
-available journal space) roughly in the middle of some range.
-
-The goal under sustained load is to balance our ability to handle load spikes
-without running out of x resource (free disk space, free space in the
-journal), while also letting some work accumululate to be batched (or become
-unnecessary).
-
-For example, we don't want to run copygc too aggressively, because then it
-will be evacuating buckets that would have become empty (been overwritten or
-deleted) anyways, and we don't want to wait until we're almost out of free
-space because then the system will behave unpredicably - suddenly we're doing
-a lot more work to service each write and the system becomes much slower.
-
-IDLE REGIME
------------
-
-When the system becomes idle, we should start flushing our pending work
-quicker so the system can go to sleep.
-
-Note that the definition of "idle" depends on where in the heirarchy a task
-is - a task should start flushing work more quickly when the task above it has
-stopped generating new work.
-
-e.g. rebalance should start flushing more quickly when page cache writeback is
-idle, and journal reclaim should only start flushing more quickly when both
-copygc and rebalance are idle.
-
-It's important to let work accumulate when more work is still incoming and we
-still have room, because flushing is always more efficient if we let it batch
-up. New writes may overwrite data before rebalance moves it, and tasks may be
-generating more updates for the btree nodes that journal reclaim needs to flush.
-
-On idle, how much work we do at each interval should be proportional to the
-length of time we have been idle for. If we're idle only for a short duration,
-we shouldn't flush everything right away; the system might wake up and start
-generating new work soon, and flushing immediately might end up doing a lot of
-work that would have been unnecessary if we'd allowed things to batch more.
-
-To summarize, we will need:
-
- - A list of classes for background tasks that generate work, which will
- include one "foreground" class.
- - Tracking for each class - "Am I doing work, or have I gone to sleep?"
- - And each class should check the class above it when deciding how much work to issue.
diff --git a/Documentation/filesystems/bcachefs/index.rst b/Documentation/filesystems/bcachefs/index.rst
deleted file mode 100644
index e5c4c2120b93..000000000000
--- a/Documentation/filesystems/bcachefs/index.rst
+++ /dev/null
@@ -1,38 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-
-======================
-bcachefs Documentation
-======================
-
-Subsystem-specific development process notes
---------------------------------------------
-
-Development notes specific to bcachefs. These are intended to supplement
-:doc:`general kernel development handbook </process/index>`.
-
-.. toctree::
- :maxdepth: 1
- :numbered:
-
- CodingStyle
- SubmittingPatches
-
-Filesystem implementation
--------------------------
-
-Documentation for filesystem features and their implementation details.
-At this moment, only a few of these are described here.
-
-.. toctree::
- :maxdepth: 1
- :numbered:
-
- casefolding
- errorcodes
-
-Future design
--------------
-.. toctree::
- :maxdepth: 1
-
- future/idle_work
diff --git a/Documentation/filesystems/index.rst b/Documentation/filesystems/index.rst
index 11a599387266..622187a96bdc 100644
--- a/Documentation/filesystems/index.rst
+++ b/Documentation/filesystems/index.rst
@@ -72,7 +72,6 @@ Documentation for filesystem implementations.
afs
autofs
autofs-mount-control
- bcachefs/index
befs
bfs
btrfs
diff --git a/Documentation/filesystems/porting.rst b/Documentation/filesystems/porting.rst
index b5db45c0094c..78c3d07c0c08 100644
--- a/Documentation/filesystems/porting.rst
+++ b/Documentation/filesystems/porting.rst
@@ -1285,3 +1285,15 @@ rather than a VMA, as the VMA at this stage is not yet valid.
The vm_area_desc provides the minimum required information for a filesystem
to initialise state upon memory mapping of a file-backed region, and output
parameters for the file system to set this state.
+
+---
+
+**mandatory**
+
+Several functions are renamed:
+
+- kern_path_locked -> start_removing_path
+- kern_path_create -> start_creating_path
+- user_path_create -> start_creating_user_path
+- user_path_locked_at -> start_removing_user_path_at
+- done_path_create -> end_creating_path
diff --git a/Documentation/kbuild/kconfig-language.rst b/Documentation/kbuild/kconfig-language.rst
index a91abb8f6840..abce88f15d7c 100644
--- a/Documentation/kbuild/kconfig-language.rst
+++ b/Documentation/kbuild/kconfig-language.rst
@@ -232,6 +232,38 @@ applicable everywhere (see syntax).
enables the third modular state for all config symbols.
At most one symbol may have the "modules" option set.
+- transitional attribute: "transitional"
+ This declares the symbol as transitional, meaning it should be processed
+ during configuration but omitted from newly written .config files.
+ Transitional symbols are useful for backward compatibility during config
+ option migrations - they allow olddefconfig to process existing .config
+ files while ensuring the old option doesn't appear in new configurations.
+
+ A transitional symbol:
+ - Has no prompt (is not visible to users in menus)
+ - Is processed normally during configuration (values are read and used)
+ - Can be referenced in default expressions of other symbols
+ - Is not written to new .config files
+ - Cannot have any other properties (it is a pass-through option)
+
+ Example migration from OLD_NAME to NEW_NAME::
+
+ config NEW_NAME
+ bool "New option name"
+ default OLD_NAME
+ help
+ This replaces the old CONFIG_OLD_NAME option.
+
+ config OLD_NAME
+ bool
+ transitional
+ help
+ Transitional config for OLD_NAME to NEW_NAME migration.
+
+ With this setup, existing .config files with "CONFIG_OLD_NAME=y" will
+ result in "CONFIG_NEW_NAME=y" being set, while CONFIG_OLD_NAME will be
+ omitted from newly written .config files.
+
Menu dependencies
-----------------
diff --git a/Documentation/staging/crc32.rst b/Documentation/staging/crc32.rst
index 7542220967cb..64f3dd430a6c 100644
--- a/Documentation/staging/crc32.rst
+++ b/Documentation/staging/crc32.rst
@@ -34,7 +34,7 @@ do it in the right order, matching the endianness.
Just like with ordinary division, you proceed one digit (bit) at a time.
Each step of the division you take one more digit (bit) of the dividend
and append it to the current remainder. Then you figure out the
-appropriate multiple of the divisor to subtract to being the remainder
+appropriate multiple of the divisor to subtract to bring the remainder
back into range. In binary, this is easy - it has to be either 0 or 1,
and to make the XOR cancel, it's just a copy of bit 32 of the remainder.
@@ -116,7 +116,7 @@ for any fractional bytes at the end.
To reduce the number of conditional branches, software commonly uses
the byte-at-a-time table method, popularized by Dilip V. Sarwate,
"Computation of Cyclic Redundancy Checks via Table Look-Up", Comm. ACM
-v.31 no.8 (August 1998) p. 1008-1013.
+v.31 no.8 (August 1988) p. 1008-1013.
Here, rather than just shifting one bit of the remainder to decide
in the correct multiple to subtract, we can shift a byte at a time.
diff --git a/Documentation/userspace-api/ioctl/ioctl-number.rst b/Documentation/userspace-api/ioctl/ioctl-number.rst
index 406a9f4d0869..7c527a01d1cf 100644
--- a/Documentation/userspace-api/ioctl/ioctl-number.rst
+++ b/Documentation/userspace-api/ioctl/ioctl-number.rst
@@ -374,6 +374,8 @@ Code Seq# Include File Comments
<mailto:linuxppc-dev@lists.ozlabs.org>
0xB2 08 arch/powerpc/include/uapi/asm/papr-physical-attestation.h powerpc/pseries Physical Attestation API
<mailto:linuxppc-dev@lists.ozlabs.org>
+0xB2 09 arch/powerpc/include/uapi/asm/papr-hvpipe.h powerpc/pseries HVPIPE API
+ <mailto:linuxppc-dev@lists.ozlabs.org>
0xB3 00 linux/mmc/ioctl.h
0xB4 00-0F linux/gpio.h <mailto:linux-gpio@vger.kernel.org>
0xB5 00-0F uapi/linux/rpmsg.h <mailto:linux-remoteproc@vger.kernel.org>